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Abstract 
Resource adequacy studies look at balancing electricity supply and demand on 10- to 15-year 
time horizons while asset investment planning typically evaluates returns on 20- to 40-year 
time horizons. Projections of electricity demand are factored into the decision-making in both 
cases. Climate, energy policy, and socioeconomic changes are key uncertainties known to 
influence electricity demands, but their relative importance for demands over the next 10-40 
years is unclear. The power sector would benefit from a better understanding of the need to 
characterize these uncertainties for resource adequacy and investment planning. In this study, 
we quantify when projected United States (U.S.) electricity demands start to meaningfully 
diverge in response to a range of climate, energy policy, and socioeconomic drivers. We use a 
wide yet plausible range of 21st century scenarios for the U.S. The projections span two 
population/economic growth scenarios (Shared Socioeconomic Pathways 3 and 5) and two 
climate/energy policy scenarios, one including climate mitigation policies and one without 
(Representative Concentration Pathways 4.5 and 8.5). Each climate/energy policy scenario has 
two warming levels to reflect a range of climate model uncertainty. We show that the 
socioeconomic scenario matters almost immediately – within the next 10 years, the 
climate/policy scenario matters within 25-30 years, and the climate model uncertainty matters 
only after 50+ years. This work can inform the power sector working to integrate climate 
change uncertainties into their decision-making. 
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1. Introduction 

The first step in long-term energy system planning is often a scoping process that 
defines the system and clarifies the range of stressors to be accounted for including demand 
growth, technology innovation, market structure and regulation changes, policies, and climate. 
The next steps typically include developing infrastructure plans that provide the bulk power 
system with the desired ability to meet peak electricity demand for the least cost. Finally, the 
planning process stress tests the projected infrastructure to evaluate the economics of bulk 
system operations under extreme conditions and provide insights to justify future investments. 
Demand projections are a major driver across all steps of the integrated resources planning 
workflow. Note that we use the terms “demand” and “load” interchangeably throughout the 



 

 

paper. However, projecting electricity demand is a complex process because it depends on 
uncertain socioeconomic, policy, and climate changes (e.g., Zhang et al. 2022 and references 
therein). Retrospective analyses have shown that demand projections can be highly uncertain 
(e.g., Kaack et al. 2017 and Wachtmeister et al. 2018). 
 

Climate change trends and interannual variability are increasingly being used as 
stressors in long-term planning exercises across the electricity sector (e.g., Cronin et al. 2018; 
Amorim et al. 2020; Harang et al. 2020; Khan et al. 2021; Plaga and Bertsch 2023). Climate 
change has been shown to impact both electricity supply and demand, requiring a shift in 
planning practices that have traditionally relied on historical weather patterns (e.g., 
Auffhammer et al. 2017; Steinber et al. 2020; Romitti and Sue Wing 2022). This need will 
amplify in the future due to the continued electrification of weather-sensitive energy services 
such as heating and cooling (Staffell and Pfenninger 2018) which will impact demand and the 
increasing penetration of weather-dependent renewable resources in the supply mix. 
 

A major challenge for incorporating climate change into long-term energy planning is 
uncertainty over which climate models or climate scenarios to use. There is a vast universe of 
options. For example, over 50 research groups have submitted historical or future runs to Phase 
6 of the Coupled Models Intercomparison Project (CMIP6; Ashfaq et al. 2022). Each group uses 
a particular General Circulation Model (GCM) to produce a range of simulations that span 
climate scenarios and physics configurations. At the time of writing there are over 450 unique 
climate simulations in the CMIP6 archive with more being added every day. To use even a single 
GCM run as a basis for exploring climate impacts on electricity supply and demand is a time 
consuming process. It involves, at a minimum, obtaining the raw output (often multiple 
terabytes), downscaling the model to the appropriate resolution, and post-processing it into 
the necessary format for detailed energy system modeling (e.g., wind, hydropower, load, and 
solar modeling). Given the time and labor involved, it is often impractical for any entity to use 
more than a small handful of climate projections as a basis for long-term planning. Additionally, 
different climate models can give drastically different projections of future conditions (e.g., 
Meehl et al. 2020). To make matters worse, even when using a single climate model, one can 
obtain a range of future conditions depending on the climate scenario or physics configuration 
that is chosen. For example, comparing low emissions with high emissions scenarios (e.g., Iyer 
et al. 2022; Nazarenko et al. 2022). 
 

These challenges raise important questions for utilities and bulk power grid planning 
agencies: Which climate model(s) or scenario(s) should be used, if any, and what planning 
questions are they best suited to address? This study aims to provide some insights by focusing 
on how different climate projections affect electricity demand compared to the effects of 
alternative socioeconomic projections. While we present results out to the end of the century, 
much of the analysis is focused on the next 40 years given that integrated resource planning is 
typically performed with 10- to 20-year time horizons and technology-specific asset investment 
decisions are made with 20- to 40-year time horizons. If electricity demand projections using 
different climate models or climate scenarios do not diverge significantly in the typical planning 
periods, then it may not matter what climate data are used in the planning process. 



 

 

 
We tackle this question by comparing load projections from a set of eight future 

scenarios that span a wide but plausible range of future climate, energy policy, and 
socioeconomic conditions. The scenarios were intentionally designed to reflect socioeconomic 
scenario uncertainty (i.e., low vs high population growth and labor productivity), climate policy 
and resulting future climate uncertainty (i.e., policies leading to moderate vs high greenhouse 
gas emissions and the associated decarbonization trends that accompany them), and climate 
model uncertainty (i.e., using models that are hotter or cooler than average). For each scenario 
we generated high-resolution climate and socioeconomic futures which were used in a multi-
model framework to project annual and hourly electricity demands at multiple scales. We then 
did pairwise scenario comparisons to isolate the effects of socioeconomic scenario versus 
emissions scenario versus climate model choice on the evolution of load projections. By 
examining both the overall trends and changes in peak loads, we ensure that the projections 
are consistent and provide information that can be used across the spectrum of long-term 
planning exercises. 
 
2. Methods 
2.1 Climate and Socioeconomic Scenarios 
 The Integrated Multisector Multiscale Modeling (IM3; https://im3.pnnl.gov/) project has 
generated a set of eight scenarios for the conterminous United States (U.S.) that span a wide 
but plausible range of uncertainty in future climate and socioeconomic conditions (Fig. 1). We 
represent climate uncertainty with four high-resolution, dynamically downscaled climate 
simulations for the period 2020-2099 (Jones et al. 2023). These four simulations project future 
climate for two alternative greenhouse gas emissions trajectories, each with two sets of 
assumptions about the degree of future warming given a trajectory. The emissions scenarios 
are the Representative Concentration Pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010). The RCP 
8.5 scenario is a high emissions scenario while the RCP 4.5 scenario requires substantial 
emissions reductions in order to keep global radiative forcing less than 4.5 W m-2 before the 
year 2100. Achieving the RCP 4.5 scenario goal requires significant electrification of the 
buildings, transportation, and industrial sectors, which in turn results in higher overall 
electricity demand. While not explored in this study, the electrification rate in an RCP 2.6 
scenario would need to be even higher than in the RCP 4.5 run (e.g., Clarke et al. 2022; Jay et al. 
2023). 
 

The two levels of future warming derive from uncertainties in the CMIP6 GCM model 
archive. We use the average warming values from groups of eight models that are either 
“cooler” or “hotter” than the multi-model mean. The climate simulations use an approach 
called Thermodynamic Global Warming (TGW) that “replays” 40 years of historical weather 
conditions (1980-2019) under future climate, using the RCP and hotter/cooler model 
combinations. The simulations repeat the historical period twice in sequence to produce future 
climate from 2020-2059 and from 2060-2099. Combining the emissions scenario uncertainty 
and climate model uncertainty yields four future 80-year hourly climate projections: 
rcp45cooler, rcp45hotter, rcp85cooler, and rcp85hotter. While these simulations do not directly 
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address the potential increased frequency of extreme events, they do indicate how past events 
could increase in intensity, duration, and scope. 
 

We create a total of eight future scenarios by combining each of the four climate futures 
with two socioeconomic scenarios (Fig. 1). The two socioeconomic scenarios, Shared 
Socioeconomic Pathways (SSPs) 3 and 5 (O’Neill et al. 2017), project future global populations 
and macroscale economic indicators (e.g., GDP). In the U.S., SSP3 reflects a low-growth 
population scenario while SSP5 is a high-growth population scenario. For example, total U.S. 
population in 2050 is 329 million for SSP3 and 430 million for SSP5 (Zoraghein and O’Neill 
2020). The gridded and state-level population data we use for each SSP are documented in 
Jiang et al. (2020) and Zoraghein and O’Neill (2020). More information about how the SSPs 
were implemented within our multi-model workflow is provided in a companion paper (Zhao et 
al. 2024 – In preparation). 

 

 
Fig. 1. The eight future scenarios reflect a range of socioeconomic scenario uncertainties, 
emissions scenario uncertainties, and climate model uncertainties. 
 
 The design of these scenarios allows us to isolate the impacts of our three main sources 
of uncertainty using pairwise comparisons where only one driver is different between the pair. 
For example, comparing electricity demand projections from the rcp45cooler_ssp3 run with the 
rcp45cooler_ssp5 run allows us to isolate the impact of socioeconomic uncertainty for the case 
of RCP 4.5 emissions and the cooler climate models. Completing the SSP comparison across the 
three other RCP/climate model pairs allows us to understand the overall importance of 
socioeconomic uncertainty for electricity demand and its interactions with emissions and 
climate model uncertainty. We perform these pairwise comparisons for each of the three 



 

 

sources of uncertainty (Table 1). The bulk of our analysis focuses on quantifying the year-by-
year differences in mean and peak electricity demand across these pairs. 
 

Socioeconomic Scenario 
Uncertainty 

[SSP3 vs SSP5] 

Emissions Scenario 
Uncertainty 

[RCP 4.5 vs RCP 8.5] 

Climate Model     
Uncertainty 

[Cooler vs Hotter Models] 

rcp45cooler_ssp3 
rcp45cooler_ssp5 

rcp45cooler_ssp3 
rcp85cooler_ssp3 

rcp45cooler_ssp3 
rcp45hotter_ssp3 

rcp45hotter_ssp3 
rcp45hotter_ssp5 

rcp45hotter_ssp3 
rcp85hotter_ssp3 

rcp45cooler_ssp5 
rcp45hotter_ssp5 

rcp85cooler_ssp3 
rcp85cooler_ssp5 

rcp45cooler_ssp5 
rcp85cooler_ssp5 

rcp85cooler_ssp3 
rcp85hotter_ssp3 

rcp85hotter_ssp3 
rcp85hotter_ssp5 

rcp45hotter_ssp5 
rcp85hotter_ssp5 

rcp85cooler_ssp5 
rcp85hotter_ssp5 

Table 1. Groupings drawn from the eight IM3 scenarios in which there is only one variable 
different between the pair. 
 
2.2 Load Models 
 We use a multi-model framework to generate hourly electricity demand projections for 
each the eight scenarios. The primary two models used in this experiment are a version of the 
Global Change Analysis Model with regional detail in the U.S. (GCAM-USA; Binsted et al. 2022 
and Patel et al. 2024) and the Total ELectricity Loads (TELL; McGrath et al. 2022) model. An 
overview of the modeling chain and links to the source code for all models are provided at 
https://github.com/IMMM-SFA/exp_group_b. GCAM-USA simulates annual electricity demands 
(from buildings, transportation, and industry) at the state level and then TELL converts these to 
8760-hr electricity demands based on hourly weather profiles from the TGW simulations. 
 

GCAM-USA is a partial equilibrium model that simulates interacting markets for energy, 
water, and land over the 21st century within the U.S. and globally in response to specific RCP 
and SSP assumptions. GCAM-USA was recently used to support the U.S. long-term climate 
strategy (U.S. Department of State 2021). For our research, we utilized a GCAM-USA capability 
to incorporate scenario-based climate impacts on annual building energy demands (Zhao et al. 
2024), agricultural yields (Ahsan et al. 2023), and water supply (Vernon et al. 2019). 
 

The process for including climate impacts on building energy demands involves the 
upstream conversion of the TGW climate projections into annual population-weighted heating 
and cooling degree hours (HDHs/CDHs) for each U.S. state using the Helios model (Zhao et al. 
2024). These HDH/CDHs are then used in GCAM-USA’s building energy model to determine 
climate-sensitive electricity demands from residential and commercial buildings for each state 
and year of the simulation. More details about GCAM-USA’s approach to projecting total 
electricity demand (i.e., from buildings, industry, and transport) are provided in Zhou et al. 
(2014), Clarke et al. (2018), and Binsted et al. (2022). In this experiment, GCAM-USA produced 
annual projections of state-level total electricity demand in 5-year increments from 2020-2095 
for each of the eight scenarios. We also show annual historical electricity demands from 1980-
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2019 to provide context for the future changes. Historical demands are from the U.S. Energy 
Information Administration’s (EIA) State Energy Data System (SEDS). 
 

Next, we passed the GCAM-USA annual electricity demand results to the TELL model. 
While GCAM-USA provides state-scale projections for total annual load, high spatial resolution 
hourly time series are needed to inform the integrated resources planning for its least cost 
operations and reliability performance metrics. TELL simulates hourly demands for electricity at 
the county, state, and Balancing Authority (BA) scale that are conceptually and quantitatively 
consistent with GCAM-USA’s annual total demands (McGrath et al. 2022). TELL uses a machine 
learning approach to simulate hourly electricity demands that are responsive to variations in 
weather. The model then scales those results to match the annual state-level total loads from 
GCAM-USA. To force TELL, the raw TGW climate simulation data (Jones et al. 2022) were first 
spatially averaged by U.S. county (Burleyson et al. 2023a) and then population-weighted (based 
on the SSP populations) into 8760-hr meteorology time series for each BA (Burleyson et al. 
2023b). GCAM-USA and TELL use the same climate and socioeconomic forcing and are 
therefore internally consistent. The benefit of including TELL in this experiment is that it allows 
us to simulate annual peak demands (derived from the 8760-hr profiles from each year) that 
complement the annual total load projections from GCAM-USA. This enables us to explore how 
changes in peak demands compare to changes in total demands over time and across scenarios. 
 
2.3 Difference Calculations 

To analyze the divergence in hourly loads between pairs of scenarios we computed the 
mean hourly absolute difference (in MWh) between a given pair of scenarios for each year in 
our model output (every 5 years). Relative differences were calculated by dividing the hourly 
absolute difference by the average hourly load between the pair. Relative differences are 
expressed as a percentage. To analyze changes in peak loads, we identified the single highest 
hourly load value from each 8760-hr time series in the pair and then computed the absolute 
difference between those peak values. Relative differences in peak loads were computed by 
dividing this absolute difference by the average of the pair. An example of these calculations for 
one pairwise comparison is shown in Fig. 2 for the year 2080 in the California Independent 
System Operator (CISO) BA. 
 



 

 

 
Fig. 2. Example of the calculation of mean and peak demand differences between the 
rcp85hotter_ssp5 and rcp85cooler_ssp5 scenarios for one year of TELL output in CISO: a) the 
8760-hr time series from the pair of scenarios; b) the hourly absolute demand difference 
between the pair; and c) the hourly relative demand difference between the pair. The inset in 
each panel shows the values zoomed in for a one-week period (vertical dashed lines) during a 
heat wave. The y-axis limits on the insets are the same as the plot they are embedded in. 
 
3. Results 

We analyzed the TELL output at multiple scales including states, BAs, and across the 
three U.S. interconnections (eastern [EIC], western [WIC], and the Electric Reliability Council of 
Texas [ERCOT]). TELL produces load projections for 54 BAs in the conterminous U.S. A full list of 
the BAs, their names and acronyms, and their service territories are all available in the meta-
repository that accompanies this paper (Burleyson et al. 2024): https://github.com/IMMM-
SFA/burleyson-etal_2024_applied_energy/blob/main/Balancing_Authorities_Analysis.md. We 
start by looking at the raw time series of annual total and maximum load and then dig deeper 
by doing the pairwise scenario comparisons to quantify divergence. Finally, we analyze the 
spatial variability of the divergence signal and the divergence in the highest loads. While we 

https://github.com/IMMM-SFA/burleyson-etal_2024_applied_energy/blob/main/Balancing_Authorities_Analysis.md
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show results out to 2100 for context, the first 20-to-40 future years are most insightful for 
informing long-term planning in the electric industry. 
 
3.1 Electricity Demand Projections 

Figure 3 shows the time series of projected annual total load and annual peak demand 
for each of the three electricity interconnections in the U.S. Demand was calculated by 
summing across the BAs in each interconnection. In this analysis peak demand is the single 
highest hourly load value each year. The interconnection time series are used as a canonical 
example – the patterns are similar across states and BAs. Because different stakeholders are 
interested in different scales, similar plots for each state and BA can be found in the meta-
repository that accompanies this paper (https://github.com/IMMM-SFA/burleyson-
etal_2024_applied_energy). 
 

 
Fig. 3. Historical and projected annual total load (top row) and annual peak demand (bottom 
row) from 1980-2100. Projections using the SSP3 socioeconomic forcing are shown in the 
dashed lines while projections using the SSP5 forcing are solid lines. Climate scenarios are 
indicated by different color lines. The projections are shown for the three U.S. grid 
interconnections: the Eastern Interconnection (EIC; left column), Western Interconnection (WIC; 
center column), and Electricity Reliability Council of Texas (ERCOT; right column). 
 

Two dominant patterns appear in all three interconnections. First is the split between 
the projections based on the SSP5 scenario (solid lines) and those based on the SSP3 scenario 
(dashed lines). Because of the substantially larger population changes in SSP5 (31% more 
people by 2050 compared to SSP3; Zoraghein and O’Neill 2020), loads naturally grow at a faster 
rate for those projections. Loads in the SSP3 runs are flat or minimally increasing between 2020 
and 2050 – consistent with the trend over the last 10 years of the historical period. 
 

https://github.com/IMMM-SFA/burleyson-etal_2024_applied_energy
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The second clear signal is the split between the RCP 4.5 (lines in shades of blue) and RCP 
8.5 scenarios (lines in shades of red). This divergence appears later in all three interconnections 
compared to the SSP3-SSP5 split. All else being equal, one might expect the warmer climate in 
the RCP 8.5 scenarios to result in higher electricity demands than in the cooler climate of RCP 
4.5. However, the GCAM-USA modeling imposes emissions constraints to achieve the RCP 4.5 
scenario and this results in widespread electrification in the building, transportation, and 
industrial sectors. All three interconnections show an earlier and larger divergence between the 
RCP 4.5 and 8.5 projections for the SSP5 runs compared to the SSP3 runs. This is because the 
higher populations in SSP5 require earlier and more rapid decarbonization to keep on track with 
the RCP 4.5 emissions constraints. 
 

In contrast to the SSP and RCP uncertainty results, for the climate model uncertainty 
pairs (e.g., rcp85hotter_ssp3 vs rcp85cooler_ssp3) we see no discernable differences between 
the cooler and hotter model pairs for the first 40 years. However, after ~2060 the differences 
gradually become more apparent. By the end of the century, runs based on the hotter models 
have higher total and peak loads compared to the cooler models. The divergence between 
climate model pairs is most clear for the RCP 8.5 scenario projections. 
 

Figure 4 shows the distribution of future load changes across BAs. In this and other 
boxplots in the paper the whiskers extend to the first and fourth quartiles and the dots indicate 
values more than 1.5x the interquartile range beyond the upper and lower quartiles. All future 
load values are normalized to 2019 (the last historical year) to facilitate comparison across BAs 
with drastically different absolute loads. The split between SSP3 and SSP5 projections is readily 
apparent as is the electrification enhancement in total and peak loads in the RCP 4.5 emissions 
scenario compared to the RCP 8.5 runs. This plot also clearly demonstrates that peak loads 
change at a slightly faster rate compared to total loads. For example, by 2060 the median peak 
demand change for the rcp45cooler_ssp5 scenario exceeds ~2.3x the 2019 values whereas the 
median total load change is ~2.1x the 2019 value. These boxplots also allow us to study the 
distribution across BAs. Across all years and scenarios, the distributions are largely Gaussian 
with a slight skewness towards higher values that becomes more apparent in the later decades. 
Results for the distribution of changes across states are similar (not shown). The distribution 
across BAs and states suggests that while load in some areas changes faster or slower than 
others there are no major persistent outliers that would lead to drastically skewed 
distributions. 
 



 

 

 
Fig. 4. Distribution across BAs of the change in annual total load (top row) and annual peak 
demand (bottom row) from 2020-2090 for each of the eight scenarios. Data is shown in 10-year 
increments to reduce clutter. Values are normalized to the 2019 historical loads to facilitate 
comparison across BAs and over time. 
 
3.2 Load Divergence 

We will start the divergence analysis by focusing on a single entity, in this case the 
Arizona Public Service (AZPS) BA, to understand the dominant patterns and then zooming out 
to look at the distribution of divergence across the full range of BAs simulated by TELL. The BA 
scale is used in this analysis because it is the most common framing for long-term planning. 
Figure 5 shows the evolution of the average relative difference between pairs of simulations in 
which only one variable differs. See Fig. 2 for an example of how the relative differences were 
computed and Table 1 for a list of all 12 pairs of scenarios. 
 



 

 

 
Fig. 5. Annual mean relative difference in demand between pairs of load projections for AZPS. 
The pairs are designed to span a range of a) socioeconomic scenario uncertainty (i.e., SSP3 vs 
SSP5), b) emissions scenario uncertainty (i.e., RCP 4.5 vs RCP 8.5), and c) climate model 
uncertainty (i.e., using warming derived from cooler vs hotter models). Mean differences across 
all 8760 hours are shown in the solid lines and mean differences for the peak load hours are 
shown in the dashed lines. 
 
 Starting with the socioeconomic scenario uncertainty, the strong and early divergence 
between pairs of simulations that use the SSP3 socioeconomic forcing compared to those using 
the SSP5 forcing is clear (Fig. 5a). Differences in 2030 are on average 16-22% and by 2050 they 
exceed 40% across all four pairs of scenarios. End-of-century differences between SSP3 and 
SSP5 runs are greater than 75%. Socioeconomic scenario differences are slightly higher in the 
pairs of simulations that use the RCP 4.5 emissions scenarios compared to those that use RCP 
8.5 forcing. This is due to the electrification in the RCP 4.5 runs which is accelerated in the 
higher U.S. population in SSP5 compared to SSP3. 
 

Moving to the emissions scenario divergence results (Fig. 5b), the first thing to point out 
is the difference in y-axis range compared to the SSP divergence plot. By 2050 the maximum 
difference between pairs is approximately 8%. This is in stark contrast to the SSP differences 
which all exceed 40% by 2050. Average differences between the RCP 4.5 and RCP 8.5 emission 
scenario pairs in AZPS do not exceed 5% until 2040 for the SSP5 pairs and until 2085 for the 
SSP3 pairs. End-of-century differences across emissions scenario pairs are less than 25%. Note 
that the initially higher difference values for the SSP3 runs may be an artifact of how we do the 



 

 

relative difference calculation. Because we normalize by average loads, the SSP5 runs will have 
a slightly smaller relative difference for a given absolute difference (because loads are higher in 
the SSP5 runs). This artifact does not impact the interpretation of our results. 
 
 Differences are even smaller when comparing pairs of scenarios that span a range of 
climate model uncertainties (Fig. 5c). Here the largest differences in the AZPS BA are less than 
5.5% even at the end of the runs in 2095. They do not even exceed 3% difference until mid-
century. This is clear evidence that the sensitivity of load projections to the choice of climate 
model (e.g., using cooler vs hotter models) may be minimal even on very long time horizons. 
The apparent increased noisiness in Fig. 5c is likely a plotting artifact stemming from the 
smaller y-axis range that allows year-to-year variability to become more apparent than the 
other scenario comparison plots. 
 

The results for AZPS are broadly representative of the distribution of relative changes 
across BAs (Fig. 6). The distribution of changes between the socioeconomic scenario pairs are 
largely Gaussian (Fig. 6a). As with the results from AZPS, there is no clear distinction between 
the mean and peak load changes in Fig. 6a. The emissions scenario and climate model 
divergence plots (Fig. 6b,c) have significantly more spread. This indicates that climate/emissions 
sensitivity has more BA-by-BA variability compared to socioeconomic scenario sensitivity. 
Additionally, both the emissions scenario and climate model divergence plots also indicate a 
higher relative difference in mean loads compared to peak loads. This is particularly evident 
later in the century in the emissions scenario divergence plots (Fig. 6b) where the median mean 
load differences are 2-3% larger than the peak load differences. Similar patterns are found 
when analyzing the distribution of changes across states (not shown). 
 



 

 

 
Fig. 6. Distribution across BAs of the relative difference between pairs of load projections from 
2020-2090 spanning a) socioeconomic scenario uncertainty (i.e., SSP3 vs SSP5), b) emissions 
scenario uncertainty (i.e., RCP 4.5 vs RCP 8.5), and c) climate model uncertainty (i.e., using 
warming derived from cooler vs hotter models). Data is shown in 10-year increments to reduce 
clutter. Mean differences across all 8760 hours are shown in the solid lines and mean differences 
for peak load hours are shown in the dashed lines. 
 
3.3 Classification of BAs According to Degree of Scenario Impacts on Demand 
 The goal of the next analysis is to explore if there are particular BAs, or groups of BAs, 
that are more or less sensitive to socioeconomic scenario, emissions scenario, or climate model 
uncertainty. Table 2 lists the BAs with the smallest and largest mean relative differences in the 
year 2050 across all 12 pairs of scenarios. While the results for emissions scenario sensitivity 
are a bit mixed, there were clear patterns for the pairs of scenarios spanning socioeconomic 
and climate model uncertainties. For socioeconomic scenario uncertainty, three BAs in different 
regions of the country (NYIS, WAUW, and LDWP) had consistently smaller differences whereas 
three BAs in the southwest (SRP, TEPC, and AZPS) demonstrated consistently higher sensitivities 
to socioeconomic scenario. A similar dipole exists for climate model sensitivity with the smallest 



 

 

sensitivities in the northwest (PSEI, SCL, TPWR, and GCPD) and the largest sensitivity to climate 
model in the southeast (GVL, NSB, and AECI). It is important to keep the overall magnitude of 
changes in mind for the climate model sensitivity analysis. Despite the consistently larger 
sensitivities in the southeast (Table 2) the largest differences are still only ~8% by the end of the 
century (Fig. 6c). 
 

 Scenario Pair 
Five Smallest Mean 
Differences in 2050 

Five Largest Mean 
Differences in 2050 

Socioeconomic 
Scenario Uncertainty 

rcp45cooler_ssp3 
rcp45cooler_ssp5 

NYIS, WAUW, ISNE, 
IID, LDWP 

SC, PNM, SRP, TEPC, 
AZPS 

rcp45hotter_ssp3 
rcp45hotter_ssp5 

NYIS, WAUW, ISNE, 
IID, LDWP 

PSCO, PNM SRP, 
TEPC, AZPS 

rcp85cooler_ssp3 
rcp85cooler_ssp5 

NYIS, WAUW, 
NWMT, IID, LDWP 

SCEG, SC, SRP, TEPC, 
AZPS 

rcp85hotter_ssp3 
rcp85hotter_ssp5 

NYIS, WAUW, 
NWMT, IID, LDWP 

SCEG, SC, SRP, TEPC, 
AZPS 

Emissions Scenario 
Uncertainty 

rcp45cooler_ssp3 
rcp85cooler_ssp3 

NWMT, PGE, IPCO, 
NEVP, PJM 

SWPP, WACM, PSCO, 
NYIS, ISNE 

rcp45hotter_ssp3 
rcp85hotter_ssp3 

NWMT, NEVP, IPCO, 
PGE, SRP 

WACM, PSCO, NYIS, 
AECI, ISNE 

rcp45cooler_ssp5 
rcp85cooler_ssp5 

HST, FPL, SCEG, SC, 
FMPP 

AECI, SWPP, PNM, 
PSCO, WACM 

rcp45hotter_ssp5 
rcp85hotter_ssp5 

FPL, HST, SCEG, 
FMPP, SC 

SWPP, AECI, PNM, 
PSCO, WACM 

Climate Model 
Uncertainty 

rcp45cooler_ssp3 
rcp45hotter_ssp3 

PSEI, SCL, TPWR, 
BPAT, GCPD 

ISNE, TAL, GVL, NSB, 
AECI 

rcp45cooler_ssp5 
rcp45hotter_ssp5 

PSEI, SCL, TPWR, 
BPAT, GCPD 

HST, TAL, GVL, NSB, 
AECI 

rcp85cooler_ssp3 
rcp85hotter_ssp3 

SCL, GCPD, PSEI, 
TPWR, NWMT 

ISNE, GVL, AEC, NSB, 
AECI 

rcp85cooler_ssp5 
rcp85hotter_ssp5 

SCL, GCPD, PSEI, 
TPWR, NWMT 

ISNE, GVL, AEC, NSB, 
AECI 

Table 2. List of the five BAs with the smallest and largest mean relative load differences in the 
year 2050 for each of the twelve pairs of scenarios. BAs that appear on the list for all four pairs 
of scenarios for a given source of uncertainty are shown in bold. 
 
3.4 Spatial Patterns 

Next we analyze the spatial characteristics of the load divergence. For this we focus on a 
subset of the pairs of scenarios to reduce the number of required plots and use state-level 
instead of BA-level data to facilitate easy plotting. Similar maps for each of the 12 pairs of 
scenarios can be found in the meta-repository that accompanies this paper 
(https://github.com/IMMM-SFA/burleyson-etal_2024_applied_energy). Figure 7 shows the 
spatial distribution of the first year in which the peak load difference exceeds 5% for the three 

https://github.com/IMMM-SFA/burleyson-etal_2024_applied_energy


 

 

sources of uncertainty. The threshold of 5%, although arbitrary, represents a finite difference 
beyond which you might reasonably be expected to be concerned about getting drastically 
different outcomes when using the scenarios for long-term planning. Similar results are found if 
you use a 10% or higher threshold (not shown). Looking at this data in a map format helps to 
understand some of the differences in the sensitivity to climate scenario and climate models 
(Fig. 6b,c and Table 2). 
 

 
Fig. 7. Maps showing the first year in which the peak load difference between three pairs of 
scenarios (shown in the title of each subplot) exceeds 5%. Grey shading indicates states that 
never experience differences larger than 5%. 
 

Consistent with the results shown in Fig. 6, all states experience socioeconomic scenario 
divergence at roughly the same pace (Fig. 7a). While there are minor variations from state-to-
state, all 48 states shown have a difference greater than 5% by 2040 at the latest. Some of the 
larger population states (i.e., Florida and California) experience slightly later divergence – a 
finding that could be due to the normalization artifact discussed previously. If the states have a 
naturally larger electricity demand, then they would experience smaller relative changes for a 
given absolute change. 
 
 As with the earlier analyses, the more interesting results come from exploring the 
emissions scenario and climate model divergence (Fig. 7b,c). In both plots there is significantly 
more state-to-state variability. In the case of emissions scenario divergence, the maps show a 
slight north-to-south gradient with earlier climate scenario impacts occurring in northern states 
compared to southern states (Fig. 7b). This effect appears marginal and may be due to the 
impact of electrified heating in the RCP 4.5 scenarios having an outsized impact on northern 



 

 

states with high heating demands. Two hot southern states, Florida and New Mexico, never 
experience emissions scenario divergence in peak loads that exceeds 5%. This is likely due to 
their already high cooling demand and year-round lack of heating demand that might increase 
due to electrification of heating in the RCP 4.5 climate scenario. For climate model divergence, 
there are no obvious spatial patterns for the pair of scenarios shown (Fig. 7c). Notably, the 
majority of states never actually experience peak load differences that exceed 5%. 
 
3.5 Impacts on “Peakiness” of Load Duration Curves 

Our final analysis looks at the change in peak loads across scenarios. Figure 4 showed 
that peak loads are increasing faster than mean loads and that the increase is scenario 
dependent. We dive into this further by examining changes in the extreme values of the Load 
Duration Curves (LDCs) for each BA. Figure 8 shows an example of the method for the PJM BA 
in the eastern U.S. The inset of Fig. 8 shows that the loads in PJM are becoming “peakier” over 
time. That is, the frequency of loads that are close to (defined here as >90%) the annual 
maximum load increases over time and that the amount of increase is scenario dependent. For 
this analysis we calculated the annual mean change in the number of hours with loads that 
exceed 90% of the annual maximum value. This normalization allows us to compare LDC shapes 
across scenarios with drastically different absolute loads. For this weather year in PJM, that 
increase is roughly +125 hours for the rcp85hotter_ssp5 scenario compared to the historical 
value (~130 hours). Because the shape of the LDCs is only dependent on the climate forcing we 
leave comparisons across the two socioeconomic scenarios out of this analysis and focus only 
on the SSP5 set of runs. 
 

 
Fig. 8. Annual LDCs for the PJM BA for a single historical year (black line) and across the four 
future climate scenarios (colored lines). For this example, we used the 2010 weather year which 
is then repeated twice in the future projections (2050 and 2090). All hourly load values in each 
year and scenario are normalized by the annual maximum hourly load to compare LDCs across 
years and scenarios. The inset highlights changes in the peak loads. 



 

 

 
 Over the first forty future years in our analysis (2020-2059) there is evidence that the 
loads in most BAs become slightly peakier (Fig. 9a). For all but a small handful of BAs and 
scenarios this change is, on average, less than an additional 50 hours per year in which loads 
exceed 90% of the annual maximum load. Notable exceptions to this pattern include AECI, JEA, 
and SPA which have anomalously high changes in peak loads and HST and NWMT where the 
loads become less peaky over time. Importantly for this analysis, there is little scenario 
divergence within the first forty years (i.e., the different colored dots for a given BA largely 
overlap). This is in stark contrast to the signal in the second half of the century where the trend 
towards peakier loads accelerates and there is a noticeable difference across the four climate 
scenarios (Fig. 9b). For some BAs and scenarios, the change exceeds 100 hours per year 
compared to the historical frequency. In almost every BA the loads driven by the RCP 8.5 
climate forcing are peakier compared to those from the RCP 4.5 forcing. The same is true for 
the hotter versus cooler climate forcing. 
 

 
Fig. 9. Changes in the number of hours with loads that exceed 90% of the annual maximum load 
(y-axes) by BA (x-axes). The top row shows the mean change by BA from 2020-2059 (i.e., the 
first repeat of the 40-year historical variability) and the bottom row shows the mean change 
from 2060-2099 (i.e., the second repeat). The different colors represent the four climate 
scenarios used in this analysis. 
 
4. Conclusions and Discussion 

This work explored the divergence of electricity demand projections across eight 
combined climate and socioeconomic scenarios. The scenarios were intentionally designed to 
span a wide but plausible range of socioeconomic scenarios, emissions scenarios, and climate 
model uncertainties. We ran the scenarios through the GCAM-USA and TELL models to produce 
80 years of projected hourly total electricity demand at the state- and BA-scale. By comparing 
pairs of projections where only one variable differs between the pair we can understand when 



 

 

the uncertainty captured by different facets of the scenarios becomes relevant. For example, 
when does it matter if you use the RCP 4.5 or RCP 8.5 emissions scenario as a basis for your 
long-term load projections? 
 
The primary results are as follows: 
1) Socioeconomic scenario uncertainty (i.e., SSP3 vs SSP5) matters almost immediately - within 

the first 10 years. Because of the significantly higher populations in the SSP5 scenario 
compared to SSP3, annual loads from the SSP5 group are 5-15% higher by 2030 and more 
than 25% higher by 2050 (Fig. 6a). By 2090, mean differences between the SSP3 and SSP5 
projections exceed 60%. These clear and definitive divergence patterns demonstrate the 
critical importance of including socioeconomic scenario uncertainty in projections of 
electricity demand for long-term planning. 
 

2) The annual load difference between emissions scenarios (i.e., RCP 4.5 vs RCP 8.5) are 
smaller and appear later than the socioeconomic scenario differences (Fig. 6b). The primary 
driver of the difference between the two climate scenarios is the higher degree of 
decarbonization and electrification needed to achieve the RCP 4.5 emissions pathway 
compared to RCP 8.5. Average differences between the RCP 4.5 and RCP 8.5 scenario pairs 
do not exceed 5% until mid-century (Fig. 6b). Average differences in 2090 due to climate 
scenario uncertainty are less than 45%. While not negligible, this result suggests that 
choosing the correct emissions scenario may not matter within the 10-20-year decision 
horizon typically used in long-term planning. There is a marginal north-south gradient in the 
impact of climate scenario with northern states experiencing slightly earlier climate 
scenario divergence compared to southern states (Fig. 7b and Table 2). 
 

3) The divergence between pairs of projections that reflect climate model uncertainty (i.e., 
whether you use hotter or colder climate models to derive future climate forcing) are even 
smaller than the climate scenario uncertainty (Fig. 6c). Even by 2090 the mean differences 
barely exceed 4%. This is 10x smaller than the end-of-century differences due to emissions 
scenario and 15x smaller than the differences due to socioeconomic scenario selection. 
There was a regional dipole in the climate model sensitivity. In 2050 the smallest 
sensitivities were for BAs in the northwest (PSEI, SCL, TPWR, and GCPD) while the largest 
sensitivity to climate model uncertainties were in the southeast (GVL, NSB, and AECI). This 
suggests that utilities and planning agencies focused on the southeastern region of the U.S. 
should be more cautious when selecting which scenarios and models to use as a basis for 
long-term planning. 
 

4) Our analysis showed that loads in almost every BA become peakier over time in all 
scenarios. This was measured by quantifying the change in the number of hours that exceed 
90% of the annual maximum load by BA. However, within the first forty years of our analysis 
(2020-2059) the increase in peakiness was relatively small (<50 hours) and uniform across 
emissions scenario and climate model runs. Divergence in the peakiness analysis appears 
after 2060 with the largest increases in peak loads coming from the RCP 8.5 climate 
scenario and the hotter climate models. This analysis demonstrates that long-term planning 



 

 

exercises focused on peak loads should be cautious about their choice of scenario and 
model in the latter half of the century but less concerned before 2060. 

 
There are several limitations to this study. As with most research they can easily be 

reframed as opportunities for extension of this work. First, the results were obtained using a 
specific set of scenarios and load models (GCAM-USA and TELL) and thus have some natural 
degree of tool-dependence. For example, due to structural differences, other GCAM-class 
models may produce different load projections given a common set of forcings (not shown). 
Our results may also be specific to the unique characteristics of the U.S. energy system. While it 
is beyond the scope of this study to explore the questions posed using a wider range of 
scenarios and tools, doing so would obviously add confidence to the results. The socioeconomic 
scenarios we chose to explore were intentionally very different from one another. This allows 
us to cover a wide range of uncertainty in this space. However, repeating this study with, for 
example, the SSP2 population and socioeconomic scenario would almost certainly result in a 
smaller and later divergence point for the socioeconomic scenario divergence analyses. 
Likewise, using an RCP 2.6 scenario (for example) would likely lead to much more rapid 
electrification than even the RCP 4.5 run and thus earlier divergence across RCP scenarios. 
However, it seems unlikely that these choices would change the main result that socioeconomic 
scenarios diverge earlier than climate scenarios or climate models – a finding that is consistent 
with prior results showing the importance of socioeconomics over climate on future loads (e.g., 
Zhou et al. 2014; Huang and Gurney 2016; and Burillo et al. 2019). Finally, we note that detailed 
end-use impacts on hourly demand profiles such as from the electrification of heating are not 
directly captured by the TELL model. Exploring the impacts of heating electrification on hourly 
demand under climate and socioeconomic change would make for an interesting follow-on 
analysis. 
 

Collectively, our findings suggest that in order of relative importance for understanding 
load projections for long-term planning, the planner’s choice of socioeconomic scenario (SSP3 
vs SSP5) matters almost immediately, their choice of climate/emissions scenario (RCP 4.5 vs 
RCP 8.5) and the associated decarbonization implications that come with it matters within 25-
30 years, and their choice of whether to use hotter or cooler climate models matters only after 
50+ years. 
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