LANDGE= 1892 C
CONF= G609 7/2Y~-

MPICH on the T3D: A Case Study of High Performance Message Passing *

Ron Brightwell f
Anthony Skjellum AT
Integrated Concurrent and Distributed Computation Research Lab and RE (h

NSF Engineering Research Center
Mississippi State University
bright@cs.sandia.gov
tony@cs.msstate.edu

Abstract

This paper describes the design, implementation and
performance of a port of the Argonne National Labora-
torylMississippi State University MPICH implementation of
the Message Passing Interface standard to the Cray T3D
massively parallel processing system. A description of the
factors influencing the design and the various stages of im-
plementation are presented. Performance results revealing
superior bandwidth and comparable latency as compared
to other full message passing systems on the T3D are shown.
Further planned improvements and optimizations, includ-
ing an analysis of a port to the T3E, are mentioned.

1. Introduction

As part of the MPICH project between Argonne National
Laboratories and Mississippi State University, a port of the
MPICH implementation of MPI to the T3D was designed
and implemented. This was not a rote exercise, but rather an
in-depth effort that stressed the internal abstract device in-
terface design of MPICH, demonstrated high performance,
while revealing several interesting issues concerning MPI
on systems that have distributed shared memory primitives
at a low level. While there were a number of bugs in
this implementation early on (including some incidental to
MPICH), the experiences associated with removing these
bugs and retaining high performance are illuminating, Fur-
thermore, the first-principles MPICH device created for this
portstands apart from others written using the channel inter-
face or P4, and so is an important contribution to the overall
device set of MPICH. Finally, issues concerning misalign-
ment and datatype-dependent performance have been iden-

*Work supported in part by the Department of Energy
1 Presently on staff at Sandia National Laboratories, Albuquerque, NM

This work vras supported by the United

States Depariment of Energy under
Coniract DE-ACN4-94ALR5000,

tified and should be factored into emerging MPI test suites.
The highest bandwidth of full message-passing systems
on the T3D has been achieved, with just a little help from
Cray, outstripping the PVM and EPCC MPI implementa-
tions, However, it is clear that vendor support would have
been helpful, inasmuch as the other message passing sys-
tems, which have vendor sanction, have also had access to
support for removing the subtle bugs that arise in pushing
the envelope of performance and functionality in the T3D
runtime environment. Higher bandwidth has been achieved
on collective operations, though they are far from optimal.

1.1. MPICH

MPICH is a portable implementation of the Message
Passing Interface (MPI) [3] standard developed jointly by
Argonne National Laboratory and Mississippi State Univer-
sity. MPICH contains an abstract device interface (ADI)
upon which a high-level message passing application pro-
grammer interface such as MPI can be implemented. The
ADI performs four main functions [9]:

¢ Sending and receiving

e Data transfer

¢ Queueing

o Device-dependent functions.

Porting MPICH to an architecture such as the T3D in-
volves the creation of new “device” that interacts with the
ADI through a set of routines (see [8] for details) and han-
dles. These handles are used to cache device specific data
to pass information between the device independent and de-
vice dependent layers of MPICH.

- MASTER

DISTRIBUTION OF THIS DOCGHMENT 1S UNL

ol

Laaa

- »
et

1.2, The Cray T3D

The Cray T3D is a massively parallel system which con-
tains up to 2048 processors connected by a high-speed, 3-D
torus communication network [6]. Cray T3D has a physi-
cally distributed shared memory, where each processing el-
ement (PE) has local memory which is globally addressable.
The T3D model is one process per PE and any PE can di-
rectly address any word of memory on any other PE. Cache
consistency is the resonsibility of the user.

2. Design Decisions

The initial design decision was to choose the most ef-
ficient method of communication between processing ele-
ments, Cray’s Block Transfer Engine (BLT) was an original
consideration, but this method had some major drawbacks.
Using the BLT requires the overhead of making an expen-
sive system call, The asynchronous capability of the BLT
was appealing, but because of limited memory bandwidth,
BLT was taken out of consideration. Each processing ele-
ment shares a BLT engine with another processing element.
When the BLT is in use by one PE, the second PE will block
if it tries to access the BLT. The BLT also requires a flush
of the entire cache upon transfer.

Cray also offers a direct shared memory access library
(SHMEM) [7] for remote memory transfers. This li-
brary contains a plethora of functions for point-to-point and
collective communication, synchronization, and cache ma-
nipulation. The two basic operations in this library are
shmem_get(), which copies data from a remote PE to the lo-
cal PE, and shmem_put(), which copies data from the local
PE to the remote PE. Multiples of 32- and 64-bit transfers
are supported, with aligned data.

After investigating both methods, and on the informal
advice of Cray Research [11], the shared memory library
was chosen as the means of communication upon which to
build the MPICH T3D device. Further investigation into the
shared memory library revealed that shmem_put() transfers
data at nearly twice the bandwidth of shmem_get(). There-
fore, shmem_put() was chosen as the basis for the imple-
mentation of the device.

In order to use shmem_put() to transfer data, a remote ad-
dress on the receiver must be known a priori. Therefore, the
next step in the design process was determining a method
by which a sender could obtain a target address to which
a message could be sent. This method must also maintain
pairwise ordering for messages (within a communicator) in
order to be MPI compliant [3].

Several possibilities were considered, based on the
available shared memory constructs and functions in the
SHMEM library. The shmem_swap() function provides an
atomic swap operation, and was originally considered as

a means to gain atomic access to a pre-allocated message
buffer at the receiver. However, the latency cost associated
with such an operation was thought to be too high.

Global and static variables and dynamic memory allo-
cated with the shemalloc() function are guaranteed to have
the same address on every PE. It was decided that a message
buffer conld just be an offset into a array of message buffers
allocated from the shared heap. In fact, remote memory
writes to global or shared locations is the method encour-
aged by SHMEM documentation {5, 7]. In order to main-
tain pairwise ordering of messages, a sender was to have
only one buffer into which messages would be written at
the receiver, and at any time there could only be one out-
standing message between a sender and a receiver.

Once the low level communication design was complete,
a design for efficient implementation of MPI communica-
tions was developed. A two-level protocol for sending mes-
sages was decided upon: a protocol for short messages in
which header information for each message would accom-
pany the body of the message, and a protocol for longer
messages in which the body could be delivered directly into
the user buffer at the receiver. These protocols would al-
low for the smaller messages to be sent quickly and also
allow for a limited global buffer space necessary for put-
based communication. An additional protocol layer would
be to added to handle synchronous communications.

3. Implementation

None of the then-existing devices in the MPICH im-
plementation used a put-based shared memory strategy for
communications. Therefore, a completely new device was
created for the Cray T3D, rather than building upon or aug-
menting an existing device. MPICH’s ADI provided the
required functions for message queueing, so the new de-
vice was responsible for sending and receiving messages,
transfer of data to the API, and a few other device specific
functions.

3.1. Sending and Receiving Messages

For the MPICH implementation, each process in the ap-
plication allocates an array from the shared heap that con-
tains a slot into which every other process (including itself)
can send messages (receive buffers) and an array of flags for
each of its buffers on every other process (send flags) (Fig-
ure 1). Allocating from the shared heap insures that both
of these data structures reside at the same address on every
process. The send flags indicate to the sender the state of its
receive buffer at the receiver, and is a method of flow con-
trol so that successive messages to the same receiver are not
overwritten and remain pairwise ordered.

Recelve Buffers
Process 0 messages from0 | messages from1
Process 1 messages from 0 | messages from 1
Send Flags
Process 0 bufferon 0 bufferon 1
Process 1 butfer on 0 bufferon 1

Figure 1. Receive Buffers and Send Flags.

Before any message can be sent, the sender must wait
for the send flag associated with the receive buffer on the
receiving PE to be clear. This busy waiting involves travers-
ing its own receive buffers looking for incoming messages
to process so that communications may progress. As soon
as the send flag is clear, the sender sets the send flag and the
outgoing message is written to the receiver at the sender’s
message slot. A new message at the receiver is signaled by
a status flag contained in each receive buffer. This status
flag is set when the sender writes a message header into its
receive buffer,

Traversal of the receive buffers by the receiving PE is
implemented as fairly as possible, with the search begin-
ning at the first buffer beyond where the last message was
received. Upon discovering a new message, the receiving
PE processes the message, clears the receive buffer flag, and
then informs the sending PE that its receive buffer is free by
clearing the send flag at the sending PE.

Sender Receiver
Header -3
Data —_—
Copy
Figure 2. Short Send Protocol.

For messages using the short protocol (Figure 2), both
a message header and the user data are sent. The message
header contains the following information:

¢ mode value identifying the type of message (short reg-
ular, long synchronous, etc.)

context id of the communicator being used

local rank of the sender within the communicator

message tag

message length

status flag indicating the buffer is in use

The data is written to the receiver before the header is
written, insuring that the data will be valid when the receiver
recognizes that the buffer contains a new message. If the
data is not four-byte aligned, it is copied to the sender’s
own locally aligned receive buffer before it is written to the
receiver. The only use for the sender’s own local receive
buffer is as a copy space.

Upon discovering any new message, the receiver
searches its posted receive queue against the context id, lo-
cal rank, and tag values for a match. If the search is suc-
cessful, the data is copied from the receive buffer into the
application’s designated buffer. Both sending and receiving
of this message is complete. If the search is unsuccessful,
space for the data is allocated and the data is copied from
the receive buffer into the newly allocated buffer. This mes-
sage is then added to an unexpected message queue. Only
the sending side of this message is complete.

The receiver then clears the status flag in this receive
buffer and informs the sender that its receive buffer is now
free by writing a cleared status value into its designated send
flag at the sender.

For messages using the long protocol (Figure 3), only a
header is sent. The message header for the long protocol is
identical to the short message header, plus the the following
additional information:

o local address of a structure where the receiver can
write (using a put) the following information:

- location of the receive buffer
- location of the receiver’s completed flag
- length of the receive buffer

The sender initializes the buffer length field to a negative
value, and writes only this header to the receiver. Upon dis-
covering this new message, the receiver again searches the
posted receive queue for a match, allocating a buffer if un-
successful (an unexpected message). For the long protocol,
a structure containing the address of the buffer, the length

Sender Receiver
...... .
-~ Header ~---->
Data —
Complete <<= >

Long Send— — >
Info

Figure 3. Long Send Protocol.

of the buffer, and the address of the receiver’s request com-
pleted flag is filled in and written back to the sender at the
location specified in the message header.

Once this header has been processed by the receiver, the
reciever clears the status flags of the receiver buffer and send
flag, just as in the short protocol.

At the sender, a non-negative receive buffer length sig-
nals that the receiver has processed the message header and
the user data may be written to the receiver at the specified
location. After the user data is written, the sender writes a
completed flag value to the receiver’s completed flag loca-
tion, informing the receiver that the data has been written.
If this message was expected at the receiver, both sending
and receiving of this message is completed. If it was unex-
pected, only the send operation is complete, and the mes-
sage is added to the queue of unexpected messages at the
receiver,

For synchronous send operations, both the short and long
message headers contain the following additional informa-
tion:

o local address of the send completed flag where the re-
ceiver can write a completed flag

For both long and short protocol messages, when the re-
ceiver recognizes the completion of a synchronous receive
operation, a completed flag is written to the location at the
sender specified in the message header (Figure 4 and Fig-
ure 5). Completion of a synchronous send operation is not
complete at the sender or the receiver until the receiver up-
dates the send completed flag.

When a receive is posted, the unexpected message queue
is searched. If the search is successful, an unexpected mes-
sage handle is associated with the posted receive handle.

Sender Receiver

Header ---->
Data I
Complete +=+=== >
Copy

Figure 4. Short Synchronous Send Protocol.

Sender Receiver
)
- - T
— Header ————2
Data —_—
Complete ------- o

Long Send— — >
Info

.....
....

....

Figure 5. Long Synchronous Send Protocol.

Once the unexpected message is completed, the data is
copied from the allocated buffer to the application speci-
fied buffer. If the search is unsuccessful, the receive han-
dle is added to a queue of posted receives. This queue is
searched every time a new message is discovered in the re-
ceive buffers.

This send protocol prohibits taking advantage of any op-
portunities for optimization provided by the MPI ready send
functions. Therefore, ready sends are equivalent to blocking
sends.

3.2. Cache coherency

Because remote memory updates take place without the
involvement of the remote processor, the cache on the re-

mote PE can become invalid. The SHMEM library provides
several functions used to help ensure cache coherency. Our
initial implementation chose the simplest of these meth-
ods. Automatic cache invalidation for all writes into lo-
cal memory by other PE’s can be enabled by a call to
shmem_set_cache_inv(). This method was chosen rather
than invalidating individual cache lines or flushing the en-
tire data cache whenever a receive is posted.

3.3. Address Validation

Extreme caution must be taken when using shmem_put()
to write into a non-global address on a remote PE. Global
variables, static variables and memory allocated from the
global shared heap using shmalloc() are guaranteed to be
identical and valid on every PE. However, automatic vari-
ables allocated from the local stack and dynamic memory
allocated from the local heap are not guaranteed to be valid
on every process. The shmem_put() function checks the va-
lidity of both the source and target addresses in the local
process’ address space. Should the target address not be
a valid address in the sender’s address space, an operand
range error is generated, and, if not caught, results in the
application dumping a corefile. In order to write to any ad-
dress on another PE, the target address must be made valid
at the sender.

Cray Research (CRI) pointed out an undocumented func-
tion, malloc_brk(), which exists for validating memory allo-
cated from the local heap using malloc(). malloc_brk() es-
sentially works like the brk() system call, exapanding the
heap as necessary to make the target heap address valid.
However, unlike brk(), the extra memory is added to the
malloc() free list for use by the application. CRI also con-
tributed an assembly routine, shmem_stack(), for validating
memory allocated from the local stack. shmem_stack() ex-
tends the local stack if the target address is beyond the top
of the local stack.

There are only a few places in the implementation where
the target address must be checked for validity and be made
valid. In the long protocol, the receiver must validate the ad-
dress at the sender where the structure containing the loca-
tion of the receive buffer, the location of the receiver’s com-
pleted flag, and the length of the receive buffer are written.
Likewise, the sender must then validate this receive buffer
location before the user data can be written and also the re-
ceive completed location before the receive completed flag
can be written. Similarly, in the synchronous protocol, the
receiver must validate the location of the send completed
flag at the sender before the flag can be updated. All other
puts are done to memory allocated from the shared heap.

Checking for an invalid address is done by comparing the
target address with both the top of the stack and also with
the current break value obtained from sbrk(). Since there

was no accurate means by which to get the value of the top
of the stack, a simple assembly routine returning the stack
pointer was written. Should the target address be less than
the top of the stack or greater than the current heap break
value, the target’s distance from each of those two limits is
calculated. If the target is closest to the top of the stack,
the stack is expanded, and if the target is closest to the heap
break value, the heap is extended. The costs associated with
checking the validity of a target address and extending the
stack are nominal, but extending the heap involves making
system calls to malloc_brk() and sbrk().

3.4. Alignment

Because shmem_put() can only transfer data that is four-
byte aligned, temporary buffers are allocated for transfers
involving addresses which are either not four-byte aligned
or which are not a multiple of four in length. A tempo-
rary send buffer is allocated for a long protocol send that
originates from an address that is not four-byte aligned. A
temporary receive buffer is also allocated in the long pro-
tocol for a receive that is destined for a buffer which is
not four-byte aligned or whose length is not a multiple of

four. Consequently, sending and receiving to and from mis- -

alinged buffers has a substantial performance degradation
that could be improved by a more optimal implementation.
However, since character data is the only type which is
not four-byte aligned, and due to the associated additional
code complexity, efforts toward optimization of misaligned
buffer use were considered to be of low priority.

4, Performance

Performance tests were run using the mpptest program
contained in the MPICH distribution. The tests were run
with the default parameters, using only the ‘-size’ switch
to modify the start, end, and increment message sizes.
The tests compare the current MPICH implementation with
Cray Research/Endiburgh Parallel Computing Centre im-
plementation version 1.4a. All tests were run on two pro-
Cessors. .

Figure 6 compares the latency for message lengths from
zero to 1024 in increments of 32 bytes. While the MPICH
numbers are erratic, the performance is comparable to that
of the CRI/EPCC.

Figure 7 compares the bandwidth for message lengths
from 10k to 200k in increments of 10k. Bandwidth of the
CRI/EPCC version levels off to around 29 megabytes per
second starting at messages of 100k. However, the MPICH
bandwidth continues to increase, leveling off to approxi-
mately 100 megabytes per second at messages of 100k. Fig-
ure 8 shows the continuation for message sizes from one

Latency n Microssconds

128 255 84 512 640 768 896 1024
Message size in Byles

Figure 6. Small Message Latency.

to five megabytes in the length. The MPICH implementa-
tion levels off at around 107 megabytes per second, achiev-
ing approximately 85% of the available peak bandwidth,
while the CRI/EPCC version continues to hover around 30
megabytes per second.

Bandwidh in Megabyles par Second

A0

a0

20
100
Message size n [Globyles

Figure 7. Medium Message Bandwidth.

5. Stages of Implementation

The original device for the T3D was built from an exist-
ing device constructed for the Myrinet gigabit network [1].
Even though a device for shared memory communications
existed in the MPICH distribution, the code was judged to
be too complex to either integrate a strictly put-based shared
memory implementation into or to use as a starting point for
such a device. The complexity of the code for the device for
Myrinet was much less, and the learning curve associated
with implementing a T3D device from the Myrinet device
was judged to be much lower. Only the basic framework of
the device was retained and all code and device dependent
structures were eliminated.

110

g S0F
8
3wl
g
"
2 0k MPICH «—
§ CRUEPCC ——
&
£ e}
£
5
0
& af
k<]
20
1 3 5
Messags sizs in Megabyles

Figure 8. Large Message Bandwidth.

As a result, implementing the first T3D device required
only approximately one month. However, because the de-
vice for Myrinet was packet-based and was not designed
for shared-memory-type operations, the T3D device had to
be shaped into one which was. Subsequent improvements
made over the course of four months worked to optimize
the device for a distributed shared memory environment.

The initial device was crude and did not properly han-
dle message buffers that were not eight-byte aligned. An
initial improvement involved replacing shmem_put() with
shmem_put32(), the SHMEM function for transferring four-
byte aligned quantities. However, buffers that were not
four-byte aligned or a multiple of four in length were still
not properly managed.

Further improvements to the device fixed bugs associ-
ated with the long send protocol. In the initial implemen-
tation of the long send protocol, both blocking and non-
blocking sends were handled identically. After sending a
long message header to the receiver, the sender would en-
ter a busy wait loop in the device layer waiting for the re-
ceiver to respond. This method did not take advantage of
the opportunities for increased performance offered by non-
blocking send operations. The implementation was mod-
ified so that the long send protocol would simply write a
long send header to the receiver when the send was posted
and would try to complete the send at some later point in
time, This implemenation caused protocol failures for cer-
tain combinations of wait and test operations. The current
device contains a queue of incomplete long send request
handles. When testing or waiting on a receive request han-
dle, the long send request must be traversed so that long
sends make progress [2].

The biggest problem with the MPICH T3D device was
its propensity for spurious message loss. This because of
a misunderstanding of how shmem_put() messages were re-
ceived. In the first implementation stages, the status flag
that notified the receiver of a new message was the first field

in the message header structure. Even though the header
was written in one ‘message’, the status field could be in
a different cache line than the rest of the header informa-
tion. A receiver that was traversing its receive buffers look-
ing for status flags to be set could possibly recognize a set
status flag and copy the other header information before it
was valid or even written to memory. As such, the message
would be received, but it most likely would contain incor-
rect values in the context or tag fields and end up in the
unexpected message queue. This problem was solved by
moving the status flag so that it is the last value written into
the receive buffer, insuring that all other header information
is valid when a set status flag is discovered.

CRI introduced a bug by changing the implementation of
malloc_brk() so that the shmem _stack() routine was extend-
ing the stack to an illegal value. The symptoms of this prob-
lem were recognized without the help of CRL Test codes ex-
hibited operand range errors upon entering functions subse-
quent to a call to shmem_stack() to validate a target address.
This problem was fixed by saving the stack pointer before
the shmem_stack() call and resetting the stack pointer afer
the shmem_put() call. An assembly routing was written to
reset the value of the stack pointer. The cause of this prob-
lem was only surmised, and while this seemed to be the
only solution, recent information from CRI confirmed our
suspicions and the validity of the solution.

6. Future Work

There are many performance improvements and en-
hancements that need to be investigated for this device. The
current implementation only transfers contiguous blocks
of data, packing and unpacking non-contiguous datatypes
when needed. Use of strided puts with the shmem_ixput()
function for indexed data types, or even multiple puts for
vector datatypes needs to be studied.

The design of the send flags and receive buffers provides
the ability to do accomplish control so that buffering unex-
pected messages may be turned on or off or even configured
to use only a set amount of memory. This desirable feature
has not currently been utilized as a means of reducing the
amount of required buffer space.

The collective operations are the default MPICH col-
lective operations which are built on top of MPI point-to-
point communications. While these have shown good per-
formance on the T3D, building MPI collective communica-
tions on top of the SHMEM collective operations needs to
be investigated promptly.

Work is ongoing on the next generation ADI [10]. The
goal of this new ADI is to eliminate as much overhead as
possible and achieve lower latencies than the first genera-
tion ADI for common cases, such as sending and receiving
contiguous datatypes. Additionally, the new ADI should

maintain ease of implementation and retain opportunities to

take advantage of the advanced capabilities of the underly--

ing hardware.

The MPICH T3D device can and should also be used
as a basis for a port to the T3D’s successor, the T3E [4].
The shared memory library on the T3E has elminated much
of the complexity of the T3D device by augmenting func-
tionality. T3E systems have antomatic cache coherency, so
the device need not explicitly invalidate the cache on re-
mote memory writes. The T3E also does not attempt to val-
idate remote addresses on the local PE, correcting the T3D
flaw. The checking and validating of remote addresses us-
ing shmem_stack() and malloc_brk() will not be required. A
major difference between the T3D and T3E will be the abil-
ity to have out-of-order puts because of adaptive 3D routing.

" Currently, the T3D ensures that successive puts to the same

PE will arrive in the order sent. On the T3E, this may not
be assumed. A library function, shmem_fence(), must be
called between successive puts to insure that the puts will
occur in the order issued. This adaptive routing feature can
possibly be exploited for collective as well as point-to-point
communications.

7. Acknowledgments

Gratitude is expressed to Peter Rigsbee of CRI for guid-
ance in choosing the best communication facilites and
for information regarding malloc_brk() and shmem_stack().
Thanks also to Karl Feind of CRI for information about the
T3E. Gratitude is also expressed to Shane Hebert of Missis-
sippi State University for his work testing the various imple-
mentations. And finally, deep thanks are extended to Rusty
Lusk and Bill Gropp of Argonne National Laboratory for
their help in this endeavor.

References

[1]1 N. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. N. Seizovic, and W. Su. Miyrinet-a gigabit-
per-second local-area network. IEEE Micro, 15(1):29-36,
February 1995.

[2] G.Burns and R. Daoud. Robust MPI message delivery with
guaranteed resources. MPI Developers Conference, June
1995.

[3] L. Clark, L Glendinning, and R. Hempel. The MPI Message
Passing Interface Standard. Technical report, Edinburgh Par-
allel Computing Centre, The University of Edinburgh, 1994.

[41 I Cray Research. The Cray T3E series. http://
www.cray.com/ PUBLIC/product-info/T3E/overview.html.

[5] Cray Research, Inc. Cray Research MPP Software Guide,
S$G-2508 1.1, 1994.

[6] Cray Research, Inc. Cray T3D System Architecture
Overview, HR-04033, March 1994.

[7] CrayResearch, Inc. SHMEM Technical Note for C, SG-2516
2.3, October 1994.

[8] W. Gropp and E. Lusk. MPICH ADI Implementation Refer-
ence Manual. Mathematics and Computer Science Division,
Argonne National Laboratory, October 1994.

[9] W. Gropp, E. Lusk, and A, Skjellum. Using MPI: Portable
Parallel Programming with the Message Passing Interface.
MIT Press, 1994.

[10] W. Gropp and R. Lusk. MPICH working note: The second-
generation ADI for the MPICH implementation of MPL
Technical report, Mathematics and Computer Science Di-
vision, Argonne National Laboratory, February 1996.

[11] P.Rigsbee. Personal correspondence, January 1995.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

