

UCRL-JC-123986
PREPRINT

CONF-960401--59

**Correlation of Magnetic Dichroism in X-Ray Absorption
and Photoelectron Emission Using Ultrathin Magnetic
Alloy Films**

J.G. Tobin
K.W. Goodman
G.J. Mankey
R.F. Willis
J.D. Denlinger
E. Rotenberg
A. Warwick

RECEIVED
JUL 08 1996
OSI

This paper was prepared for submittal to the
1996 Materials Research Society Spring Meeting
San Francisco, CA
April 8-12, 1996

April 1996

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author.

Lawrence
Livermore
National
Laboratory

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.

CORRELATION OF MAGNETIC DICHROISM IN X-RAY ABSORPTION AND PHOTOELECTRON EMISSION USING ULTRATHIN MAGNETIC ALLOY FILMS

J.G. Tobin*, K.W. Goodman*, G.J. Mankey**, R.F. Willis**,
J.D. Denlinger***, E. Rotenberg***, and A. Warwick***

*Lawrence Livermore National Laboratory
Chemistry and Materials Science Directorate
Livermore, CA

**Pennsylvania State University
Department of Physics
University Park, PA

***Lawrence Berkeley Laboratory
Advanced Light Source
Berkeley, CA

ABSTRACT

We have begun a program to characterize magnetic alloy overlayers using both magnetic x-ray circular dichroism (MXCD) and magnetic x-ray linear dichroism (MXLD). This will allow a direct comparison of MXCD-absorption and MXLD-photoelectron emission. First results from the Advanced Light Source will be presented.

INTRODUCTION

Magnetic dichroism techniques based upon the spectroscopy of core levels permit an element-specific probing of magnetic structure. Examples of this include magnetic x-ray circular dichroism (MXCD) and magnetic x-ray linear dichroism (MXLD) in photoelectron emission¹⁻¹⁰ as well as MXCD in x-ray absorption¹²⁻¹⁵. Because core-level energies tend to be elementally-unique, one is able to specify which element is being interrogated simply by varying the photon and electron energies. The magnetic sensitivity arises because of the construction of a chiral environment, either by the application of circularly-polarized x-rays^{1-5,10,12-15} (i.e., right- or left-handed) or by the imposition of a chiral configuration of vectors, including the poyniting and linear polarization vectors of the x-rays, the electron emission direction, the crystallographic vectors, and the magnetization vector⁶⁻¹¹. Here are reported some of the first results of a program in which MXLD-photoemission and MXCD-absorption are used to study ultrathin films composed of magnetic alloys of Co and Fe.

EXPERIMENTAL

The MXLD measurements were performed at the Spectromicroscopy Facility¹¹ at the Advanced Light Source in Berkeley, California. The MXCD studies were done at the Stanford Synchrotron Radiation Laboratory (SSRL), using the Beamline 8-2 facilities^{1-3,10,14} of the University of California/National Laboratories Participating Research Team. Spectroscopic experimental details are available elsewhere^{1-3,10,11,14}. The FeCo magnetic alloy films were grown on Cu(001), *in situ*, using molecular beam epitaxy (MBE) techniques in a UHV environment^{11,16}.

Tobin, 1 of 5

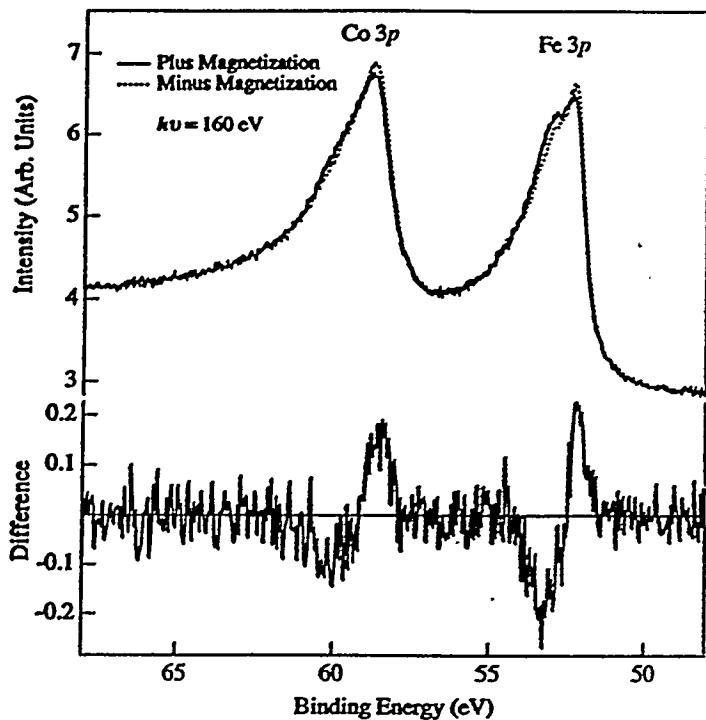


Figure 1. MXLD photoelectron spectroscopy of 3.5ML (FeCo₂)/Cu(001) is shown here. The Fe3p peak is near a binding energy of 53eV and the Co3p peak near 59eV. To obtain MXLD, the magnetization direction is reversed while all else is kept the same. These spectra are for a photon energy of 160eV and for electrons collected along the surface normal. The asymmetries of 1% to 2% are calculated by including the total underlying electron background. If pre-peak regions are set to zero, asymmetries of roughly 3% are obtained.

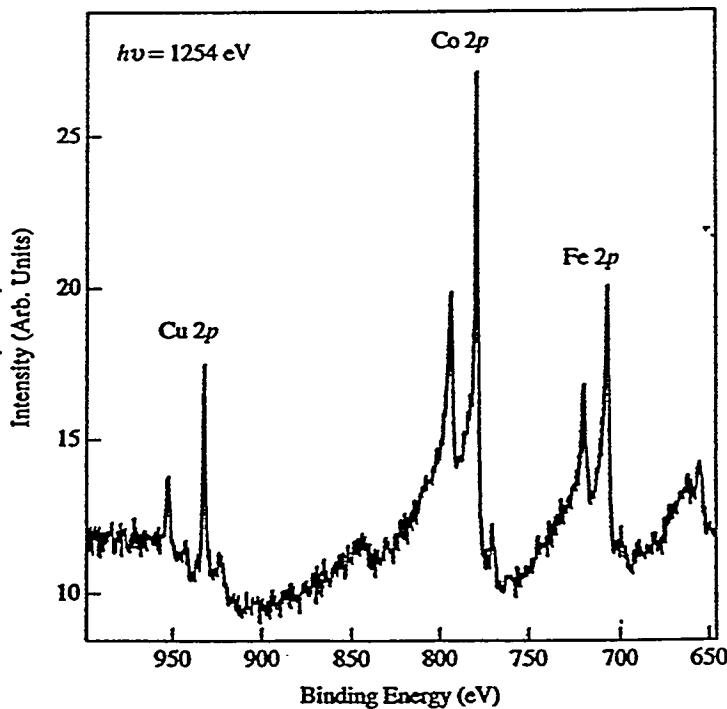


Figure 2. X-ray photoelectron spectroscopy (XPS) of the Fe, Co, and Cu2p levels. The photon energy is 1254eV, the output of a MgK α x-ray tube. The Fe2p peaks are at binding energies of 707 and 720eV; the Co2p peaks are at 778 and 793eV; and the attenuated Cu peaks are at 932 and 952eV. The sample is the same as that for Figure 1. This spectrum is typical of those samples prepared at the ALS.

RESULTS AND DISCUSSION

An example of MXLD-photoelectron emission is shown in Figure 1. Here a dichroism is observable in both the Fe3p and Co3p peaks. In this photon energy range, the cross-sections are energy-dependent. Intensities require further corrections for utilization in composition analysis. In fact, at low photon energies and these film thicknesses, it is often impossible to get a strong Cu3p substrate peak. Thus, film composition and thickness analysis require another measurement, an example of which is shown in Figure 2. From this, we estimate that the composition of the film is Fe₃₆%Co₆₄% and the thickness is 3.5 monolayers of 1.8Å each. Alternatively, the 3p levels can be used for composition analysis, if a higher photon energy is used. Figure 3 shows a result for a photon energy of 563eV, taken at SSRL. Here the composition is Fe₂₉%Co₇₁%, again nominally FeCo₂. The coverage is estimated to be 2.4 monolayers. At SSRL, the MXCD-absorption experiments are performed. In Figures 4 and 5, the absorption spectra of the Fe2p and Co2p levels are shown, respectively. Here MXCD-absorption dichroisms are easily seen in both the Fe2p and Co2p levels of this sample, 2.4ML(FeCo₂)/Cu(001).

SUMMARY

Preliminary results have been presented, from our program investigating ultrathin magnetic alloy epitaxial films with MXLD-photoemission and MXCD-absorption. We anticipate being able to correlate MXCD and MXLD results for a wide range of samples in the future.

ACKNOWLEDGMENTS

Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48. The Spectromicroscopy Facility and the Advanced Light Source were constructed under support from the U.S. Department of Energy. The Advanced Light Source and the Stanford Synchrotron Radiation Laboratory are operated with support from the U.S. Department of Energy.

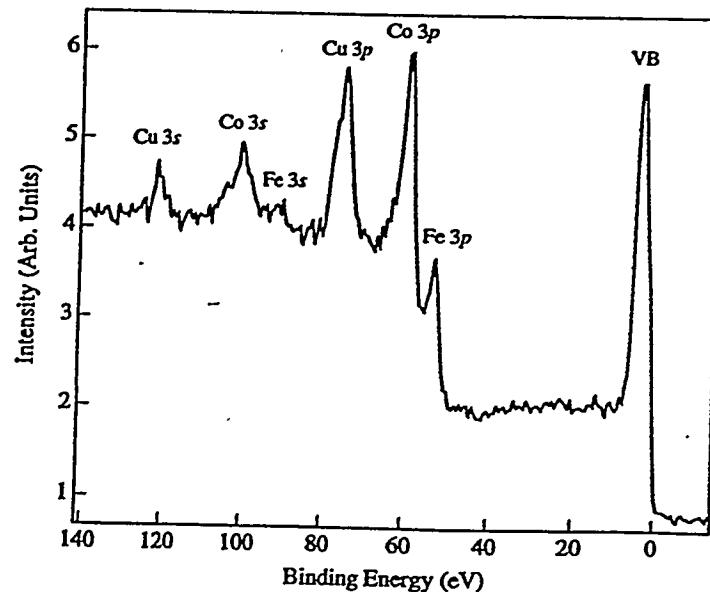


Figure 3. A synchrotron radiation photoelectron spectrum of FeCo₂/Cu(001), prepared at SSRL and excited with photons of 563eV energy. The valence bands are easily observable near the Fermi energy (binding energy of zero), as are the Fe3p (53eV), Co3p (59eV), Cu3p (75,77eV), Fe3s(91eV), Co3s (101eV), and Cu3s (122eV).

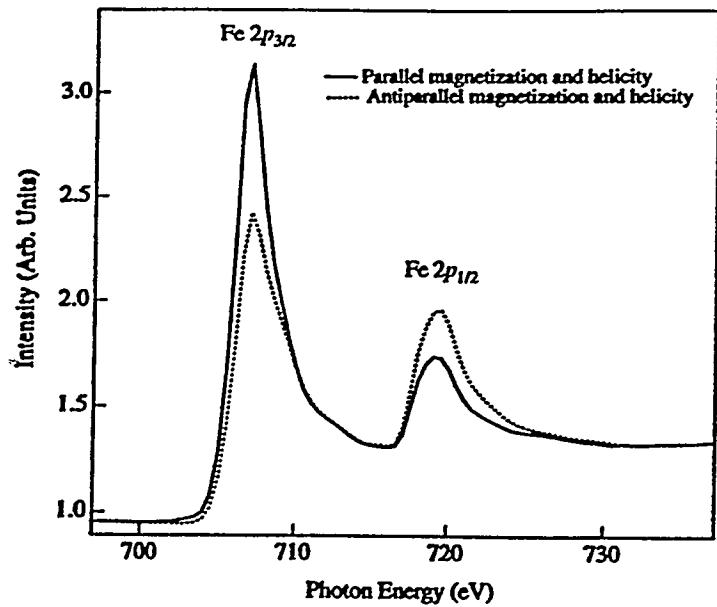


Figure 4. The absorption spectra of the Fe $2p_{3/2}$ (707eV) and Fe $2p_{1/2}$ (720eV) levels, for parallel and anti-parallel helicity and magnetization. For ease of operation and high counting rate, these measurements were taken with an estimated circular polarization of about 70% as opposed to the usual values of 85–90% ^{1,14}. Nevertheless, a strong dichroism is easily observed. The sample is the same as that used in Figure 3. Over the Fe edge region, an interpolated I_0 was used to correct for photon intensity, because of absorption at the Fe edge by part of the I_0 assembly. The interpolated I_0 was obtained by measuring the I_0 spectrum after removing the Fe from the I_0 assembly.

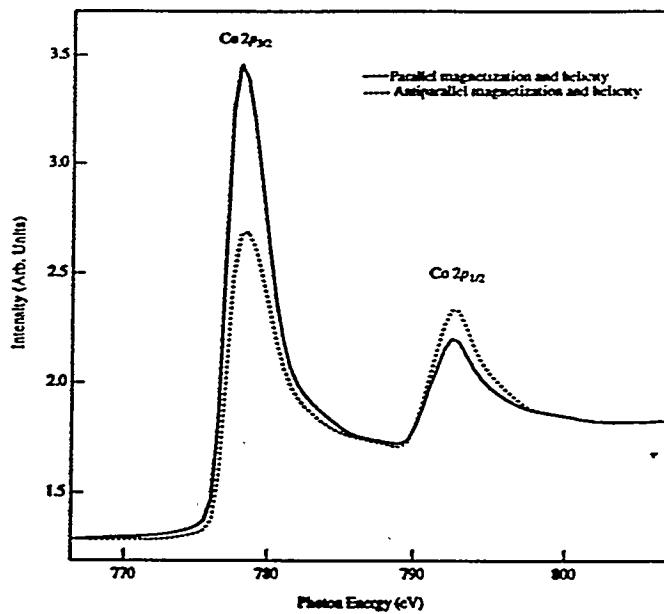


Figure 5. X-ray absorption spectra of Co $2p_{3/2}$ (778eV) and Co $3p_{1/2}$ (793eV), same as Figure 4. As in Figure 4, the data has been matched at the pre-peak and post-peak regions.

REFERENCES

1. J.G. Tobin, G.D. Waddill, E. Tamura, P.A. Sterne, P.J. Bedrossian, D.P. Pappas, X. Guo, and S.Y. Tong, *Surf. Rev. Lett.* XX, XXX (1996).
2. G.D. Waddill, J.G. Tobin, X. Guo, and S.Y. Tong, *Phys. Rev. B* 50, 6774 (1994).
3. G.D. Waddill, J.G. Tobin, and D.P. Pappas, *Phys. Rev. B* 46, 552 (1992).
4. K. Starke, L. Baumgarten, E. Arenholz, E. Navas, and G. Kaindl, *Phys. Rev. B* 50, 1317 (1994).
5. L. Baumgarten, C.M. Schneider, H. Petersen, F. Schafers, and J. Kirschner, *Phys. Rev. Lett.* 65, 482 (1990).
6. C.H. Roth, F.U. Hillebrecht, H.B. Rose, and E. Kisker, *Phys. Rev. Lett.* 70, 3479 (1993); *Solid State Commun.* 86, 647 (1993).
7. G. Rossi, F. Sirotti, N.A. Cherepkov, F. Cambet-Farnoux, and F. Panaccione, *Solid State Commun.* 90 557 (1994); F. Sirotti and G. Rossi, *Phys. Rev. B* 49, 15682 (1994).
8. W. Kuch, M.T. Lin, W. Steinhogl, C.M. Schneider, D. Venus, and J. Kirschner, *Phys. Rev. B* 51 609 (1995).
9. C.M. Schneider, D. Venus, and J. Kirschner, *Phys. Rev. B* 45, 5041 (1992).
10. E. Tamura, G.D. Waddill, J.G. Tobin, and P.A. Sterne, *Phys. Rev. Lett.* 63, 3642 (1992).
11. J.G. Tobin, K.W. Goodman, G.M. Mankey, R.F. Willis, J.D. Denlinger, E. Rotenberg, and A. Warwick, *J. Appl. Phys.* 79, XXX (1996).
12. G. Schutz, W. Wagner, W. Wilhelm, P. Kienle, R. Zeller, P. Frahm, and G. Materlik, *Phys. Rev. Lett.* 58, 737 (1987).
13. C.T. Chen, F. Sette, Y. Ma, and S. Modesti, *Phys. Rev. B* 42, 7262 (1990).
14. J.G. Tobin, G.D. Waddill, and D.P. Pappas, *Phys. Rev. Lett.* 68, 3642 (1992); J.G. Tobin, G.D. Waddill, A.F. Jankowski, P.A. Sterne, and D.P. Pappas, *Phys. Rev. B* 52, 6530 (1995).
15. J. Stohr, et al., *Science*, 259, 658 (1993).
16. G.J. Mankey, M.T. Kief, and R.F. Willis, *J. Vac. Sci. Technol. A9*, 1595 (1991); F. Huang, M.T. Kief, M.J. Mankey, and R.F. Willis, *Phys. Rev. B* 49, 3962 (1994).