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COLLECTIVE COMMUNICATION ROUTINES IN PVM

J.M. Donato and G.A. Geist

Abstract

The collective communication routines of scatter, gather, and reduce
are frequently implemented as part of the native library for parallel archi-
tectures. These operations have been implemented in PVM for use among
a heterogeneous system of workstations and parallel computers forming a
virtual parallel machine. In the case of the Intel Paragon machines, the
PVM implementation of the reduce operation utilizes the corresponding
native mode library routines whenever possible.

This paper describes the implementation of these collective communica-
tion routines in PVM including the utilization of the Intel Paragon native
mode operations. Performance data is also given comparing the use of the
native Intel Paragon collective routines and the PVM implementation on
top of these routines on a dedicated Intel Paragon. For our timing results
an average latency of 109 us is incurred using PVM as compared to the
native Intel global sum routine. This extra startup is independent of the
size of the message being sent and the number of nodes in the group. It is
demonstrated that the use of static groups is preferable in time efficiency
over the use of dynamic groups.






1. Introduction/Background

PVM (Parallel Virtual Machine)[4] is a widely used system for programming par-
allelism across a network of heterogeneous machines. This network could contain
a variety of machine architectures including massively parallel processors. Col-
lective communication routines such as scatter, gather, and reduce are frequently
implemented in some form as part of the native library for parallel machines.
Here, collective communication means communication that is performed across
a group of tasks. Each member of the group must participate by calling the
collective communication operation. Such collective communication routines and
extensions thereof are defined and extended ‘upon under MPI [6].

In PVM versions 3.3.8 and higher scatter, gather, and reduce operations are
implemented for use among a heterogeneous system of workstations and parallel
computers forming a virtual parallel machine. In the case of the Intel Paragon
machines, the PVM implementation of the reduce operation utilizes the corre-
sponding native mode library routines whenever possible.

This paper describes the implementation of these collective communication
routines in PVM including the utilization of the Intel Paragon native mode op-
erations. Performance data is also given comparing the use of the native Intel
Paragon collective routines and the PVM implementation on top of these routines
on a dedicated Intel Paragon machine. The timings were performed using PVM
release 3.3.10 on the Center for Computational Science (CCS)!, XP/S 5, Intel
Paragon machine.

For our timing results an average latency of 109 ps is incurred using PVM as
compared to the native Intel global sum routine. This extra startup is indepen-
dent of the size of the message being sent and the number of nodes in the group.
It is demonstrated that the use of static groups is preferable in time efficiency
over the use of dynamic groups.

Throughout this document the phrase “static group” actually refers to a
“frozen dynamic group” where each member of a dynamic group has executed a
pvm_freezegroup call. True static groups are to be implemented in PVM release
3.4.0.

This paper assumes basic knowledge of the PVM software system and Intel
Paragon hardware and software. For background on the Intel Paragon and its
native group operations, please see [8]. The PVM Users’ Guide[4] provides the
general background on installation, syntax and usage of the PVM software sys-
tem. For more detail on the performance of PVM on Massively Parallel systems
see reference [2] which describes the basics of the communication model of PVM

along with performance results for send and receive operations on Intel Paragon,
SP-2 and CM-5 machines.

lhttp://www.ccs.ornl.gov/HomePage . html
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In the sections that follow, we describe the implementation of scatter, gather,
and reduce operations in the general situation of a heterogeneous network of
machines. A brief overview of the PVM syntax will be given for each command.
Please refer to the appendices for more complete specification of the syntax of the
commands and a discussion of the their usage along with example statements.

The next two sections will briefly describe the scatter and gather operations.
The Intel Paragon NX routines do not include native scatter and gather operations,
so no specific changes have been made for the Intel Paragon in the implementation
of these two routines. After scatter and gather, the reduce operation is described.
Since the NX library does provide a number of native reduction routines, these
are utilized when possible. When and how these are used will be described.

This paper is written from a C language point of view in terms of the indexing
of arrays. In C, multi-index arrays are arranged contiguously in memory in row
ordering with a starting index value typically 0. For Fortran multi-index (multi-
dimensional) arrays are arranged contiguously in memory in column ordering
with starting index typically being 1. See Figure 1 for an example of how a two-
dimensional M x N array (matrix) would be laid out in memory if ordered by
columns versus being ordered by rows.

1,111,2.. | 1N 1,1
21122).. |2N 2,1
@.j)

. —
ordered by M1
columns

M1 M2| ... |MN 1,2

ordered by 2.2

rows

Y MN

11,2 ... JILN[21]22}... |MN

Figure 1: Row and Column Linear Orderings of a Matrix



2. Scatter

A scatter operation distributes data segments from one member of the group to
the other members of the group. For example, a scatter operation can be used to
disperse rows of a matrix from one task to all the members of the group in order
to perform row operations in parallel.

The syntax of the scatter operation in PVM is as follows.

int info =
pvm_scatter(void *result, int *data, int count, int datatype,
void msgtag, char *gname, int rootinst)

It performs a scatter of messages from the specified root member of the group to
each of the other members of the group as shown in Figure 2.

Each member of the group gname receives a message result of type datatype
and length count from the root member of the group. The root sends these
messages from a single array data which is of length, at least, M * count. Here, M
represents the number of members in the group, all of which must be participating
in the scatter operation. The values sent to the i** member of the group are taken
from the data array starting at position 7 * count. The root member of the group
is specified by its instance number, rootginst, in that group.

The message passing employed during the scatter operation in PVM is imple-
mented using basic PVM commands, such as pvm.send and pvm.recv. The root
member does not send to itself, rather it performs a memory to memory copy.

node 0 node 1 node 2 node N all nodss

count count count count

..... root node

Figure 2: Scatter: The root distributes data sections to each group member




3. Gather

A gather, the inverse operation to a scatter, combines separate data segments
from each group member into a single array on the root member of the operation.
The syntax of the gather operation in PVM is as follows.

int info =
pvm_gather(void *result, void *data, int count, int datatype,
int msgtag, char *gname, int rootinst)

It performs a gather of messages from each member of the group to a specified
member of the group. This is shown in Figure 3.

Each member of the group gname sends a message data of type datatype and
length count to the root member of the group. The root receives these messages
into a single array result which is of length, at least, M * count. Again, M
represents the number of members in the group, all of which must be participating
in the gather operation. On the root, the values received from the :** member
of the group are placed into the result array starting at position ¢ # count. The
root member of the group is specified by its instance number, rootginst, in that
group.

The message communication that occurs as part of the gather operation, as
with the scatter operation, is implemented using basic PVM commands, such as
pvm.send and pvm recv. Again, the root does not send or receive a message from
itself, it performs a memory to memory copy.

node 0 node 1 node 2 node N all nodes

count count count count

..... root node

Figure 3: Gather: The root assembles data sections from each group member



4, Reduce

In a reduction operation, such as a global sum, an associative and commutative

operation is performed on corresponding data segments by each member of the

group. These global combine operations “reduce” the data segments from each

member into one data segment on the root. For further information, see [5}.
The PVM syntax for the reduce operation is as follows.

int info =
pvm_reduce(void (¥func)(), void *data, int count, int datatype,
int msgtag, char *gname, int rootinst)

where

void (*func) (int *datatype, void *data, void *work,
int *num, int *info)

4.1. PVM Reduce Implementation

The current implementation uses a hierarchical fan-in algorithm to perform the
reduce operation. Global min, max, sum, and product reduction operations are
provided in PVM. This is done by specifying func as one of the PVM defined
functions of PvmMin, PvmMax, PvmSum, or PvinProduct, respectively. A user
written function may also be provided as the func argument. For predictable
results, it is important that such a user-defined function be associative and com-
mutative. See the appendix for the syntax and summary of these functions. The
general heterogeneous implementation is described as follows.

The reduce operation, as with the scatter and gather operations, in PVM is
implemented using basic PVM commands, such as pvm.send and pvm.recv.

For each host (a physical machine in the parallel virtual machine) a coordina-
tor is designated for that host. During the reduce operation, each group member
on a host communicates (via pvm-send) its data segment to the coordinator for
that host. The coordinators on each host are then responsible for performing
(combining or reducing) the specified function func on the data segments it has
received and then communicating (via pvin send) the result to the root member
of the reduce operation. The root then performs the specified function func on
the data received from the coordinators.

Figure 4 gives a pictorial view of the message flow from group members on
a host to the coordinator on the same host and then to the root member of the
reduce operation. Each host can be a multitasking multiprocessor.

4.2. Specifics of PVM Reduce on the Intel Paragon

This hierarchical fan-in technique is still used if an Intel Paragon is part of the vir-
tual machine. However, the nodes on the Intel Paragon will utilize corresponding




Host 1
coordinator Host 2
o R root coordinator
B stk BREER
A R
'd ‘ ! -
, : /,
4
ra
—_—T
To root node
coordinator
—————— —
To coordinator
Host 3

Figure 4: Message flow from group members to coordinators to the root
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NX functions whenever possible. The Paragon is currently limited to executing
only one PVM task per node. The PVM console and the PVM group server
(pvmgs) run on the service nodes for the partition.

If all the nodes on the partition are participating in the reduce operation, then
the NX function will be executed, if one exists. In this case, there is no need for
the Intel Paragon nodes to explicitly send data to their coordinator node. This
is because the NX collective routines return the final values to each of the nodes
participating in the operation. Similarly, if all the nodes in the Paragon partition
are part of a larger group, the NX native operations will be used for the Paragon
part of the collective operation.

PVM determines which native mode NX routine to call by comparing the
func function reference (e.g. pointer to the function) in the reduce call to the
those functions for which an NX version exists. Currently, PVM recognizes that
PvmSum, PvmMin, PvmMax, and PvmProduct which correspond to gzsum,
grmin, grmax, gzprod, respectively.

For the NX native collective operations to be executed, the following two con-
ditions must hold:

1. all the nodes in the paragon compute partition must be participating in the
collective reduce operation, and

2. a corresponding NX collective operation must exist and be detected by PVM
for the given datatype on the Intel Paragon.

If these two conditions do not hold, the collective operation still functions
correctly, but will not use NX native operations. Instead, the nodes will send data
to their coordinator as described in the general reduce case.

The three possible basic situations are show in Figure 5. Figure 5(a) shows
via dotted lines (without arrows) that the native NX command is used and so
PVM does not define the message flow. The results of the group operation will
be communicated via NX to each of the nodes. Figure 5(b) shows the case where
not all of the nodes of the partition are part of the group and hence the native NX
function can not be used. Figure 5(c) shows the situation where, although all of
the nodes in the partition are in the group, the specified func is a user-written
function, and hence no appropriate native NX routine can be utilized.

Figure 6 gives a pictorial example of the message passing that would occur if
a partition of Paragon nodes are part of the group operation. The figure shows
two Intel Paragons, one with a 4 node partition allocated to PVM, and the other
with a 6 node partition allocated. A third host of unspecified architecture is also
pictured for variety. .

Even in the case where an NX native operation is used, the overhead for the
reduce operation could still be extreme if dynamic groups are being used. In the
case of dynamic groups, a check must be made by each node to determine who is




.

N
4

Figure 5(c) : There is no corresponding NX collective routine

Figure 5: Three cases on the Paragon
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Host 3
6 node partition on Paragon

Pigure 6: Message flow on a virtual machine consisting of 2 Paragons and another
host architecture
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part of the group operation. Hence, calls to the pvmgs are made by each member
of the group.

If the user has called pvm.freezegroup, to designate that the group is static,
this overhead is not incurred. The list of group members is cached to each
member.

4.3. PVM and Intel Paragon notes

In this section we remind the user of notes and caveats on the use of PVM on
the Intel Paragon. This section includes information from the PVM Readme.mp
file that accompanied the PVM 3.3.10 release along with other useful notes. For
further information and updates for new releases the reader should refer to the
Readme.mp of the release of PVM being used.

e Tasks spawned onto the Intel Paragon run on the compute nodes by default.
Host tasks run on the service nodes and should be started from a Unix
prompt. The PVM console and group server (pvmgs) also run on the service
nodes.

o By default PVM spawns tasks in your default partition. You can use the NX
command-line options such as ‘-pn partition_name’ to force it to run on a
particular partition or ‘-sz number_of nodes’ to specify the number of nodes
you want it to use. Setting the environmental variable NX_DFLT_SIZE
would have the same effect. For example starting pvind with the following
command

pvmnd -pn pvm -sz 33

would force it to run on the partition ‘pvm’ using only 33 nodes (there must
be at least that many nodes in the partition).

e The current implementation only allows one task to be spawned on each
node.

e There is a constant TIMEOUT in the file ‘pvmmimd.h’ that controls the
frequency at which the PVM daemon probes for packets from node tasks.
If you want it to respond more quickly you can reduce this value. Currently
it is set to 10 millisecond.

e Be aware that mixing NX message passing calls in PVM may interfere with
PVM message passing commands, such as pvm.send and pvm.recv, since
the PVM system may have utilized NX message tags. This warning also
applies to pvm.reduce, pvm.scatter, and pvm._gather since they are imple-
mented using basic PVM commands.
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e PVM programs compiled for versions earlier than 3.3.8 need to be recom-
piled. A small change in data passed to group members on startup will
cause earlier programs to break.

5. Performance Measurements

5.1. Hardware Description

The timings were performed on the Center for Computational Science (CCS)?,
xps5, Intel Paragon machine.® At this time, the configuration of the Intel Paragon
XP/S 5 consists of 70 General Purpose (GP) compute processors arranged in
10 by 7 mesh, 4 Multi-purpose (MP) compute processors in a 2 by 2 mesh, 3
service nodes, and 6 I/0 nodes. Each GP compute node has 16MB of memory,
while each MP compute node has 128MB of memory. Five of the I/O nodes are
connected to 4.8 GB RAID disks, and the sixth to a 16 GB RAID disk. The
system provides a total of 40 GB of system disk space. The system is connected
to the ORNL network with an Ethernet connection and 2 HIPPI connections.
Versions of release 1.3 of the Intel Paragon OS was running at the time of these
performance tests.

5.2. Performance Timing Procedure

The program that produced the performance timing results is very straight-
forward. An integer global sum, via gisum() or via pvin_reduce using PvmSum,
was performed for three different message lengths. The times given in the tables
are an average over 100 such iterations of the gisum() or pvm_reduce command.
Messages containing 1 integer, 1000 integers, and 10000 integers were used.

Elapsed time was used, rather than cpu time, since cpu time would not include
the necessarily important wait for messages from other group members. However,
initial startup overhead was not included in the timings. For example, partition
allocation, pvind startup, pvings startup, spawn (or pexec) of the executable, nor
the first message passing cycles were included in the timings. All times are given
in microseconds (us).

All of these performance timing results were produced by execution runs per-
formed on dedicated hosts. This was done to insure that there would be no
interference from other processes being run on the hosts. This helps to produce
repeatable performance results.

2http://www.ccs.ornl. gov/HomePage . html
3http://www.ccs.ornl.gov/comp resources/intel par/5.hdwre.html
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Number of Number of Nodes
Integers 1 2 4 8 16
1 21251 46783 97420 | 208178 430380
1000 21147 50641 | 120648 | 247305 506010
10000 21344 | 117401 | 259629 | 866073 961402

Table 1: Times (us) using Dynamic Groups on a SPARC Classic

Number of - Number of Nodes
Integers 1] 2 4 8 | 16
1 500 6947 | 19350 | 52654 90909
1000 477 | 12172 | 34005 | 94000 | 179776
10000 485 | 70043 | 178529 | 728407 | 832529

Table 2: Times (us) using Static Groups on a SPARC Classic

5.3. Static versus Dynamic Groups

In this subsection we illustrate the importance of using static groups as opposed
to dynamic groups whenever possible for group operations.

Tables 1 and 2 show the results of executing the test routine on a dedicated
SPARC Classic. Table 1 gives the times for the test when dynamic groups are
being used. Table 2 gives the times for the test when static groups are used. The
timing differences are enormous, some as much as two orders of magnitude slower
for dynamic groups as compared to the analogous static group timing. Figure 7
displays these results for comparison on a semi-log plot.

On the Intel Paragon, the difference in timings using dynamic and static
groups is even more staggering. Tables 3 and 4 show the performance results
using dynamic and static groups, respectively. The timings using dynamic groups
are typically three orders of magnitude higher than those for static groups.

From these tables of results, both on the SPARC Classic and on the Intel
Paragon, it is obvious that the efficient use of the collective communication rou-
tines in PVM relies upon using static groups directly (as will be available in PVM
release 3.4.0) or by freezing a dynamic group via the pvm freezegroup operation.
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SPARC Classic
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number of nodes in group

Figure 7: Times (us) for Dynamic and Static Groups on a SPARC Classic

Number of Nodes
2 4

Number of

Integers 1

8

16

1 || 458549 | 562425 | 858077

1483393

2933008

1000 |} 462391 | 573367 | 809935

1608210

2768591

10000 | 475713 | 564680 | 807562

1669463

2848504

Table 3: Times (¢s) using Dynamic Groups on a Paragon

Number of Number of Nodes
Integers 1 2 4 | 8 | 16
1 102 269 390 653 768
1000 115 755 1382 2122 2638
10000 133 3607 5592 7320 8808

Table 4: Times (ps) using Static Groups on a Paragon
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5.4. Native NX versus PVM routines on Paragon

In this section we examine the performance of global sum via pvm._reduce with
PvmSum as compared to a test implementing the same code using only native
NX calls to gisum().

Table 5 lists the average time in microseconds (¢s) to perform a gisum() for
various length integer messages. This average is also calculated over 100 iterations
of the gisum() call. Table 6 lists the averages for performing a pvm reduce using
PvmSum on the Intel Paragon.

Suppose we use a linear equation, &+ fn, to model the message communica-
tion based on latency (), bandwidth (8) and size of data in bytes (n). For the
native NX reduce operation, we would write

msgtimey, = o+ fn.

Then, the data show that on average, the message communication for the
PVM reduction operation would be

msgtimepy s & a + 109us + fn.

For our timing results PVM added an average 109 ps latency term to the com-
munication performance. This overhead appears independent of message length
and the number of group members. Hence, communication bandwidth for the
PVM reduction is the same as for the native NX commands. For most applica-
tions, this communication overhead is a small price to pay for easy portability
of the code and for the ability to network different architectures into a single
parallel machine.

5.5. Comparison to a Paragon Optimized PVM

As part of a diploma thesis[9], Bjarte Walaker implemented a version of PVM
for the Paragon. The purpose of this work was to decrease the overhead that
PVM incurs in performing group operations. At the time of Walaker’s thesis, the
native NX changes had not been implemented in PVM.

In this thesis, a number of hypotheses are made, however, most of the im-
provement in timings on the Paragon which were achieved by Walaker were due
simply to utilizing the native NX commands.

For example, there is no need to have the root instance execute on the service
node as Walaker describes in the thesis. All the node executables can easily be ex-
ecuted on the Paragon compute nodes even on the first release of the pvm_reduce
function although the first release did not utilize the native NX calls. This is done
using the “spawn” command from the PVM console.

Similarly, there is no need to force the PVM group server (pvmgs) to be
executed on one of the compute nodes of the Paragon which Walaker does. This
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Number of Number of Nodes
Integers 1] 2 | 4 | 8 | 16 | 32 | 64
1 6 131 249 437 576 1118 1391
1000 11 573 | 1172 1918 2379 2838 3375
10000 12| 3369 | 5360| 7091 8524 8959 9767

Table 5: Times (ps) using Native NX gisum command

Number of Number of Nodes
Integers 1] 2 | 4 | 8 | 16 | 32 | 64
1 102 269 390 653 768 1250 1537
1000 115 755 | 1382 | 2122 2638 3039 3610
10000 133 | 3607 | 5592 | 7320 8808 9124 9888

Table 6: Times (us) using Static Groups on a Paragon

Paragon Compute Nodes

10000}
9000
80001
o
.2
s 7000}
g ¥ native NX gisum 1integer
o 6000f O frozendynamic groups ~ sreseeeeeeeeeees 1000 ints
é —————— 10000 ints
© 5000}
S
2 4000 [ x
8000 @ ST
e ®e
2000 LR e -
o =TT L L e 0
1000 e
o e ———
EI e
ﬁ ] 1 ] 1 1]
10 20 30 40 50 60

number of nodes in group

Figure 8: Times (us) for Native NX versus Static Groups on a Paragon
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version Number of Nodes

2 | 4 | 8 | 16 | 64
Orig PVM 689075 | 768635 | 1208601 | 1680296 | 3798682
Walaker PVM 707 1428 2122 2847 4617

Table 7: Times (us) from Walaker’s Thesis

can be seen by comparing the timings in Table 6 to the results given in Walaker’s
thesis. The timing data from Walaker’s thesis are presented in Table 7. For his
tests, the message is always 1000 integers in length. Again, the times are given
in microseconds (gs). It could not be determined from the thesis whether these
timings were calculated from an average number of executions or not.

Refer to Figure 9 for a comparison of the data for a message of 1000 integers
for the native NX gzsum, pvm.sum, and Walaker’s pvmsum. The data from
Walaker’s thesis for Walaker’s version of pvm_sum are the points noted with
an #. The timings for PVM static groups and the implementation by Walaker
are comparable. The differences may be due to random timing variations.

It is important to note that Walaker admits to making the restriction that
his version of the NX based PVM can only be used on a single Intel Paragon. But
from the tables and figure we can see that PVM can be implemented just as fast
without this restriction.

The approach taken in the official PVM release gives the best combination
of performance (using static groups) and in terms of keeping the crucial PVM
feature of being able to network multiple hosts of different architectures into one
Parallel Virtual Machine.

6. Conclusions

This paper has described the implementation of scatter, gather, and reduce col-
lective communication routines in PVM as of release 3.3.10. Compared to native
functions, we have seen that it is important to use static groups whenever perfor-
mance is critical. Using direct static groups as will be implemented in PVM re-
lease 3.4.0 or making a simple change (such as, adding a call to pvm_freezegroup)
in current PVM programs using dynamic groups can increase efficiency by two
orders of magnitude when performing collective operations. Dynamic groups (not
frozen) are still needed for fault tolerant applications.

Compared to native functions, we showed that there is an 109 us average
overhead incurred by using PVM. This overhead is independent of the number
of nodes in the group and the message size. Hence, the message bandwidth for
the PVM reduce operation is the same as the native NX routines upon which it is
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implemented. For most applications, the cost of this overhead in terms of time
performance is well worth the generality and flexibility of being able to use PVM
as it is intended - as a software system that allows a heterogeneous network of
machines to be used as a Parallel Virtual Machine.
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A. PVM Manual Pages

The following are the man pages for the scatter, gather and reduce operations
from the PVM 3.3.10 release.

A.1. Scatter
SCATTER(3PVM) MISC. REFERENCE MANUAL PAGES SCATTER(3PVM)

NAME
pvm_scatter - Sends to each member of a group a section of
an array from a specified member of the group.

SYNOPSIS
c int info = pvm_scatter( void *result, void *data,
int count, int datatype, int msgtag,
char *group, int rootginst)

Fortran call pvmfscatter(result, data, count, datatype,
msgtag, group, rootginst, info)

PARAMETERS
result Pointer to the starting address of an array of
length count of datatype which will be overwritten
by the message from the specified root member of the
group.

data On the root this is a pointer to the starting
address of an array datatype of local values which
are to be distributed to the members of the group.
If n is the number of members in the group, then
this array of datatype should be of length at least
nkcount. This argument is meaningful only on the
root.

count Integer specifying the number of elements of data-
type to be sent to each member of the group from the

root.

datatype
Integer specifying the type of the entries in the
result and data arrays. (See below for defined

types.)
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msgtag Integer message tag supplied by the wuser. msgtag
should be >= 0. It allows the user’s program to
distinguish between different kinds of messages.

group Character string group name of an existing group.

rootginst
Integer instance number of group member who performs
the scatter of its array to +the members of the
group.

info Integer status code returned by the routine. Values
less than zero indicate an error.

DESCRIPTION

pva_scatter() performs a scatter of data from the specified
root member of the group to each of the members of the
group, including itself. All group members must call
pvm_scatter(), each receives a portion of the data array
from the root in their local result array. It is as if the
root node sends to the ith member of the group count ele-
ments from its array data starting at offset ixcount from
the beginning of the data array. And, it is as if, each
member of the group performs a corresponding receive of
count values of datatype into its result array. The root
task is identified by its instance number in the group.

C and Fortran defined datatypes are:
C datatypes FORTRAN datatypes

PVM_BYTE BYTE1
PVM_SHORT INTEGER2
PVM_INT INTEGER4
PVM_FLOAT REAL4
PVM_CPLX COMPLEXS8
PVM_DOUBLE REALS
PVM_DCPLX COMPLEX16
PVM_LONG

In using the scatter and gather routines, keep in mind that
C stores multidimensional arrays in row order, typically
starting with an initial index of 0; whereas, Fortran stores
arrays in column order, typically starting with an offset of
1.
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The current algorithm is very simple and robust. A future
implementation may make more efficient use of the architec-
ture to allow greater parallelism.

EXAMPLES
C:
info = pvm_scatter(&getmyrow, &matrix, 10, PVM_INT,
msgtag, "workers", rootginst);

Fortran:
CALL PVMFSCATTER(GETMYCOLUMN, MATRIX, COUNT, INTEGER4,
& MTAG, ’workers’, ROOT, INFO0)

ERRORS
These error conditions can be returned by pvm_scatter

PvmNoInst
Calling task is not in the group

PvmBadParam
The datatype specified is not appropriate

PvmSysErr
Pvm system error

SEE ALSO
pvm_bcast (3PVM) , pvm_barrier(3PVM), pvm_psend(3PVM)




A.2. Gather

GATHER (3PVM)

NAME
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MISC. REFERENCE MANUAL PAGES GATHER (3PVM)

pvm_gather - A specified member of the group receives mes-
sages from each member of the group and gathers these mes-
sages into a single array.

SYNOPSIS

C int info = pvm_gather( void #*result, void *data,

Fortran

PARAMETERS
result

int count, int datatype, int msgtag,
char *group, int rootginst)

call pvmfgather(result, data, count, datatype,
msgtag, group, rootginst, info)

On the root this is a pointer to the starting
address of an array datatype of local values which
are to be accumulated from the members of the group.
If n if the number of members in the group, then
this array of datatype should be of length at least

nkcount. This argument is meaningful only on the
root.

data For each group member this is a pointer to the
starting address of an array of length count of
datatype which will be sent to the specified root
member of the group.

count Integer specifying the number of elements of data-
type to be sent by each member of the group to the
root.

datatype
Integer specifying the type of the entries in the
result and data arrays. (See below for defined
types.)

msgtag Integer message tag supplied by the user. msgtag

should be >= 0. It allows the user’s program to
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distinguish between different kinds of messages.
group Character string group name of an existing group.

rootginst
Integer instance number of group member who performs
the gather of the messages from the members of the
group.

info Integer status code returned by the routine. Values
less than zero indicate an error.

DESCRIPTION

pvm_gather() performs a send of messages from each member of
the group to the specified root member of the group. All
group members must call pvm_gather(), each sends its array
data of length count of datatype to the root which accumu-
lates these messages into its result array. It is as if the
root receives count elements of datatype from the ith member
of the group and places these values in its result array
starting with offset ikcount from the beginning of the
result array. The root task is identified by its instance
number in the group.

C and Fortran defined datatypes are:
C datatypes FORTRAN datatypes

PVM_BYIE BYTE1
PVM_SHORT INTEGER2
PVM_INT INTEGER4
PVM_FLOAT REAL4
PVM_CPLX COMPLEZXS8
PVM_DOUBLE REALS
PVM_DCPLX COMPLEX16
PVM_LONG

In using the scatter and gather routines, keep in mind that
C stores multidimensional arrays in row order, typically
starting with an initial index of 0; whereas, Fortran stores
arrays in column order, typically starting with an offset of
1.

Note: pvm_gather() does mnot block. If a task calls
pvm_gather and then leaves the group before the root has
called pvm_gather an error may occur.
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The current algorithm is very simple and robust. A future
implementation may make more efficient use of the architec-
ture to allow greater parallelism.

EXAMPLES
C:
info = pvm_gather(&getmatrix, &myrow, 10, PVM_INT,
msgtag, "workers', rootginst);

Fortran:
CALL PVMFGATHER(GETMATRIX, MYCOLUMN, COUNT, INTEGER4,
& MTAG, ’workers’, ROOT, INFO)

ERRORS
These error conditions can be returned by pvm_gather

PvmNoInst
Calling task is not in the group

PvmBadParam

The datatype specified is not appropriate
PvmSysErr

Pvm system error

SEE ALSO
pvm_bcast(3PVM), pvm_barrier(3PVM), pvm_psend(3PVM)
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A.3. Reduce

REDUCE (3PVM) MISC. REFERENCE MANUAL PAGES REDUCE (3PVM)

NAME
pvi_reduce - Performs a reduction operation over members of
the specified group.

SYNOPSIS
C int info = pvm_reduce( void (*func)(),
void *data, int count, int datatype,
int msgtag, char *group, int rootginst)

Fortran call pvmfreduce(func, data, count, datatype,
msgtag, group, rootginst, info)

PARAMETERS
func Function which defines the operation performed on
the global data. Predefined are PvmMax, PvmMin,
PvmSum, and PvmProduct. Users can define their own
function.

SYNOPSIS for func

C void func(int *datatype, void *x, void *y,
int *num, int *info)

Fortran call func(datatype, X, y, num, info)

data Pointer to the starting address of an array of local
values. On return, the data array on the root will
be overwritten with the result of the reduce opera-
tion over the group. For the other (non-root)
members of the group the values of the data array
upon return from the reduce operation are mnot
defined; the values may be different than those ori-
ginally passed to pvm_reduce.

count Integer specifying the number of elements of data-
type in the data array. The value of count should
agree between all members of the group.
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datatype
Integer specifying the type of the entries in the
data array. (See below for defined types.)

msgtag Integer message tag supplied by the wuser. msgtag
should be >= 0. It allows the user’s program to

distinguish between different kinds of messages.

group Character string group name of an existing group.

rootginst
Integer instance number of group member who gets the
result.

info Integer status code returned by the routine. Values

less than zero indicate an error.

DESCRIPTION
pvm_reduce() performs global operations such as max, min,
sum, or a user provided operation on the data provided by
the members of a group. All group members call pvm_reduce
with the same size local data array which may contain one or
more entries. The root task is identified by its instance
number in the group.

The inner workings of the pvm_reduce call are implementation
dependent; however, when the pvm_reduce call completes, the
root’s data array will be equal to the specified operation
applied element-wise to the data arrays of all the group
members.

A broadcast by the root can be used if the other members of
the group need the resultant value(s).

PVM supplies the following predefined functions that can be
specified in func.

PvmMin

PvmMax

PvmSum

PvmProduct

PvmMax and PvmMin are implemented for all the datatypes
listed below. For complex values the minimum [maximum] is
that complex pair with the mninimum [maximum] modulus.
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PvmSum and PvmProduct are implemented for all the datatypes
listed below with the exception of PVM_BYTE and BYTEL.

C and Fortran defined datatypes are:
C datatypes FORTRAN datatypes

PVM_BYTE BYTE1
PVM_SHORT INTEGER2
PVM_INT INTEGER4
PVM_FLOAT REAL4
PVM_CPLX COMPLEX8
PVM_DOUBLE REALS
PVM_DCPLX COMPLEX16
PVM_LONG

A user defined function may be used in func. The argument
func is a function with four arguments. It is the base
function used for the reduction operation. Both x and y are
arrays of type specified by datatype with num entries. The
arguments datatype and info are as specified above. The
arguments x and num correspond to data and count above. The
argument y contains received values.

Caveat: pvm_reduce() does not block, a call to pvm_barrier
may be necessary. For example, an error may occur if a task
calls pvm_reduce and then leaves the group before the root
has completed its call to pvm_reduce. Similarly, an error
may occur if a task joins the group after the root has
issued its call to pvm_reduce. Synchronization of the tasks
(such as a call to pvm_barrier) was not included within the
pvm_reduce implementation since this overhead is unnecessary
in many user codes (which may already synchronize the tasks
for other purposes).

The current algorithm is very simple and robust. A <future
implementation may make more efficient use of the architec-
ture to allow greater parallelism.

ILLUSTRATION
The following example illustrates a call to pvm reduce.
Suppose you have three group members (instance numbers 0, 1,
2) with an array called Idata with § values as specified:

instance the 5 values in the integer array




- 98 -

o 19 2’ 3, 4, 5
1 10, 20, 30, 40, 50
2 100, 200, 300, 400, 500

And, suppose that a call to reduce (such as the ones follow-
ing) are issued where the root is the group member with
instance value of 1:

C:
root = 1;
info = pvm_reduce(PvmSum, &Idata, 5, PVM_INT, msgtag,
"worker", root);
Fortran:
root = 1
call pvmfreduce(PvmSum, Idata, 5, INTEGER4, msgtag,
“worker", root, info)

Then, upon completion of the reduce call, the following will

result:
instance the 5 values in the integer array
0 .... not defined.......
1 111, 222, 333, 444, 555
2 .... not definmed ......
EXAMPLES
C:
info = pvm_reduce(PvmMax, &myvals, 10, PVM_FLOAT,
msgtag, "worker", rootginst);
Fortran:
CALL PVMFREDUCE(PvmMax, MYVALS, COUNT, REAL4,
& MTAG, ’worker’, ROOT, INFO)
ERRORS

These error conditions can be returned by pvm_reduce

PvmNoInst
Calling task is not in the group

PvmBadParam
The datatype specified is not appropriate for the
specified reduction function.
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PvmSysErr
Pvm system error

SEE ALSO
pvm_bcast (3PVM) , pvm_barrier(3PVM), pvm_psend(3PVM)
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