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ABSTRACT

A unifying framework is developed for the analysis of brittle materials. Heretofore diverse classes of models result
from different choices for unspecified coefficient and distribution functions in the unified theory. Material
response is described in terms of expectation integrals of transverse symmetry tensors. First, a canonical body
containing cracks of all the same orientation is argued to posses macroscopic transverse isotropy. An orthogonal
basis for the linear subspace consisting of all double-symmetric transversely-isotropic fourth-order tensors
associated with a given material vector is introduced and applied to deduce the explicit functional dependence of
the compliance of such contrived materials on the shared crack orientation. A principle of superposition of strain
rates is used to write the compliance for a more realistic material consisting of cracks of random size and
orientation as an expectation integral of the transverse compliance for each orientation times the joint distribution
function for the size and orientation. Utilizing an evolving (initially exponential) size-dependence in the joint
distribution, the general theory gives unprecedented agreement with measurements of the dynamic response of
alumina to impact loading, especially upon release where the calculations predict the development of considerable
deformation-induced anisotropy, challenging the conventional notion of shocks as isotropic phenomena.

1. INTRODUCTION

This paper introduces several tools and viewpoints that may prove useful in
the analysis of microcracked bodies. Rather than fixating on debatable details, we
will concentrate on fundamental issues, developing a general framework from
which different simplifying assumptions lead to seemingly disparate classes of
models. While our discussion focuses on microcracks, the concepts seem applicable

to other microstructures like voids, inclusions, reinforcing fibers, etc.

We begin in Section 2 by describing a canonical problem of a statistically
uniform array of microcracks all having the same orientation embedded in an
isotropic matrix material. There we introduce our fundamental premise that such
a material should possess transverse isotropy; that is, one should be able to rotate
this material about an axis parallel to the shared crack normal without affecting

the fourth-order macroscopic compliance tensor. Our preliminary goal is to derive
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the explicit analytical dependence of the elastic compliance tensor on the shared
crack normal. To this end, Section 8 introduces dual second-order projection
tensors that decompose vectors into parts normal and transverse to the crack
plane. We use these projection tensors to construct five fourth-order tensors that
decompose second-order tensors into parts that are normal and transverse to the
crack plane, as well as parts that shear the crack plane and parts that couple the
transverse and normal components. We will demonstrate in Section 4 that our
fourth-order decomposition tensors form a basis for the linear subspace of all
fourth-order tensors that are transversely isotropic about a particular privileged
direction. Hence, we argue in Section 5 that the compliance tensor for any material
containing cracks of all the same orientation must be expressible as a linear
combination of this basis. This result is very general because it follows only from
our premise that such a material should be transversely isotropic. Physical
considerations such as crack opening displacement or crack interactions affect
only the coefficient functions — the basis itself is a pure function of crack
orientation. This result may unify conflicting solutions in the literature by
showing that they must all have the same fundamental structure, differing only
in selected coefficient functions. Dienes’ coefficient functions [1] presented in
Section 6 utilize known small-distortion single-crack solutions to describe the
extra strain that results when cracks open under applied tensile stress and when

crack faces slide across each other under applied shearing stress.

The principal advantage of our transverse basis is that it is expressed in direct
notation (i.e, the dependence on the shared crack normal is expressed
algebraically), which permits us to extend the solution for same-orientation cracks
to realistic crack patterns. As explained in Section 7, crack normals may be
deseribed by corresponding points on the unit sphere. In Section 8, we introduce a
joint distribution function of crack size and orientation (position on the unit
sphere) that describes the statistical variation in crack size and orientation
observed in real materials. In applications, this function conditionally depends on
spatial location (to account for, say, crack clustering) and time (to accommodate
crack growth and nucleation). In Section 9, we integrate our same-size and same-

orientation transversely-isotropic compliance tensor over the joint distribution, to




produce an expression for the arbitrarily anisotropic compliance of a realistic

material.

The complete theory is tantamount to a seven-dimensional problem (four for
space and time, one for crack size, and two for crack orientation). It may be
simplified in any of several ways, depending on the class of problems to be solved.
For example, one assumption described in Section 10 assumes crack size and
orientation are independent random variables, allowing the size part of the
distribution function to be modeled in detail for materials such as propellants
where knowing crack surface area is important. If the material contains no
predominant crack orientations, we show that the general anisotropic integral
reduces to an isotropic compliance with the shear and bulk moduli expressed in
terms of the unspecified transverse compliance coefficient functions. An
alternative approach discussed in Section 11 assumes an analytical form (e.g., an
evolving exponential) for the crack size dependence of the distribution function,
thereby permitting analytical integration of the size part of the compliance
integral. Here, to permit deformation-induced cracking in multiple directions, size
and- orientation are not assumed independent. For numerical implementations,
the compliance integral is transformed into a sum by discretizing the unit sphere
into contiguous groups of crack normals. A technique is discussed in Section 12 for
avoiding “numerical healing” that can occur in Eulerian or rezoned calculations
when conventional mixing rules assign inappropriately small crack sizes to
mixtures. In Section 13, the tools developed in this paper are synthesized in
numerical form to demonstrate excellent agreement with time-resolved uniaxial-

strain shock wave experiments for aluminum oxide.

In summary, this paper educes fundamental mathematical results (such as
explicit transverse dependence on crack orientation) while segregating arguable
physical effects into unspecified material functions (the transverse coefficient
functions and the joint size and orientation distribution). In this sense, we present
here a flexible unifying viewpoint from which various choices of vmaterial functions

lead to existing (heretofore disparate) classes of microcrack models.




2. A CANONICAL CRACEED BODY
Ultimately, we intend to deduce an expression for the compliance of an
arbitrarily anisotropic cracked material. As a starting point, consider a material
having a spatially uniform array of cracks all of a given orientation, N (left side of
Figure 1). For small distortions, symmetry demands that the macroscopic

material properties be unchanged upon any rigid rotation about N.

S

Figure 1: A body containing cracks all of the same orientation N subjected to a deformation F.

Figure 1 shows a material fiber M (i.e., a macroscopic conceptual line of
material points) that was originally coincident with the unit crack normal N. Ifthe

vector M moves with the material, it will deform to an orientation parallel to

m=FeM. 2.1

However, by Nanson’s relation [2,3], the crack normal N deforms to a new

orientation that is parallel to

n=FTeN. (2.2)

Neither n nor m are generally unit vectors, but since n ®* m =1, they serve as
useful dual curvilinear base vectors. For small distortions, n=m. A general form
for the compliance of this canonical cracked material will be derived in Section 5

by using the tensor decompositions discussed next.




3. DUAL PROJECTORS

Two vectors m and n are “dual” vectors if n ® m = 1. Consider a second-order

projector P and its dual projector Q, defined by dyads between m and n:

Pij = minj (3.13)
QU = Su—man . (3-1b)
8=

Figure 2: Decomposition of a vector v by the projectors P and Q. The projection Pev is parallel to m,
and the projection Qev is in the plane defined by n. For small distortions (n=m), the projections are
perpendicuiar and the projectors are symmetric dyads. For large distortions (n=m), the projections are
nonorthogonal and the projectors are nonsymmetric dyads. In either case, P+Q=I and PeQ=QeP=0.

As illustrated in Figure 2, the projectors P and Q can be used to decompose
vectors into parts in the direction of m and parts in the plane whose normal is
parallel to n. Utilizing a curvilinear basis in which the base vector gz=m and its

dual g3=n, the actions of P and Q on any vector v are

Pev= m@nev) =3 0 ¢

Qev =v-m(nev)

A

v2 (- (3.2)

Note that P e v is not perpendicular to Q v except for small distortions.”

*The inner product cannot be computed by simply multiplying the two arrays in (3.2) since both of
those arrays contain contravariant components.




Five useful operators {By, ..., Bs} can be constructed using P and Q to similarly

decompose any second-order tensor A into parts in the direction of m and in the

plane defined by n, as well as into shearing and coupled parts. Namely,

0 0 O
B,:A= P(PT:A) =0 0 O
0 0 A}
AL 0 0]
B,:A= Q(QT:A) =0 A% 0
0O 0 O
A3
B,:A= P(QT:A)+Q(PT:A) = | o
i 0
(0 0 Al
B A= PeAeQ+QeAeP =| 0 0 A%
Ay A3 0
A} Al
Bs:A= QeAeQ = |AZ A2
0 O

(8.3a)

(3.3b)

(3.8¢)

(8.3d)

(8.3e)

Existence of the fourth-order tensors {By, ...,Bs} follows from the linearity of

these operations. In fact, their components are:

By = PiPrr
(B2 = Qe
B3);py = PijQur+ Qi1
Byijpy = PirQyi+ QunPyj

Bs)yjn = €y -

(8.4a)
(3.4b)
(8.4¢)
(8.44d)
(8.4e)



4. TRANSVERSE BASIS

Throughout the remainder of this work, we will use the projectors P and Q
from taking m=n=N, where N is a material axis of symmetry that is not
necessarily coincident with any of the three laboratory base vectors. Taking m=n
does not restrict the discussion to small distortions if the constitutive laws are
phrased in terms of the second Piola-Kirchhoff stress with Lagrange strain

instead of the unrotated Cauchy stress with the unrotated rate of deformation [4].

Components of a vector or tensor with respect to a basis having the 3-direction
aligned with N are “material components.” The goal of this section is to deduce the
laboratory components of transversely-isotropic tensors without having to perform

a coordinate transformation between the material basis and the laboratory basis.

A symmetric second-order tensor C is transversely isotropic if B;R,;C;; = Cpq
for any rotation R about a material axis of symmetry N. The material matrix of

such a tensor must be of the form

Cq 00
C=10¢c, 0] - (4.1)
0 0c¢,
where ¢, and c, are scalars. Direct expréssions for such a tensor are
C=c,P+c,Q (4.2a)
Cij = ¢, N;N;+c,(8;;—-N;Nj) . (4.2b)

These algebraic expressions are more useful than the material matrix (4.1)
because they are easy to compute, integrate, and differentiate in the laboratory
basis. For example, if only (4.1) were available, the simple operation C e v would
require 21 multiplications because of the need to rotate to and from the material
basis; with (4.2), the operation requires only 12 multiplications. Note from (4.2a)
that P and Q may be interpreted as second-order base tensors for the two-

dimensional space of second-order tensors that are transversely isotropic about N.
We now extend this concept to fourth-order tensors. A fourth-order tensor H

is called “double-symmetric” if its rectangular Cartesian components satisfy

Hiipy = Hypy = Hygp, = Hyygj. It s transversely isotropic with respect to a material



vector N if it is unchanged upon any rigid rotation R about N (.e,
RyiR iR Bt = Hygrs). The material Euclidean Voigt components (Appendix)

of any double-symmetric transversely-isotropic tensor are of the form

-H11H12H13 0 0 0
H,H;H; 0 0 0
HyyHyzHy; 0 0 0
0 0 0 Hy 0 0
0 0 0 0 Hg O
0 0 0 0 0 Hg

When solving problems involving transverse symmetry, a typical approach is
to simply set up a coordinate system aligned with the material directions. This
approach becomes impractical when dealing with multiple transverse symmetries
each having different axes. To later facilitate integration of a function of a
transversely isotropic tensor, we seek a direct representation of (4.3). This goal is

similar in spirit to our producing (4.2) as a useful direct representation of (4.1).

Just as P and Q were recognized as a direct basis for second-order transverse
tensors, we now identify five fourth-order base tensors {Bjy,...,B5} that span the
space of all double-symmetric fourth-order tensors that are transversely isotropic
with respect to a particular material vector N. Any linear combination of members
of this space is itself a member of the space. Hence, there must exist a basis

(By,...,Bs} where, for any tensor H in the space, there exist scalars {A,...,h5} s0 that

5
H(N) = > hgBr®@N) . (4.4)
k=1

e - - SR — ——————— [ e ———— L



Applying minor symmetry to the five tensors in (3.4) gives just such a basis:

(BI)ijl = NLNJNkNl (4.5&)
(By)jns = 830 — NN ;83— 8NNy + NN ;NN (4.5b)
(B3)j; = NN By + NNy — 2NN ;N Ny (4.5¢)

1
Bs)is = 81+ 8105

Equivalence with (4.3) follows by using (4.5) to write the material matrix of (4.4)

(hy+hs  hy Ry 0 0 0
hy  hy+ths hy 0 0 0
hy ks  h 0 0 0 w6
0 0 0 hs 0 0
0 0 0 0 h, 0
] 0 0 0 0 Ry |

Note that the Euclidean Voigt components of any base tensor By in (4.5) can be
determined from (4.6) by setting hx=1 and all other A-coefficients to zero.

The component forms (4.5) are useful in practice because they are algebraic
(and easily integrable) functions of the privileged direction N. They are, however,
somewhat difficult to interpret physically. For conceptual discussions, observing
how the basis (4.5) transforms tensors is far more revealing. The basis (4.5)
decomposes second-order tensors (such as the stress) into normal, transverse,

mixed, and coupled parts. Specifically, for any symmetric second-order tensor g,




(00 0

Bi:g=100 0 (4.72)
00 o33
-011 + 0y 0 0

B,.g = 0 G;;+6x0 (4.7b)
|0 0 0
—633 0 0

By;o=|0 O3 0 < not a projection (4.7¢)

_0 0 041+0y

(0 0 O3

031 O35 0
Oy 012 0
B5:g = 0'21 Gy ol - (4:.78)
0 00

The T1I basis (4.5) is distinguished from so-called fabric tensors because it has
nothing to do with material constants such as Poisson’s ratio. It is a purely
mathematical construct resulting from transverse symmetry only. Incidentally,
the basis can be orthogonalized by replacing Bs by B - % B, and By by % B,.

5. COMPLIANCE FOR SAME-ORIENTATION CRACKS

Our preliminary goal is to describe the macroscopic compliance for a material
containing a statistically uniform array of cracks all having the same orientation
and the same size. The compliance tensor H must surely be a function of crack size
¢, crack orientation N, and the number of cracks per unit mass, N . Of course the
compliance also must depend on the underlying matrix material properties, which
we denote collectively as p. The geometry of the crack distribution demands that
the elastic compliance H for this material must be transversely isotropic. That is,

it must be expressible as a linear combination of the basis (4.5):

10




Single crack size ¢ and orientation N

H(c, N, N,p) = H,_ (1) + H (c,N, N, n) , 5.1)
where
-~ 5 ~
H,(c,N,N,i)= 3 o(c, N, 1)B,(N) . (5.2)
k=1

Here, H,, is the compliance of the underlying matrix material and H, may be
regarded as a compliance enhancement. The coefficients o, depend on the crack
size (distribution), the crack geometry, the number of cracks per unit mass, and
the matrix elastic properties, but not on the crack orientation N (except to account
for contact nonlinearities as noted in Section 6). Each Bg, on the other hand,
depends only on the orientation and is completely independent of any material
properties. Thus, (5.1) shows the explicit form of dependence on orientation Nin
a direct notation expression. The general form (5.1) follows only from the symmetry
principle that an isotropic material containing a uniform array of same-orientation
cracks must possess macroscopic iransverse symmetry. It is therefore a very

general result.

The expression (5.1) purposely avoids adopting any particular form for the
five o coefficient functions. Different researchers may derive different — even
contradictory — expressions for the compliance of a body having same-orientation
cracks. However, all admissible expressions for the compliance of an array of
same-orientation cracks must be expressible in the form (5.1). They will differ only

in the specific forms chosen or derived for the five coefficient functions

(XK(C’ -‘Zv: l"l‘) .

11




6. DIENES’ oy COEFFICIENTS.

Microcracks can increase the elastic compliance (decrease the stiffness) of a
material. Closed cracks in compression do not affect the compliance perpendicular
to their planes, whereas open cracks do. Therefore, the compliance is greater in
tension than in compression. Closed cracks subjected to large normal compression
may be locked by friction at the crack faces and do not affect the shear compliance.
On the other hand, if the normal compression is low enough, the crack faces may

slip, thereby increasing the compliance for shear in the plane of the crack.

Incorporating these concepts with analytical results for single tensile cracks,
Dienes [1] applies the principle of superposition of strain rates to derive a closed-
form solution for the compliance associated with open cracks. Dienes also provides
a similar derivation using solutions for single shear cracks. In the current
notation, Dienes’ expression is a special case of the very general form (5.1) and can

be shown to correspond to the following values for the crack coefficients:

8(1-v ~
a = S 3 f (6.1a)
3n,
3 8(1-v,) 3 =~
oy = mc %N {T]’i'(].—'f])fs} (6.1b)
Oy = O3 = Ois =0 . (6.2¢)

where v,, is Poisson’s ratio for the matrix material, |, is the shear modulus for
the matrix material, and poﬁf is the number of cracks per unit reference volume.
The quantities in braces account for “contact nonlinearities.” The parameter 7 is

defined to equal 1 if the crack is open and 0 if it is closed in compression. The factor

0:B,:¢

B = 1. (6.3)
50:Byio

is a compliance-reducing factor that accounts for friction at the crack faces (L is
the static or dynamic coefficient of friction, depending on whether the crack faces
are in relative motion). The roles of 1 and f; become more clear if (6.1) is applied
and (4.7) are used in (5.1) to give the following explicit expression for elastic strain

g¢ as a function of stress ¢:

12



g = Hig

00 0 0 0 o3
= [g2,1+0;]/00 0 |+0y] O O Oy - (6.4)
00 o33 Gy O3 O

The first term, g¢, , is the strain that would result from the applied stress if the
material were free of cracks. The second term represents additional strain in the
33-direction that results whenever there exists a 33 component of stress that tends
to open the cracks. Recalling the definition of the coefficient o, observe that this
extra strain occurs only when the cracks are open (n=1), not when they are closed
in compression (n=0). Contact nonlinearities make the coefficients (6.1) depend on
the crack orientation because 1] is usually determined by the sign of NegeN.
Likewise, the expression (6.3) involves the crack normal. The third term in (6.4)
represents additional shearing strain caused by shearing stresses in the plane of
the cracks. The crack is said to be “locked” if the applied shear stress is not large
enough to overcome the nominal friction stress. If a crack is locked, relative motion
of the crack faces cannot occur, and there must be no shear compliance
enhancement (i.e., o, = 0). This requirement is accommodated by the “Max”
operation in (6.8). Whenever the cracks are closed but not locked, the friction
factor f, reduces the applied shear stress by the amount of friction present.

Dienes (and many others) neglect the extra lateral strain that would be
caused by an axial stress, even though this contribution may become increasingly
significant as large cracks open up. Noting that o33 appears in the 11 and 22
positions in (4.7c), capturing this effect requires a non-zero coefficient of the base

tensor By (which, incidentally, is the only one not proportional to a projector).

We now introduce some tools that will allow us to extend the general equation
(5.1) for the compliance of a body containing same-size and same-orientation

cracks to a realistic body having cracks of many sizes and many orientations.

13




7. ORIENTATION AND THE UNIT SPHERE

Crack orientation is described by the unit normal N
to the crack plane or, alternatively, by
corresponding points on the unit sphere (Fig 3). For

example, the unit normal N={1,0,0} corresponds to

Figure 3: Unit normals map to  the point (1,0,0) on the sphere. For cracks,
the unit sphere. The union of dia-
metrically opposite areas repre- diametrically opposite points on the unit sphere are
sents a solid angle.
equivalent. Put diﬂ'el_:ently, any constitutive
function fAN) should have the property that {A—IN)=AAN). By using the unit sphere,
any function of N may be regarded as a function on the unit sphere. Any
contiguous set of crack normals may be described by a contiguous patch of area on
the unit sphere together with the diametrical image of that area. Such a union of

areas is hereafter referred to as a “solid angle”.

8. JOINT PROBABILITY DISTRIBUTION P(C,N)

Real materials.do not contain same-size same-orientation cracks. Consider a
body of unit mass containing a total of N cracks. In a realistic model, a randomly
selected crack could have any orientation N and any size ¢ (usually taken to be the
radius). As with oil shale or partially spalled metal, some sizes and some
orientations may be more common than others. This variation is described
through the use of a joint distribution function, p(c,N), defined by its

interpretation when integrated:

The probability that a randomly selected crack will have a size
that lies between @ and b and will have an orientation N that lies in
some solid angle AQ on the unit sphere is given by

b

[ [peNydeda . 8.1)
AQ 4

The function p(c,N) might conditionally depend on the spatial location of the
randomly selected crack. Since cracks nucleate, grow, and coalesce, p(c,N) is also
implicitly a function of time. Of course, the integral over all possible crack sizes

and orientations (i.e. over the entire unit sphere and from ¢=0 to ) is unity.

14



If a randomly selected crack is Znown to have an orientation N, then the

probability it has a size that lies between @ and b is given by

b
j pcINYde , (8.2)

a

where the conditional distribution p(c | N) is defined

peINy=—REN) 8.3)
_[p(c, N)dc
0

Surprisingly, joint and conditional distributions are rarely encountered in the
literature. Instead, researchers often present more intuitive and more easily
measured number density plots like the one sketched in figure 4 where the total
number of cracks (per volume) exceeding size c is plotted as a function of c. Number

density plots must never have a positive slope.
v(e)

1000
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Figure 4: An intuitive and popular way to display crack size distribution informa-
tion, v(c) is the number of cracks (usually of some particular orientation N) per unit
volume exceeding size ¢. Thus, the vertical intercept is the total number of cracks per
unit volume. In practice, this intercept is determined by extrapolating an ensemble
average (solid line) from the smallest measured crack size.

A number density function v(c) may be converted to a probability function by
simply dividing it by the total number of cracks, v(0). This normalized function

15




v(c)/v(0) is the probability that a randomly selected crack will have a size
exceeding c. Thus, the relationship between a number density plot and the joint
distribution function is

_ 1 (dv
p(cIN) “W(%)N . (8.4)

The size and orientation distribution function p(c,N) will now be combined with
the compliance (5.1) for same-size same-orientation cracks to derive the

compliance for a body containing cracks of many sizes and orientations.

9. COMPLIANCE FOR RANDOM-SIZE RANDOM-ORIENTATION CRACKS

Consider a body containing an array of
random size and orientation cracks (Fig 5).
Applying a principle of superposition of

strain rates for a dilute array of cracks, the

increase in compliance is taken to be the sum
Figure 5: Cracks of random size and . . :

random orientation. of the increases for each possible crack size

and orientation times the number of cracks of

that specified size and orientation. For a continuous distribution of crack sizes, the

compliance H is computed by the expectation integral

H = [ [H(,N, N,w)p(c,N)de dQ (9.1)

Qo
where H(e, N, N ,l) is given by (5.1). For nondilute arrays of cracks, it seems
reasonable to expect the compliance to nevertheless be of the above form, with the
dependence on N being nonlinear to account for crack interaction. With (5.1), the

expression (9.1) may be alternatively written

5
H=H,+Y [B®M) &N, ..)dQ |, (9.2)
k=1 Q




where G,(N, ...) is the orientation-dependent expected value of o, a function of

the crack density and the material properties as well as the crack orientation:

0, (N, ]V, )= Jock(c, N, N, Wp(ec, N)de . (9.3)
0

10. ORIENTATION DISTRIBUTION ASSUMPTION (ISOTROPIC MODEL)

Evaluating (9.2) with modest computing resources would certainly require
simplifying assumptions, depending on the salient features one wishes to capture.
In the next few subsections, we will explore some simplifying assumptions,

defining the class of problems for which each is sensible.

One simplification assumes a particular form for the joint distribution that
leads to an isotropic crack model. This assumption and its consequences are
presented to provide a more meaningful background to the arbitrarily anisotropic
model described later. For propellants and explosives, knowing the free surface
area (from open crack faces) is of supreme importance, so capturing the crack size
distribution may be more important than capturing orientation anisotropy. One
(debatable) approach is to assume crack size and crack orientation are

independent random variables, in which case,

p(c,N) = g(c)h(N) , (10.1)

where g and % are independent size and orientation distribution functions.
Suppose it is further assumed that the cracks have no preferred orientations.
Then the orientation distribution is uniform; that is, h(N) = 1/Q, where Q is the

area of the unit sphere (4n). With these assumptions, (9.2) becomes

5
H=H,+ Y B , (10.2)
k=1

where @, is the expected value of o(c, ...), defined

17




0, = [oye, ...)g(c)de (10.3)
0

and By, is the average of B,(N) over all possible orientations (i.e., the average over

the unit sphere):
5 _ 1
B, =5 Sj} B,(N)dQ . (10.4)

It is straightforward (though tedious) to show that these averages are

B, = %Ps" + -12—51)‘1‘*" ‘ (10.52)
B, = 3P+ ZP% ' (10.5b)
B, = g'PsP—% dev (10.5¢)
B, = gpsp + %Pde" : (10.5d)
Bs = %Ps” + %Pd"” : (10.5¢)

where P and P are the fourth-order spherical and symmetry-deviator

projectors:
(PPYijn1 = %SijSkl (10.6a)

When P% operates on a second order tensor, the result is the symmetric
deviatoric part of the tensor, but paev itself is an isotropic fourth-order tensor, as

is P°? . Hence, substituting (10.5) into (10.2) gives an isotropic compliance

H - -z-lﬁpde”ﬁ»ﬁpsp . (10.7)

where effective shear and bulk moduli p and K are given by

||

-

+ (20, + 20, — 43, + 60, + T8lg) - (10.82)

Tl
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I% - KL 00, + 40, + 400 + 205 - (10.8b)

m

If the expressions in (6.1) are used, (10.8) becomes

I 32(5-v,,)1~-v,) -3

T,I,— =1+ 45(2—Vm) pONC (10.93.)
2

K, 16(1-v2) -3

-f =1+ 9—(1_—277'7)‘ poNC . (10.9b)

The quantity ¢ is the expected value of crack size cubed (quite different from the
cube of the expected value of crack size). The dimensionless quantity p OZV ¢’ is the

so-called crack volume, seen often in the literature.

A clever anisotropic extension used in current BFRACT theory [5] employs
the above approach until one particular crack orientation, is considered to
dominate the material anisotropy. This critical orientation is determined by
monitoring, say, the maximum principal stress. Thereafter, the orientation
distribution would effectively contain a Dirac delta function.

11. SIZE DISTRIBUTION ASSUMPTION
(ANISOTROPIC MODEL)

The preceding isotropic and dominant crack approaches fail fo accurately
model cracks in shear. Hot spots created by local shearing at crack faces may be
responsible for early ignition of certain propellants. Furthermore, even for
problems such as spall that do indeed involve one dominant crack direction, cracks
of other orientations (usually at angles ~45 degrees from the dominant direction)
tend to grow in shear prior to the development of a dominant crack. Finally,
problems involving significant redirections of the applied stresses inherently lead

to multiaxial deformation-induced anisotropy.

The Los Alamos SCRAM code [6] is effectively a fully-anisotropic general
implementation of Egs. (9.2) and (6.1) together with conventional high-pressure
equations of state and flow models not discussed in this paper. This base coding

was extensively modified to run using Sandia’s Eulerian shock physics code CTH
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[7] (it was actually modified to comply with new model packaging standards [8]

that permit it to run on any parent code).

To model arbitrary deformation-induced anisotropy, crack size and crack
orientation are not assumed independent. Dienes [1] assumes a general analytical
form for the c-dependence of p(c,N) that — in effect — permits the integral in
(9.3) to be solved a priori to give G,(N) in closed form, eliminating the need to
numerically store, evolve, and integrate the c-dependent part of the distribution.
(Alternative analytical size distributions will be explored in later work.)

With &, (N) known and B, (N) given by (4.5),
all that remains (to compute the compliance)
is to perform the integral (9.2) over all

possible crack orientations by discretizing the

y

area of the unit sphere into a finite set of
X patches, called “bins”. The mnine-bin
discretization in Figure 6 is used most often in
z our calculations because it is coarse enough to
be computationally tractable, but fine enough
Figure 6: (a) A nine bin discretization of . . ]
the unit sphere. Of the 18 discretized areas, to capture considerable anisotropy. Three-bin
only half represent distinct bin directions. L. L.
and even one-bin discretizations are useful for
rapid set-up computations. A one-bin solution is roughly equivalent to the
approach of Section 10.

Our Sandia-SCM code approximates each 0,(IN) as piecewise constant over

the unit sphere so that (9.2) becomes

5 7y
H = Hm’l' z 2 &kakbAQb . (11.1)
k=1 b=1

where AQ, is the solid angle for bin b (i.e., the union of diametrically opposite

areas on the sphere), nj is the number of bins, and

- 1
Bry=— | BpdQ . (11.2)
AQ, Ab k



and 0, is the piecewise constant value of &,(N) for bin b. Since a crack of
orientation —N is equivalent to a crack of orientation N, the dependence on N is
really a dependence on the projector P in (8.1) with m=n=N. Thus, Sandia-SCM

uses

Gy = G5 (Ps) (11.3)

where Py, may be regarded as the centroid of the bin, namely,

Py = Zl_ [ Pdo . (11.4)
b AQ,

To appreciate the importance of using this average of projectors over each bin,
consider the radically coarse discretization of the unit sphere into only one single
bin. It is straightforward to show that for one bin, P is just 1/3 of the identity
tensor. Thus, for example, if &@,(IN) depends on the normal component of traction,
NegeN = g:P, its approximation will use a “good guess” for the normal
component of traction, namely,

g:f’ = =trg. (11.5)

Recall that each By, is a function of N only. Therefore, the integrals in (11.2)
are independent of the material and problem geometry and may be computed a
priori. In Sandia-SCM, these integrals have been computed numerically for 1-, 3-

, and 9-bin discretizations and are hard-wired in the numerical coding.

By discretizing the unit sphere we allow orientation-dependence of the
coefficient and distribution functions and associated arbitrary anisotropy. We
conclude this section by defining a scalar measure of anisotropy. Any minor-
symmetric fourth-order isotropic tensor may be expressed as a linear combination
of Pdev and PsP defined in (10.6). The isotropic part H*® of any minor-symmetric
fourth-order tensor H is the projection of H onto the linear manifold defined by the
span of P9e? and PsP; that is,

Hiso - (H::Psp)Psp_*_é(H::Pdev)Pdev ) 7 (11.6)
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Here, the symbol “:” denotes the fourth-order inner product (e.g,
A::B = Ay, B;;).-The divisor of 5 in the second term is present because the
Euclidean magnitude of P2ev is /5. If H is stored as a Euclidean Voigt matrix (see
Appendix), the coefficients in (11.6) are computed as follows:

3 3
1
H::Psp = -3{ 2 Z HKL) (11.7a)
K=1 L=1
6
H::Pdev = [ Z HKK}—H::PSP (11.7b)
K=1

The deviatoric part of the tensor H is just

o - H_H (11.8)

An anisotropy measure 4 is here defined in terms of the ratio of the deviatoric

to isotropic magnitudes:

(11.9)

This quantitative measure of anisotropy goes from zero for an isotropic fourth-
order tensor (H = H’*°) to unity for a deviatoric fourth-order tensor (H = H’).

Following a brief discussion of numerical issues for Eulerian codes, the fully
anisotropic compliance (11.1) will be applied to a ceramic shock-wave experiment

in Section 13, where we predict deformation-induced anisotropies in excess of 60%.

12. HEALING IN EULERIAN/REZONE CALCULATIONS

Implementations of microcrack models are often plagued by “numerical
healing” that occurs when mixing different states of damage (e.g., during rezoning
of a Lagrangian mesh or during simple Eulerian advection). If each component i
has a mass m; and contains N; cracks per unit mass, the number of cracks per

unit mass for the mixture is naturally
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Z]V im;
S 1

mix =
2m;

i

(12.1)

When a material containing very small cracks is to be mixed with the same
material containing large cracks, the effective crack size of the mixture must not
be assigned using a simple volume- or mass-weighted average of the disparate
crack sizes. To avoid numerical healing, the larger and/or more populated crack
sizes must dominate. Sandia-SCM uses a number-weighted p-norm to assign a

crack size to the mixture:

e . = |t ) (12.2)

where c; is the average crack size of the ith component. To avoid numerical
healing, p must be chosen larger than unity. The Dienes compliance coefficients
(6.1) all depend on the expected value of crack size cubed. Therefore, to ensure a
good mixture value for the elastic compliance, Sandia-SCM uses p=3. To avoid
having to write special-purpose advection routines, Sandia-SCM advects the

quantity ci3 N .m; using the standard mass-weighted advection built into CTH.

13. APPLICATION TO A CERAMIC SHOCK~-WAVE EXPERIMENT

Figure 7 shows a sketch of the configuration for symmetric impact of AD995
aluminum oxide [9]. The velocity at the ceramic-window interface was measured
using VISAR interferometry for impact speeds of 0.544 and 1.943 km/s.

Figure 8 shows good agreement of the Eulerian Sandia-SCM calculations with
the experimental results, especially during the release phase, validating the
techniques of Sections 11 and 12 using Eq. (6.1) in (9.2). The Lagrangian SCRAM
code [6] — on which Sandia-SCM is based — produced similar results.
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Figure 7: Experiment configuration for ceramic impact experiments.

The maximum computed deformation-induced anisotropy (see Eq. 11.9) for
the lower-speed impact was about 4% during the loading phase and 56% by the
end of the calculation. For the higher-speed impact, 3% anisotropy occurred during
loading and 60% by the end of the calculation. For both calculations, the moderate
anisotropy developed during loading (i.e., while the material was still in
compression) was due to the growth of cracks in shear. This loading anisotropy
was lower for the high-speed experiment because greater confining pressure
resulted in greater friction at the crack faces, thereby inhibiting crack growth and
slip. The high final anisotropies were due to catastrophic growth of cracks in
tension. These results challenge the conventional view of shocks as isotropic
phenomena. While simpler isotropic models can describe the loading part of the
response reasonably well, only our anisotropic calculation has achieved good
agreement for the release part of the response. Many other results from these
calculations will be detailed in a separate paper, where we will also explain our

means of determining material constants.
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Figure 8: Comparison of theory and experiment for symmetric impact of aluminum oxide at impact
speeds of (a) 0.544 and (b) 1.943 km/s. Both calculations used identical input data.

14. CONCLUSIONS

Many microcrack modeling techniques in the literature can be viewed as
different aspects of the viewpoint presented in this work. Depending on the
physical phenomena of interest, some models accurately predict the development
of crack surface area at the expense of accurate predictions of anisotropy, and vice-
versa for other models. The current work unifies these diverse viewpoints by
explicitly showing the analytical dependence of a material’s elastic compliance on
crack size and crack orientation. We purposely segregated debatable aspects of our
theory into six developer-defined material functions. The coefficient functions o
and o, in Eq. (5.2) describe additional strain caused by crack shearing and
opening stresses, respectively. The often negligible coefficients o, and o5 permit
description of changes in transverse compliance due to the presence of cracks. The
coefficient function o, allows description of laferal compliance increases
associated with axial loads that may be important for large open cracks. The fifth
and final developer-definable function, p(c,N), describes the statistical
distribution of crack sizes and crack orientations within a material. We showed
how different choices for these six material functions lead to very different

material models. For the anisotropic material functions, we defined a scalar

25




measure of anisotropy to quantitatively describe the important role of multi-
directional cracking and deformation-induced anisotropy in one-dimensional
shock wave experiments, thereby challenging the traditional notion that shock

waves are principally isotropic phenomena.
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APPENDIX
EUCLIDEAN-VOIGT COMPONENTS

It is sporadically recognized among researchers that storing symmetric
tensors using six-component Voigt arrays with the off-diagonal components
multiplied by A2 results in a Euclidean inner-product rule. The factor of J2 is
here rigorously justified by showing that it arises from a Euclidean (orthonormal)

basis for the linear space, %, of all symmetric second-order tensors (in 22). Since
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any linear combination of tensors in ¥ is itself in %, there must exist an

orthonormal basis of six tensors for 7. One such basis is

b, = ¢;®e¢ (A.la)
b, =e,Qe, (A.1b)
b, = e;®e, (A.10)
b, = (e, ®e,+e,®e;)/42 (A.1d)
bs = (e,@e;+e;0e,)/ 2 (A.le;)
bs = (e;®@e; +e,®e;) /42, (A.1)

where {e,, e, e;} are the usual orthonormal base vectors for 3-dimensional
laboratory space, and ® denotes dyadic multiplication. The divisors of 2 ensure
bK:bJ = 8KJ s (A.2)

making this basis Euclidean. The double-dot product (:) is the second-order inner
product (i.e, for any second-order tensors A and B, A:B=A;B;;, where repeated

lower-case indices are summed from 1 to 3).

Any symmetric second-order tensor A may be written as a six-dimensional

Euclidean vector,
6
A= Z Apby . (A.3)
K=1

The 6-dimensional vector components Ay are related to the usual 3-dimensional
double-index second-order tensor components A;; by

AK = A:bK = Aijei

{Al’ Azs A3: A43 AS: A6} = {Alp A229 A33: ‘\/iA129 '\/§A23’ '*/EA:‘H} . (A-4)

® ej:bK, or

We call these the “Euclidean Voigt components” because the array is identical to
the conventional Voigt representation of a symmetric second-order tensor except
for the very important factors of /2 . Incidentally, we order the trailing off-diagonal
components {..., 12, 23, 31} contrary to “missing index” {..., 23, 31, 12} convention
because 2-D calculations are usually performed in the 1-2 plane. Placing the zero

23 and 31 components at the end allows truncation to only four components, and
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certain fourth-order tensor inverses may be performed on only the upper 4x4

submatrix.

Any minor-symmetric fourth-order tensor U (i.e., U;jp; = Ui = Ujjip) may

be written as a second-order tensor in this 6-dimensional Euclidean space as

6 6
K=1M=1 N

The 6x6 matrix [Ug;,] for fourth-order minor-symmetric tensors is the same
as the usual Voigt matrix except the last three rows and the last three columns are
multiplied by 2 (thus, the lower-right 8x3 submatrix is multiplied by 2). For
example, Ug, = 42 Usppy and Uys = 2 Uyys -

The basis (A.1) allows us to utilize Euclidean space theorems and properties.
For example, the inner product A:B, which is ordinarily computed as A;;B;;, may

be computed using the usual Euclidean rule

6
A:B = z AKBK . (A.6)
K=1

Fourth-order operations are also performed in the familiar way. For example,

6 6
A:U:B = Z z AxUguByr - (A.7)
K=1M=1
The Euclidean components of the inverse of a fourth-order tensor are just the
matrix inverse of the tensor’s Euclidean Voigt components. If conventional non-
Euclidean Voigt representations (i.e., without the factors of 4/2) had been used,
these computations would be complicated by factors of 2 and 4, inhibiting efficient

use of optimized Euclidean subroutines or intrinsic functions.

Euclidean Voigt components are not limited to symmetric tensors. The basis
(A.1) can be augmented with three more base tensors consisting of normalized
skew-symmetric dyads, (e, ® e;—e; ®@e,)/ A2 etc., thereby spanning all second-

order tensors in symmetric and skew-symmetric parts.
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This report was prepared as an account of work sponsored by an agency of the
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