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Characterization of geologic heterogeneity at an enhanced geothermal system (EGS) is crucial for cost-effective stimulation planning and
reliable heat production. With recent advances in computational power and sensor technology, large-scale fine-resolution simulation of coupled
thermal-hydraulic-mechanical (THM) processes have been available. However, traditional large-scale inversion approaches have limited utility
for the sites with complex subsurface structures unless one can afford high, often computationally prohibitive, computations. Key computational
burdens are predominantly associated with a number of large-scale coupled numerical simulations and large dense matrix multiplications
derived from fine discretization of the field site domain and a large number of THM and chemical (THMC) measurements.

In this work, we present deep-generative model-based Bayesian inversion methods for the computationally efficient and accurate characteri-
zation of EGS sites. Deep generative models are used to learn the approximate subsurface property (e.g., permeability, thermal conductivity
and elastic rock properties) distribution from multipoint geostatistics-derived training images or discrete fracture network models as a prior
and accelerated stochastic inversion is performed on the low-dimensional latent space in a Bayesian framework. Numerical examples with
synthetic permeability fields with fracture inclusions with THM data sets based on Utah FORGE geothermal site will be presented to test the

accuracy, speed, and uncertainty quantification capability of our proposed joint data inversion method.

1 INTRODUCTION

For the subsurface inverse problem (Carrera et al., 2005;
McLaughlin and Townley, 1996; Oliver et al., 2008), spa-
tially distributed geologic parameters such as permeabil-
ity and porosity are estimated from noisy and sparse hy-
drogeophysical and geomechanical measurements such as
pressure, temperature, displacement, seismic responses,
and so on. Due to ill-posedness in the inverse problem,
probabilistic frameworks have been implemented in or-
der to account for the uncertainty that provides both un-
known subsurface parameters and their corresponding un-
certainty in a Bayesian statistical framework (e.g., Kitani-
dis, 1995, 2010; Lee et al., 2016). Typically pressure mea-
surements from injection-extraction well operations are
used for the site characterization, but unless many injec-
tion/extraction/observation wells are available, the subsur-
face characterization with sparse pressure measurements
leads to poor predictions of other relevant quantities such
as heat transport. To overcome this issue, different sensing
data can be used for joint inversion of pressure, tempera-
ture, displacement, and seismicity to identify the subsur-
face geologic connectivity during the geothermal energy

recovery operations (Lee et al., 2018)

Still, one of the challenges in subsurface characterization
is to identify highly heterogeneous permeability field such
as geothermal reservoirs with fracture networks. For such
cases, traditional techniques using the Gaussian prior lead
to smoothed, low-resolution images of subsurface proper-
ties with high estimation uncertainty due to the diffusive
nature of the governing equations. Machine learning tech-
niques such as deep generative models (Kang et al., 2022,
2021; Kadeethum et al., 2021; Kim et al., 2021) have been
actively studied to enforce the subsurface solution space
on the relevant prior distribution constructed through mul-
tipoint geostatiatics-based training images.

In this work, we present an application of recent inverse
modeling method based on the deep generative model
for characterizing the geothermal site at a reduced com-
putational cost with improved accuracy compared to tra-
ditional inversion. The multiphysics model MOOSE-
FALCON (Podgorney et al., 2021) for simulating THM
processes at the geothermal site is combined with our pro-
posed variational latent space inversion method. A syn-



thetic application with pressure and heat data is considered
in this work for a two dimensional, strongly heterogeneous
geothermal site. Inversion of synthetic pumping tests per-
formed at this site are performed to show the usefulness
and practicality of the proposed approach for geothermal
site characterization with a reasonable accuracy. We will
incorporate the geomechanical data to improve the accu-
racy of the inversion in the near future.

2 METHOD

2.1. Deep Generative Modeling
Deep generative models (Goodfellow et al., 2014) have
been studied because of their capability to approximate
data distributions from training samples and generate new
samples from the approximated data distribution in an effi-
cient fashion. Among many deep generative models such
as variational autoencoder, diffusion model, normalized
flow and so on, we use the generative adversarial network
(GAN) (Goodfellow et al., 2014) which is composed of
a generator and a discriminator. The generator create the
samples from the data distribution using randomly sam-
pled latent variables whose dimension is much smaller
than the data dimension in general and the discriminator
determines whether the data are authentic. To address the
issue of mode collapses, Wasserstein GAN with gradient
penalty (WGAN-GP) is used as an improved version of
GAN (Gulrajani et al., 2017) to learn the subsurface prop-
erty distribution such as fracture networks. The inversion
solutions are constrained to the learned latent space while
consistent with the observations. This will lead to our
deep generative model-based parameterization of the per-
meability field:

s=G(z) ey

where s is the permeability field and z is a k (<K m)-
dimensional latent variable constructed from GAN-GP.
Using our generator G(z), the variable z in the context
of the inversion problem represents the low-dimensional
representation of s.

2.2. Variational Inversion using Deep Generative
Modeling

We use a Hierachical Bayesian approach combined with
GAN-GP in this work for the inverse problem solver. The
forward problem with the input of permeability field s can
be defined in the form of the relationship

y=h(s)+e, (2)

where y is the observation (e.g., pressure, temperature
and displacement), & is the observation and model un-
certainty noise such as a Gaussian distribution with mean

zero € ~ N(0,R). Here, R is the model/observation er-
ror matrix and h is the forward map. The inverse prob-
lem equivalent of Eq. 2 can be defined as a problem with
unknown m-dimensional variable s (permeability) and n
(noisy) observation y (pressure, temperature and displace-
ment). The Bayes’ rule allows us to evaluate a posterior
distribution of s via

p(sly) o« p(¥Is)p' (5) = /0 p(yI9)p’ (s16)p’ ()d8. (3)

where p’ (-) represents the prior probability and 6 is a
set of hyperparameters that models s in a hierarchical
Bayesian framework.

In particular, with the generator G, we can constrain vari-
able z to follow a Gaussian distribution to ensure the reg-
ularity of the latent space:

z~N(0,X). “)
We also assume that G is a deterministic map from z to
s and the hyperparameter p’(6#) such as neural network
model parameters follows a delta distribution:

0=6(60-9). (5)

This allows us to rewrite Eq. 3 in the form

p(zly) « p(ylz)p’(z)

s exp (~(y=h(G(2) "R (y=h(G(@) ) exp (-2"E'2),

(6)

We explore this posterior equation to identify the latent
variables consistent with observations through sampling
or variational approaches. Here we use variational, i.e.,
optimization-based approach to find the maximum a pos-
teriori (MAP) estimate, which is the mode of the posterior
distribution. This task will require the computation of Ja-
cobian J/ and at the /th iteration the computation is given
by
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Note that % can be evaluated analytically using automatic
differentiation (AD). This information can be provided at
no additional computational cost in common libraries such
as TensorFlow and PyTorch. Since the dimension of z is
assumed to be significantly smaller than the dimension of
s, e.g., dim(z) < 100, we can also use a finite difference
formulation to calculate the Jacobian matrix as an alterna-
tive to AD.

2=zl °



3 SYNTHETIC EXAMPLE SETUP

The domain for heterogeneity characterization is a syn-
thetic two dimensional depth-integrated deep formation
based on the Utah FORGE site for geothermal energy re-
covery operations. As shown in Figure 1, a 600 m x 600
m domain was discretized into 120 X 120 meshes. A con-
stant pressure of 34 MPa and 30 MPa was imposed on
the western and eastern boundaries, respectively. A con-
stant temperature of 473.15 K and 423.15 K was applied to
the western and eastern boundaries, respectively. One in-
jection well was placed for transient simulations and nine
monitoring wells were used for observation. The injection
rates and temperature are shown in Figure 2. The injec-
tion rates increased from O to 1 g/s over 0 to 500 s and
then kept constant at 1 g/s until 1000 s. The injection tem-
perature was a constant value of 323.15 K. The values of
the material parameters are shown in Table 1. Permeabil-
ity and porosity are heterogeneous as shown in Figure 3,
using the same image (generated by the trained generator)
but assigning different values. For permeability, the frac-
tures (red lines) were assigned le-14 m?, and other areas
were assigned le-16 m?2. For porosity, the fractures were
assigned le-3, and other areas were assigned 1e-4.
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Temperature: 423.15 K

Pr
Temperature: 473.15 K
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0 600 m

Fig. 1: Model settings. 34 MPa pressure and 473.15 K tempera-
ture were applied to the western boundary. 30 MPa pressure and
423.15 K temperature were applied to the eastern boundary. The
yellow circles represent monitoring wells, and the cross shows
the injection well location.

4 PRELIMINARY RESULTS

Figure 4 shows the estimation of permeability field which
shows reasonable characterization of subsurface fracture
features because of the informative training data for the
deep generative model construction. Figure 5 shows the
fitting results of pressure and temperature data. The fit-
ting errors are also shown as the root mean square error
(RMSE):
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Fig. 2: Injection rates and temperature

Table 1: Material parameters

Parameter Unit Value
Permeability m? heterogeneous
Porosity - heterogeneous
Density kg/m? 2640
Specific heat J/kg-K 790
Thermal conductivity | W/m-K 3.05

Permeability [m?] Porosity [-]
I le-14 | le-3
le-16 le-4

Fig. 3: Permeability and porosity
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where k¢’ indicates the estimated parameter value and
k"¢ is the true value, Ny is the total number of parame-
ters.

The RMSE of pressure data fitting is 0.358 while the
RMSE of temperature data fitting is much smaller. We
estimated permeability and porosity together and the accu-
racy of the porosity estimate is similar to the permeability
estimation.

True Estimated

Fig. 4: Estimation result; the true permeability field is shown on
the left and the estimated field is shown on the right.
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Fig. 5: Data fitting. Pressure and temperature data fitting. Fit-
ting errors are shown in RMSE.

5 CONCLUDING REMARKS

We implemented a deep generative model-based inversion
approach to perform joint data inversions with multiple
pumping tests and presented reasonable inversion results
with affordable FALCON runs. The proposed method
transforms an inverse problem with the computational cost
associated with the number of observations into an ap-
proximately same problem with a constant number ( total
0(100)) of simulations, so that one would expect a great
computational gain in solving high-dimensional inverse
problems. In the examples presented, the estimated fields
captured important permeability features, i.e.,fractures,
due to the informative prior used in the training. It is also
observed that the estimate with improved accuracy was

obtained at a much smaller computational cost than tradi-
tional methods, allowing for the characterization of a 2D
geothermal reservoir in less than 10 minutes on a work-
station equipped with 48 CPU cores. Joint data inversion
from pressure and heat tracer with the pre-trained deep
generative model can be beneficial to identify connectiv-
ity features in the site without considerably increasing the
computational costs. Joint inversions using pressure, tem-
perature and displacement data will be performed in the
near future.
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