
CMB: A Configurable Messaging
Benchmark to Explore Fine-Grained Communication

W. Pepper Marts∗†, Donald A. Kruse∗, Matthew G. F. Dosanjh∗,
Whit Schonbein∗, Scott Levy∗,
∗Center for Computing Research

Sandia National Laboratories
Albuquerque, New Mexico, USA

{wmarts,dkruse,mdosanj,wwschon,sllevy}@sandia.gov
Patrick G. Bridges†

†Department of Computer Science
University of New Mexico

Albuquerque, New Mexico, USA
patrickb@unm.edu

Abstract—Modern communication APIs provide increased ability
to specify when, where, and how to send data between processes. One
recent innovation is fine-grained communication, where processes
are able to send subsets of data as it is ready rather than waiting
for the entirety of the data to be completed. Allowing data to be
sent when it is ready increases opportunities for overlapping com-
munication and computation. However, with multiple fine-grained,
thread-safe interfaces, the task of optimizing an application’s peer-
to-peer fine-grained communication is complex. In this paper, we
present the Configurable Messaging Benchmark (CMB), a tool for
evaluating the application impact of fine-grained communication.
Using the CMB we perform a case study to measure the impact
of different fine-grained implementations on a variety of realistic
application profiles. Initial results reveal a large optimization space
ranging from potential speedups as high as 52.97% to slowdowns as
high as 289.55% relative to bulk-synchronous MPI message passing.

Index Terms—high-performance computing , computer networks
, fine-grained communication , models , benchmarks

I. INTRODUCTION

Scientific applications typically follow a Bulk Synchronous
Parallel (BSP) model, where the application is split into distinct
compute and communication phases, and all threads must
synchronize between phases. Fine-grained communication aims
to improve application performance by sending pieces of the
data as those pieces are completed, rather than waiting for a
distinct communication phase. This approach leverages network
resources during the computation phase where a BSP application
would otherwise leave those resources idle. Because of this
potential, fine-grained communication is an active topic in the
high-performance computing (HPC) research community [1]–[3].

The performance of fine-grained communication depends on
several factors. BSP applications are mainly impacted by size of
communicated data, communication interface (e.g., MPI message
passing or RMA), number of peers, and system performance.
Additional factors impact fine-grained communication, such as
the size and number of pieces being sent, additional overheads

∗Sandia National Laboratories is a multimission laboratory managed and oper-
ated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of En-
ergy’s National Nuclear Security Administration under contract DE-NA0003525.

of the communication interface (locking, matching, etc.), and the
distribution of thread completions. The combination of all of these
factors creates a daunting optimization space for applications.
Choosing the right number and size of the pieces being sent and
which communication interface to use is a complex problem that
can vary between applications, systems, and software versions.

To address this challenge, we present the Configurable
Messaging Benchmark (CMB), a tool to measure the application
impact of different fine-grained communication strategies. Based
on the MiniMod framework [4], the CMB allows the user to
define an application profile (compute time, number of peers,
total communicated volume, and thread arrival distribution)
and a fine-grained communication approach (number of pieces
to divide message buffers into and communication interface).
The benchmark evaluates the impact of the communication
approach on the application profile, providing valuable feedback
regarding expected application behavior.

This paper makes the following contributions:

• The Configurable Messaging Benchmark (CMB): an
open-source1 application performance benchmark for
evaluating fine-grained communication for different
application profiles;

• Extensions to MiniMod enabling the exploration of
different message aggregation techniques;

• A case study exploring the impact of fine-grained
communication on 7- and 27-point stencils using 5 different
application noise profiles (Laggard Thread, Normal, and
3 distributions from measured application behavior).

The remainder of this paper is structured as follows. We
provide a background for our paper in Section II. We detail the
design of the CMB in Section III. We describe how we conducted
our experiments and present the results of our experiments in
Section IV. We discuss the implications of the case study in Sec-
tion V. Finally, we distinguish our work from existing related
work in Section VI and present our conclusions in Section VII.

1We are in the process of getting the CMB approved for open source release,
and anticipate replacing this text with a link to the source code before publication.

SAND2024-02557C



BSP

t0 tw tw +∆

work delay reclaimed time

Early-Bird

Fig. 1: Traditional BSP communication (top) and best-case early-
bird communication (bottom) for a scenario where the buffer
is divided into four parts. See main text for more information.

II. BACKGROUND AND MOTIVATION

A. Bulk Synchronous and Fine-Grained Communication

In traditional Bulk Synchronous Parallel (BSP) applications,
communication and computation are separated into distinct
phases, where data is exchanged only after all current work
is completed and before any new work begins. This includes
situations where work is multi-threaded: Even if some threads
complete their contributions earlier than others, the results are
not communicated until all threads have completed. Unbalanced
workloads or operating system noise can lead to lagging
threads [1], [5], [6], delaying the transmission of data that is
otherwise ready to send. This scenario is depicted in Figure 1
(top): Work begins at t0 and ideally would complete at tw.
However, in this case, OS noise delays the completion of one
thread, so bulk communication cannot begin until tw +∆.

A fine-grained communication strategy attempts to leverage
these opportunities by allowing each thread to initiate data
transfer when their portion of work is completed, independently
of others [1]–[3]. A potential benefit of fine-grained
communication is early-bird transmission, shown in Figure 1
(bottom): While one thread has not yet completed its contribution
to the buffer as of tw, the other three have completed theirs,
so the data transfer can begin earlier than in the BSP case. The
figure shows a best-case scenario, where the delay is sufficiently
large that the contributions from all but one of the threads
can be moved before the last thread completes, maximizing
the amount of reclaimed time. Even if an application already
overlaps communication and computation by other means,
fine-grained communication can still expose additional overlap.

B. Factors Affecting Fine-Grained Communication

The efficacy of fine-grained communication depends on both
application behaviors as well as the underlying communication
stack. These factors interact, making the task of optimizing
fine-grained communication challenging. In this subsection,
we survey some of these factors, emphasizing those that are
exposed to middleware and scientific application developers.

1) Buffer Size: The communication overheads incurred by
splitting a buffer into multiple messages are proportionally
greater for small buffer sizes than for large buffers. This is due
to overheads being roughly constant in regards to buffer size
while the time spent transferring data scales linearly. We expect
fine-grained communication to be less performant for small
buffers. However, larger messages require more time to inject
into the network, so best-case scenarios (cf. Figure 1 (bottom))
may require a longer delay to be realized.

2) Number of Peers: Splitting a buffer into multiple messages
increases the number messages to be sent, and this number is
further increased by the number of peers. For example, a 7-point
halo exchange with buffers divided into four sub-messages yields
24 individual messages, while a 27-point exchange requires 104.
This rapid escalation in the number of messages may interact
with communication middleware, e.g., by exhausting bounce
buffers, complicating message matching, or requiring many more
rendezvous protocol transactions than if the buffers were not split.

3) Actor Completion Distributions: In Figure 1 (bottom) we
illustrate the potential benefits of fine-grained communication
by assuming every actor but one completes at time tw, with
one thread lagging behind until time tw +∆. Of course, this
Lagging Thread scenario is only one way actor completions
might be distributed over time. For instance, while laggards do
exist, threads sometimes complete in accordance with a normal
distribution with a mean centered at tw, or follow more complex
distributions [7]. The distribution of actor completion times
affects available opportunities for early-bird communication.
Completions following a normal distribution with a small
standard deviation, for example, have (on average) less time
to exploit than those that involve a large standard deviation.

4) User Partitions and Transport Partitions: Complementary
to the importance of buffer size is the number of partitions. Each
additional partition adds send and receive overheads [8], which
could swamp any potential benefits of fine-grained communica-
tion, especially for smaller buffer sizes. For the remainder of this
paper we will follow the terminology used by Temuçin et al. in
their work [9]. A user partition refers to the granularity of com-
munication requested by a user application, i.e. the contribution
of an individual thread to a communicated buffer. A transport
partition refers to the granularity used to communicate over the
network, i.e. the size of messages when using MPI two-sided
message passing or the size of an individual put when using MPI
one-sided RMA. These may be of different sizes; a transport parti-
tion is composed of one or more user partitions. A communication
strategy that sends fewer user partitions per transport partition
might be described as more fine-grained than one that sends more.

5) Communication interface: The number of communication
middleware interfaces continues to grow; from MPI’s point-
to-point, non-blocking, persistent, RMA [10], and Partitioned
Communication [1] to OpenSHMEM, PGAS, and others. Each
of these can exhibit different performance behaviors with
the biggest impact being how well an interface maps to the
underlying RDMA semantics.

C. The Need For a Better Benchmark

As illustrated in Section II-B, extracting performance benefits
from early-bird communication presents a difficult challenge
because of the sheer number of relevant factors and the
ways in which they interact. There is likely no ‘one right
answer’, applicable to all applications across all systems,
regarding whether to utilize fine-grained communication, and
if so, how fine-grained the communication should be, which
communication interface should be used, and so forth. In the
next section, we introduce the CMB, a benchmark that allows
users to investigate fine-grained communication performance
while varying application and communication factors.



III. DESIGN OF THE CMB

The Configurable Messaging Benchmark (CMB) is
an application impact benchmark built using the MiniMod
framework [4] that explores the performance of different methods
of implementing fine-grained communication across different ap-
plication profiles. In this section, we present the CMB and discuss
its design philosophy, general architecture, extensions made to
the MiniMod framework, and how it handles thread arrival times.

A. Design Principles

There are a few key design principles that are integral to
the CMB. First, the benchmark needs to be able to assess
the performance impact of fine-grained communication on
applications. There are three types of sources of impact on the
performance of the benchmark; system, application profile, and
fine-grained implementation.

System comprises factors that are externally determined.
For example CPU, network, and MPI distribution all fit in this
category. While these are not explicitly referenced inside the
CMB, these factors play a significant role in the performance
of an application.

Application profiles are a set of independent variables that
specify how the application the CMB is mimicking will behave.
These variables include compute time, communication size,
number of threads, thread completion distribution, and number
of peers. Each combination of these parameters creates a profile
of a different hypothetical application.

Fine-grained implementations are another set of independent
variables that represent the decision-space within an application
on how to implement fine-grained communication. These
include the number of user partitions per transport partition
in each direction in a halo exchange and the communication
methodology (e.g., MPI message passing vs. MPI RMA). Each
combination of these parameters represents a different way
the middleware stack could accomplish the communication
requirements described by the application.

It is important to distinguish between the characteristics
that should be directly comparable and those that are not.
Benchmark results across different application profiles are likely
not directly comparable performance wise, in the same way the
performance of different applications are not. These are meant
to represent the requirements of different scientific computations.
Conversely, results across the fine-grained implementations
are directly comparable, as none of these factors represent the
underlying needs of the scientific application but rather the
implementation decisions being made as means to those ends.

The second design principle is to use a combination of
estimated and data-driven application profiles. A direct example
of this is thread arrival times. Previous work has relied on
assumptions about how threads behave, e.g., assuming OS
noise will delay a thread or assuming a normal distribution.
By measuring the thread behaviors of applications and creating
distributions based on empirical data, the CMB will be able to
better evaluate real-world impact of fine-grained communication
on application performance.

B. The CMB Architecture

Taking these principles as a basis, we designed and built
the CMB to emulate application profiles (compute time,
communication volume, number of peers, thread counts, and
thread arrival distributions) and evaluate different approaches
to fine-grained communication. The CMB was created to
allow users to empirically explore the factors described in
Section II-B. The CMB allows user to explore the impact of
fine-grained communication not just on individual applications
but across entire swaths of application classes.

The CMB draws upon concepts from two previous works.
The first is the RMA-MT version of the Sandia Microbenchmark
message rate benchmark [11], which emulates the network
behavior of applications by using the number of peers to create
a ring where each process communicates to a given number
of peers. Other adaptations include clearing the cache between
iterations and making communication calls from different
threads. The second is the original partitioned communication
paper [1] which introduced a bandwidth benchmark that
emulated computation and system noise by using sleep to
pause thread execution and extending the sleep time for an
impacted thread to represent system noise and load imbalance.
We leveraged these concepts in the CMB, which was designed
to emulate application behavior in depth including these factors.

The CMB takes as inputs the number of peers that each process
communicates with each iteration (stencil size), the amount
of data sent to each peer (buffer size), the number of threads
that contribute to each buffer (thread count), and a number of
parameters to define the times at which those threads complete
their contributions as described in III-D. To manage different
fine-grained implementations we built the benchmark using the
MiniMod framework [4], which allows for runtime changes
of fine-grain communication and communication interface.

C. Extensions to MiniMod

Fig. 2: Although an application may define user partitions of
any size (demonstrated by the green boxes), the communication
middleware may determine that it is instead optimal to aggregate
user partitions into bins and send transport partitions of a
coarser granularity (demonstrated by the black boxes).

Fine-grained communication operates at the level of individual
threads: when a thread completes a user partition (contributed
portion of a communicated buffer by single thread), that partition
can be sent immediately (see Section II). However, this level of
granularity may not be optimal. For instance, if we send each user
partition individually a small buffer with many contributors will
be sent as many even smaller messages, potentially incurring large
overheads. In situations like this, it may be advantageous to allow
communication middleware to make decisions regarding the size
and number of messages to send over the network. By aggregating
user partitions into a smaller number of larger transport partitions,



t0 tw

time

Fig. 3: Abstract illustration of the normal distribution completion
pattern. Completion times are sampled from the normal
distribution, where the mean is held fixed at tw while standard
deviation is varied.

it is possible to avoid overheads while still taking advantage of
opportunities afforded by fine-grained communication.

To capture this functionality, we extended MiniMod by adding
an aggregation module. The aggregation module allows the frame-
work to aggregate a number of multiple contiguous user partitions
into larger transport partitions. The module has some constraints.
When using MPI message passing, the size of each message needs
to be pre-determined (MPI_Isend must match a corresponding
MPI_Irecv), and also needs to avoid adding overhead through
an extra data copy. Without the use of an additional round trip
message to prepare the receiving process, both processes must
decide on a strategy in advance. Our implementation is a simple
aggregation strategy shown in Figure 2: The send buffer is split
into a number of contiguous bins and a bin is sent only after
all of the user partitions within it have completed. While more
advanced aggregation strategies may be required to resolve data
dependencies in actual applications, this approach allows us to
explore the performance impact of aggregation in the CMB.

D. Thread Arrival Times

The potential benefits of fine-grained communication are
largely determined by the times at which user partitions are
completed by threads. In order to allow the greatest control
over these times, the CMB emulates computation by suspending
the execution of threads for the duration of their emulated
computation. Depending on runtime configuration, each thread
independently determines their thread arrival time and then
sleeps for that long. The CMB can emulate the thread arrival
times of applications with an individual laggard thread (Figure 1),
applications where threads complete according to a normal
distribution (Figure 3), or by using kernel density estimation
(KDE) can model arbitrary applications based on measurements
of thread completion times obtained from real applications [7].

Kernel density estimation is a non-parametric method for
approximating the probability density function of a distribution
based on a collection of samples. Using this approximation we
can generate new samples that will closely match the distribution
of the input samples. This allows us to replicate the thread arrival
distribution of a target application and study its amenability to
fine-grained communication without needing to rewrite the entire
application to use fine-grained communication. We generated
thread arrival timings using kernel density estimates of the
data collected by Marts et. al. [7] for three mini-applications:
MiniFE [12], MiniMD [13], and MiniQMC [14], [15]. As shown
in Figure 4, real-world thread timings can be more-or-less
Gaussian, but also skewed or even multimodal.

E. CMB Execution

Every iteration, the CMB begins by generating for each
thread an arrival time (time the thread completes its work in
a parallel section) in nanoseconds as described in section III-D.
For example, if the CMB was configured to use KDE for
determining thread arrivals, it would generate a sample from
that KDE for each of its threads at the beginning of every
iteration. The CMB then begins the timed section, an OpenMP
parallel region. Each thread in this region begins by sleeping for
the amount amount of time determined earlier, and then calling
into MiniMod to communicate that thread’s user partitions.
Minimod will then communicate these partitions as described in
section III-C to a number of peers as described in section III-B.
The timed section ends after all threads have joined and thus
the communication has finished. Reported times are summation
of the times measured in each iteration.

15 20 25 30 35
Time (ms)

0

2500

5000

7500

Co
un

t

(a) miniFE

15 20 25 30 35 40
Time (ms)

0

10000

20000

Co
un

t

(b) miniMD

30 40 50 60 70 80 90
Time (ms)

0

200

400

Co
un

t

(c) miniQMC

Fig. 4: Histograms of the three application thread arrival
distributions used to generate our kernel density estimates. Each
histogram has a bin width of 10µs.



IV. RESULTS

In this section we detail the results of our case study
using the CMB to explore the impact of different fine-grained
implementations across a variety of application profiles.

A. Setup

1) Hardware and Software Stack: Data was collected on two
machines: Sandia National Laboratories’ Manzano and Mutrino
clusters. Manzano, a CTS-1 system, has two 2.9 GHz Intel
Cascade Lake CPUs and 192 GB of RAM per node. The machine
uses the RHEL7 operating system and runs on an Intel Omni-Path
network. Data collected on this system used OpenMPI 4.1.3 and
all executables were compiled with GCC version 10.2.1. Mutrino,
a Cray XC40 system that has the same hardware configuration
as NERSC’s Cori [16] and LANL’s Trinity [17] super computers,
has two 2.3 GHz Intel Haswell CPUs and 128 GB of RAM
per node. The machine uses the SLES11 operating system and
runs on a Cray Aries Dragonfly network. Data collected on this
system was run on the vendor-provided Cray software stack with
Cray clang version 11.0.2 and Cray MPICH version 7.7.16.

2) Experiments: Data was generated via the use of the CMB,
running across a variety of systems, application profiles, and
fine-grained implementations as described in Section II. Runs on
all systems used 32 nodes with one process per node. Each data
point is the mean of five trials. Each trial is a run-time summing
the time spent in its 200 application iterations. The cache is
cleared before each iteration. Percent speedup is the percent
difference in run-time between a fine-grained implementation and
an equivalent run with MPI message passing and a BSP execution
model. This is calculated as ((BSP −FINE)/(BSP )) ∗ 100.

Our fine-grained implementations vary in communication
interface and granularity of communication. For communication
interface we tested MPI RMA and MPI message passing.
For communication granularity we tested BSP, sending user
partitions individually, and simple aggregation. On Manzano
we used 32 threads and transport partition counts between 2
and 16 by powers of two. On Mutrino we used 16 threads and
transport partition counts between 2 and 8 by powers of two.

Our application profiles vary in buffer size, computation time,
thread arrival distribution, and stencil size. We varied buffer
size (the size of of the communicated buffer between each
communicating process pair) from 256 bytes to 4 mebibytes
by every other power of two. We kept computation time fixed
at 222 nanoseconds (approximately 67.1 ms) for application
profiles that do not use a kernel density estimate. This is the
time in nanoseconds that each non-laggard thread sleeps per
iteration for our laggard thread results and the mean value for
our normal distribution (See tw in Fig. 1 and Fig. 3). We used
the values 1%, 4%, and 10% as the noise parameter for our
laggard thread distribution (the percentage by which the laggard
thread is slower than the rest). These numbers were selected to
match Grant et al.’s previous work [1]. For our normal results
we used standard deviations of 200ns, 2000ns, and 20000ns.
We used thread timings sampled from KDE’s based on the
timing data from MiniFE, MiniMD, and MiniQMC. We ran
each configuration with both a seven point and 27 point stencil.

Due to the number of tunable parameters exposed by the CMB
we limit our search space. This case study was chosen as a rea-
sonable balance of breadth of exploration, sample resolution, and
verisimilitude of application behavior. Not every data point will
necessarily correspond to a reasonable application profile and fine-
grained implementation combination. But by including such cor-
ner cases, the CMB reveals broader trends in application behavior.

B. Laggard Thread Arrival

Fig. 5 presents results for application profiles with a laggard
thread arrival distribution, i.e., when one thread is delayed for
some percentage (1%, 4%, or 10%) of work time. On Mutrino,
the CMB does not show performance benefits from fine-grained
implementations when using MPI message passing as a com-
munication interface. With a seven-point stencil, iteration times
were within 0.310% of BSP MPI message passing for buffer
sizes below 1MiB. For buffers 1MiB and larger they were slower
by between 1.105% and 7.428%. The corresponding application
profile with a 27-point stencil resulted in iteration times that
were slower than BSP MPI message passing by between 0.018%
and 1.606% for buffer sizes below 1MiB and between 1.227%
and 16.579% slower for buffers 1MiB and larger. The only appli-
cation profiles where itteration times were lower than BSP MPI
message passing was for 16KiB buffers. We observed this dif-
ference for all laggard noise parameters. No difference exceeded
0.061% for a 7-point stencil or 0.074% for a 27-point stencil.

Using MPI RMA for the same application profile resulted
in performance gains on Mutrino, but only for large buffer sizes.
Application profiles with a 7-point stencil performed within
0.566% of BSP MPI message passing for buffer sizes below
256KiB. Application profiles with buffers of size 256KiB and
larger saw performance benefits between 0.096% and 7.395%.
Application profiles with a 27-point stencil performed within
1.817% of BSP MPI message passing for buffer sizes below
256KiB. Application profiles with buffers of size 256KiB and
larger saw performance benefits between 1.465% and 8.955%.

On Manzano the CMB shows consistent opportunity for benefit
from fine-grained communication for application profiles with a
laggard thread arrival distribution. When using fine-grained imple-
mentations with MPI message passing there was no combination
of buffer size, stencil size, and thread delay where there was
not performance improvement when using 2 transport partitions.
For application profiles with a 7-point stencil iteration times
were faster by 0.412% to 10.453% for transport partition counts
between 2 and 16 with our maximal speedups seen between 2 and
8 transport partitions. For runs with 32 transport partitions and
buffer sizes below 1MiB iteration times were slower by 0.245%
to 24.195% and for buffers 1MiB and larger iterations were faster
by 3.579% to 9.187%. Although the speedups are less consistent
for a many-then-one laggard thread arrival distribution with a 27-
point stencil, the application profiles with two transport partitions
were able to see some benefit. There were two application profiles
that were not able to achieve a speed up for any transport partition
count, but both had relative slowdowns below 0.001%. Otherwise,
iteration times for 27-point stencils were faster by 0.271% to
12.560% when using 2 transport partitions. The fastest iteration
times were always observed when using two transport partitions,
and the slowest iteration times when using 16 or 32 transport



256B 1KiB 4KiB
16KiB

64KiB
256KiB 1MiB 4MiB

Buffer Size

−20

−10

0

10

20

Pe
rc

en
t S

pe
ed

up
P2P(1)
P2P(2)
P2P(4)

P2P(8)
P2P(16)
P2P(32)

RMA(1)
RMA(2)
RMA(4)

RMA(8)
RMA(16)
RMA(32)

(a) Manzano: 7-Point Stencil

256B 1KiB 4KiB
16KiB

64KiB
256KiB 1MiB 4MiB

Buffer Size

−150

−100

−50

0

50

Pe
rc

en
t S

pe
ed

up

P2P(1)
P2P(2)
P2P(4)

P2P(8)
P2P(16)
P2P(32)

RMA(1)
RMA(2)
RMA(4)

RMA(8)
RMA(16)
RMA(32)

(b) Manzano: 27-Point Stencil

256B 1KiB 4KiB
16KiB

64KiB
256KiB 1MiB 4MiB

Buffer Size

−6

−4

−2

0

2

Pe
rc

en
t S

pe
ed

up

P2P(1)
P2P(2)

P2P(4)
P2P(8)

P2P(16)
RMA(1)

RMA(2)
RMA(4)

RMA(8)
RMA(16)

(c) Mutrino: 7-Point Stencil

256B 1KiB 4KiB
16KiB

64KiB
256KiB 1MiB 4MiB

Buffer Size

−15

−10

−5

0

5

Pe
rc

en
t S

pe
ed

up

P2P(1)
P2P(2)

P2P(4)
P2P(8)

P2P(16)
RMA(1)

RMA(2)
RMA(4)

RMA(8)
RMA(16)

(d) Mutrino: 27-Point Stencil

Fig. 5: Percent speedup for fine-grained communication relative to BSP MPI message passing for application profiles with laggard
thread arrival distributions. Each line corresponds to a fine-grained implementation. ”P2P” refers to two-sided message matching.
”RMA” refers to one-sided MPI RMA. Numbers in parentheses are the number of transport partitions. Results shown use a
4% laggard delay parameter.

partitions. For buffer sizes below 1MiB there was a maximum
slowdown of 8.887% to a maximum speedup of 6.674% using 4
or 8 transport partitions, and maximum slowdown of 187.155%
to a maximum speedup of 5.484% for 16 or 32 transport parti-
tions. For buffers 1MiB and larger there was a minimum speedup
of 9.267% to a maximum speedup of 12.569% using 4 or 8
transport partitions, and a maximum slowdown of 19.315% to a
maximum speedup of 10.901% for 16 or 32 transport partitions.

Using MPI RMA for application profiles with laggard threads
arrivals on Manzano proved similar to Mutrino. The key differ-
ence was that Manzano saw much greater reduction in iteration
times. Application profiles with 7-point stencil performed within
0.225% of BSP MPI message passing for buffer sizes below
256KiB. Application profiles with buffers of size 256KiB and
larger saw performance benefits between 0.969% and 19.770%.
Application profiles with a 27-point stencil performed within
0.3507% of BSP MPI message passing for buffer sizes below
64KiB. Application profiles with buffers of size 64KiB and
larger saw performance benefits between 1.713% and 52.972%.

C. Normal Thread Arrival

Fig. 6 presents case study results for application profiles
with a normal thread arrival distribution. On Mutrino these
application profiles saw lower relative iteration times than
analogous application profiles with laggard thread arrivals
for fine-grained implementations using MPI message passing.

A seven point stencil resulted in iteration times that were
slower than BSP MPI message passing by between 0.032% and
0.825% for buffer sizes below 1MiB and between 1.178% and
7.391% slower for buffers 1MiB and larger. Application profiles
with a 27-point stencil resulted in iteration times that were
slower than BSP MPI message passing by between 0.200%
and 3.473% for buffer sizes below 1MiB and between 5.665%
and 22.112% slower for buffers 1MiB and larger.

When using MPI RMA for the same application profiles we
also saw no performance gain from fine-grained communication.
The relative performance difference varied little across tested
application profiles. Application profiles with a 7-point stencil
saw slowdowns of between 0.416% and 1.843%. Application
profiles with a 27-point stencil saw slowdowns of between
1.445% and 4.775% for buffers sizes 1MiB and below.
Application profiles with buffers of size 4MiB varied between
a slowdown of 3.618% and a speedup of 2.855%

When using MPI message passing for normally-distributed
thread arrival times on Manzano results were very similar to the
laggard results. Iteration times for 7-point stencils were faster by
0.271% to 10.397% for transport partition counts between 2 and
16 with our maximal speedups seen between 2 and 8 transport
partitions. For runs with 32 transport partitions and buffer
sizes below 1MiB iteration times were slower by 0.367% to
25.085% and for buffers 1MiB and larger iterations were faster
by 3.174% to 9.332%. There were three application profiles



256B 1KiB 4KiB
16KiB

64KiB
256KiB 1MiB 4MiB

Buffer Size

−20

−10

0

10

20

Pe
rc

en
t S

pe
ed

up
P2P(1)
P2P(2)
P2P(4)

P2P(8)
P2P(16)
P2P(32)

RMA(1)
RMA(2)
RMA(4)

RMA(8)
RMA(16)
RMA(32)

(a) Manzano: 7-Point Stencil

256B 1KiB 4KiB
16KiB

64KiB
256KiB 1MiB 4MiB

Buffer Size

−150

−100

−50

0

50

Pe
rc

en
t S

pe
ed

up

P2P(1)
P2P(2)
P2P(4)

P2P(8)
P2P(16)
P2P(32)

RMA(1)
RMA(2)
RMA(4)

RMA(8)
RMA(16)
RMA(32)

(b) Manzano: 27-Point Stencil

256B 1KiB 4KiB
16KiB

64KiB
256KiB 1MiB 4MiB

Buffer Size

−6

−4

−2

0

Pe
rc

en
t S

pe
ed

up

P2P(1)
P2P(2)

P2P(4)
P2P(8)

P2P(16)
RMA(1)

RMA(2)
RMA(4)

RMA(8)
RMA(16)

(c) Mutrino: 7-Point Stencil

256B 1KiB 4KiB
16KiB

64KiB
256KiB 1MiB 4MiB

Buffer Size

−20

−15

−10

−5

0

Pe
rc

en
t S

pe
ed

up

P2P(1)
P2P(2)

P2P(4)
P2P(8)

P2P(16)
RMA(1)

RMA(2)
RMA(4)

RMA(8)
RMA(16)

(d) Mutrino: 27-Point Stencil

Fig. 6: Percent speedup for fine-grained communication relative to BSP MPI message passing for application profiles with normal
thread arrival distributions. Each line corresponds to a fine-grained implementation. ”P2P” refers to two-sided message matching.
”RMA” refers to one-sided MPI RMA. Numbers in parentheses are the number of transport partitions. Results shown use a
2µs standard deviation.

with normally distributed thread arrivals and 27-point stencils
that were not able to achieve a speed up for any transport
partition count, but all three had relative slowdowns below
0.001%. Otherwise, iteration times for 27-point stencils were
faster by 0.021% to 12.552% when using 2 transport partitions.
For buffer sizes below 1MiB there was a maximum slowdown
of 8.780% to a maximum speedup of 6.615% using 4 or 8
transport partitions, and maximum slowdown of 186.212% to a
maximum speedup of 5.498% for 16 or 32 transport partitions.
For buffers 1MiB and larger there was a minimum speedup
of 9.226% to a maximum speedup of 12.556% using 4 or 8
transport partitions, and a maximum slowdown of 3.296% to a
maximum speedup of 10.744% for 16 or 32 transport partitions.

Using fine-grained implementations MPI RMA for application
profiles with normally distributed thread arrival times on
Manzano resulted in relative iteration time differences very
similar to those seen with laggard on the same system.
Application profiles with 7-point stencils using MPI RMA in
their fine-grained implementations performed within 0.223%
of BSP MPI message passing for buffer sizes below 256KiB.
Application profiles with buffers of size 256KiB and larger
saw performance benefits between 0.925% and 19.719%.
Application profiles with a 27-point stencil performed within
0.33% of BSP MPI message passing for buffer sizes below
64KiB. Application profiles with buffers of size 64KiB and

larger saw performance benefits between 1.730% and 52.760%.

D. Kernel Density Estimate

Fig. 7 presents case study results for application profiles
with thread arrival distributions generated using kernel density
estimates. These application profiles were all timed on Manzano,
the same system where the thread timing data for our KDEs was
collected. Like other application profiles tested on Manzano, the
CMB shows consistent opportunity for benefit from fine-grained
communication provided we do not split our buffers into too
many messages. The CMB shows that when using MPI message
passing with between 2 and 16 messages per buffer there was a
relative performance difference of between 0.160% to 0.991%
for application profiles with a 7-point stencil and buffer sizes of
64KiB and below and a speed up of between 1.008% to 12.794%
for application profiles with a 7-point stencil and buffer sizes of
256KiB and above. When using 32 messages, the CMB showed
that for the same 7-point stencil application profiles there was a
relative iteration time difference of between −4.160% to 0.169%
for application profiles with buffer sizes of 64KiB and below,
a slowdown of between 27.370% to 38.225% for application
profiles with a buffer size of 256KiB, and a speedup of between
3.478% to 11.347% for application profiles with buffer sizes
of 1MiB and above. When using MPI RMA based fine-grained
implementations for application profiles with a 7-point stencil



256B 1KiB 4KiB
16KiB

64KiB
256KiB 1MiB 4MiB

Buffer Size

−20

0

20

Pe
rc

en
t S

pe
ed

up
P2P(1)
P2P(2)
P2P(4)

P2P(8)
P2P(16)
P2P(32)

RMA(1)
RMA(2)
RMA(4)

RMA(8)
RMA(16)
RMA(32)

(a) miniFE: 7-Point Stencil

256B 1KiB 4KiB
16KiB

64KiB
256KiB 1MiB 4MiB

Buffer Size

−200

−100

0

Pe
rc

en
t S

pe
ed

up

P2P(1)
P2P(2)
P2P(4)

P2P(8)
P2P(16)
P2P(32)

RMA(1)
RMA(2)
RMA(4)

RMA(8)
RMA(16)
RMA(32)

(b) miniFE: 27-Point Stencil

256B 1KiB 4KiB
16KiB

64KiB
256KiB 1MiB 4MiB

Buffer Size

−40

−20

0

20

Pe
rc

en
t S

pe
ed

up

P2P(1)
P2P(2)
P2P(4)

P2P(8)
P2P(16)
P2P(32)

RMA(1)
RMA(2)
RMA(4)

RMA(8)
RMA(16)
RMA(32)

(c) miniMD: 7-Point Stencil

256B 1KiB 4KiB
16KiB

64KiB
256KiB 1MiB 4MiB

Buffer Size

−300

−200

−100

0

Pe
rc

en
t S

pe
ed

up

P2P(1)
P2P(2)
P2P(4)

P2P(8)
P2P(16)
P2P(32)

RMA(1)
RMA(2)
RMA(4)

RMA(8)
RMA(16)
RMA(32)

(d) miniMD: 27-Point Stencil

256B 1KiB 4KiB
16KiB

64KiB
256KiB 1MiB 4MiB

Buffer Size

−20

−10

0

10

20

Pe
rc

en
t S

pe
ed

up

P2P(1)
P2P(2)
P2P(4)

P2P(8)
P2P(16)
P2P(32)

RMA(1)
RMA(2)
RMA(4)

RMA(8)
RMA(16)
RMA(32)

(e) miniQMC: 7-Point Stencil

256B 1KiB 4KiB
16KiB

64KiB
256KiB 1MiB 4MiB

Buffer Size

−200

−150

−100

−50

0

50

Pe
rc

en
t S

pe
ed

up

P2P(1)
P2P(2)
P2P(4)

P2P(8)
P2P(16)
P2P(32)

RMA(1)
RMA(2)
RMA(4)

RMA(8)
RMA(16)
RMA(32)

(f) miniQMC: 27-Point Stencil

Fig. 7: Percent speedup for fine-grained communication relative to BSP MPI message passing for application profiles with thread
arrival distributions generated with a KDE. Each line corresponds to a fine-grained implementation. ”P2P” refers to two-sided
message matching. ”RMA” refers to one-sided MPI RMA. Numbers in parentheses are the number of transport partitions. Thread
arrival times randomly generated from corresponding kernel density estimate

iteration times remained within −0.479% to 0.247% of BSP
MPI message passing for application profiles with buffer sizes of
64KiB and below and a speed up of between 0.741% to 24.911%
for application profiles with buffer sizes of 256KiB and above.

For application profiles with 27-point stencils the CMB shows
similar trends to other 27-point application configurations on
Manzano. When using MPI message passing with between 2 and
8 messages per buffer iteration times remained within −0.724%
to 0.782% of BSP MPI message passing for application profiles
with buffer sizes of 16KiB and below, within −11.683% to

2.695% of BSP MPI message passing for application profiles
with a buffer size of 64KiB, and a speed up of between 6.897%
to 15.281% for application profiles with buffer sizes of 256KiB
and above. When using between 16 to 32 messages with the
same application profiles there were slowdowns of between
0.129% to 289.552% for application profiles with buffer sizes
of 256KiB and below and within −13.4047% to 12.987%
of BSP MPI message passing for application profiles with a
buffer size of 1MiB and above. When using MPI RMA for
application profiles with a 27-point stencil iteration times



remained within −0.479% to 0.471% of BSP MPI message
passing for application profiles with buffer sizes of 64KiB
and below and a speed up of between 1.604% to 59.509% for
application profiles with buffer sizes of 256KiB and above.

V. DISCUSSION

The results reported by the CMB and described above above
suggest several broad conclusions and heuristics regarding the
use of fine-grained communication:

1) Necessity of Empirical Analysis: Our evaluation demon-
strates that the same application profile (combination of thread
arrival distribution, communication stencil, and volume communi-
cated between peer processes) using the same fine-grained imple-
mentation (combination of communication interface and number
of transport partitions) can exhibit different behaviors depending
on the system used. For example, some techniques that prove con-
sistently beneficial on Manzano result in slowdowns on Mutrino.
The factors that govern performance are complex and hard to
disentangle when their impacts are so interdependent. Given this,
a tool like the CMB can be invaluable in making design decisions.

2) Avoiding Pitfalls: Figures 5, 6, and 7 show the potential
hazard of poor fine-grained implementations. Although benefits
are possible, these results show that some configurations
perform radically worse than bulk-synchronous two-sided
message passing. Conveniently, these configurations are easy
to avoid. We see that the for both systems the worst performing
configurations are those with a large number of transport
partitions coupled with two-sided MPI message passing.
Although this configuration may start communication earlier,
the message and matching overheads are considerable.

3) Safe Configurations: There are generally safe
configurations when performing fine-grained communication.
MPI two-sided message passing using a small number of
messages between pairs (two or four transport partitions) do
not exhibit the performance pitfalls of large message counts
while still benefiting from the overlap of communication and
computation. For Manzano it was consistently beneficial to
aggregate and send two messages, with speedups as high
as 12.79%. On Mutrino, the same configurations generally
had slowdowns of less than 1%. This is especially true for
application profiles that communicate buffers smaller that 1
MiB. Although Manzano has its largest speedups for application
profiles that send these especially large buffers, Mutrino has
its largest slowdowns. Existing modeling work predicts that
our Mutrino results are atypical [18], [19], but it does limit our
recommendation for applications sending buffers of this size.

4) One-Sided Configurations: Configurations that used MPI
RMA as the communication interface proved to be very prudent.
For buffers smaller than 1 MiB they did not see the same consis-
tent benefits on Manzano that were observed using MPI two-sided
message passing. Instead they generally performed within 1% of
baseline with a worst case slowdown of less than 4.775%. What
they lose in best case performance for small messages they make
up for by avoiding the sensitivity to message aggregation and
in their speed ups for large buffers. One-sided communication
determines a consistent target buffer at window creation and
performs explicit epoch synchronization, dramatically reducing
the per-send overhead of communication. The biggest benefits

to configurations with MPI RMA are found for large messages.
When communicating buffers that are 1 MiB or larger, RMA
dramatically outperforms MPI two-sided message passing regard-
less of transport partition count. These are remarkable speedups
with reductions in iteration time as high as 52.972% compared to
baseline. Although there are additional complexities and restraints
to using MPI RMA, results derived from the CMB suggest it
is a very promising interface for threaded communication.

VI. RELATED WORK

Determining the right granularity for concurrent computations
is a challenging task. Nonetheless it is required for future genera-
tion codes more than any previous generation due to the migration
to accelerators and multi-threaded environments. Previous surveys
have shown that [20] there is great desire to explore different
concurrency methods but that most applications have not yet
moved to new methods. Part of this reluctance is the difficult in
determining how fine-grained a concurrency method must be and
how to communicate and partition work. Using non-mainstream
mechanisms is a significant amount of work, as evidenced by
past efforts not aided by methods like MiniMod [21]. MiniMod
first provided the ability to examine different communication
middleware solutions [4], helping application code teams decide
which middleware to use, but it did not resolve the problem of
the granularity of concurrency question. This work provides the
solution for studying the answer to this question for code teams.

Proxy applications have been well studied, built and used in the
past. Major proxy application suites like Mantevo [22] have of-
fered several versions of their proxy applications that allow com-
parisons between different middleware types and threading mod-
els. Other single proxy applications like LULESH [23] have many
modified versions as well. Unfortunately, for each communication
subsystem (e.g., MPI, OpenSHMEM, RDMA), granularity (single
thread per process, multiple threads, message granularity, etc),
and threading library a separate proxy app needs to be written.

Frameworks for performance portability between hardware
architecture have been developed and are in use such as
Kokkos [24] and RAJA [25]. These approaches solve some
difficulties in having to recreate miniapps for new system
architectures, but of course are not easy to compare portability
layers to using underlying hardware specific approaches. In
contrast, the MiniMod modular miniapp approach allows for a
single code modification point that can be used to compare many
different communication subsystems and parallelism granularity.

There have been many prior works evaluating communication
middleware and comparing approaches. MPI has been extensively
studied in traditional modes [26], [27] as well as one-sided [10],
[11]. MPI multi-threading is currently a hot topic and has been
extensively explored recently [28]–[33]. Many MPI comparisons
are limited to studying MPI libraries themselves by necessity
due to comparisons of new features or proposed features [1],
[34]–[37]. However, such new approaches would be desirable
to compare broadly across many different communication
subsystems which this work enables and makes significantly less
burdensome. It also solves questions relating to solutions that
have variable granularity built into them, like MPI Partitioned
communication where granularity of communications can be
easily built into the overall communication profile [1], [38].



Previous works have focused on highly concurrent
communication in MPI [39]–[41], but these works form the
basis of the mechanisms that the CMB uses to assess the best
performance mode for an application. Using prior works on
highly concurrent MPI may be a method of determining if finer
granularity is a good performance option for an application.

VII. CONCLUSION

In this paper we have presented motivation, design, and
implementation of a Configurable Messaging Benchmark, the
CMB. This benchmark allows for exploration of potential
application performance impact of different fine-grained
communication to a degree that has not been explored in
prior work. To showcase this we presented a case study of the
potential impact of different fine-grained implementations on
different application profiles and two different HPC systems.
The case study revealed the factors that effect the applicability
of a particular fine-grained communication implementation vary
depending on system. We provide high-level heuristic take-aways
on when and how to best use partition communication. These
results highlight the need for tools like the CMB to better
understand fine-grained communication dynamics and guide
the continued path of application and middleware codesign.

REFERENCES

[1] R. E. Grant, M. G. Dosanjh, M. J. Levenhagen, R. Brightwell, and
A. Skjellum, “Finepoints: Partitioned multithreaded MPI communication,”
in International Conference on High Performance Computing. Springer,
2019, pp. 330–350.

[2] Y. Hassan Temucin, R. E. Grant, and A. Afsahi, “Micro-benchmarking
mpi partitioned point-to-point communication,” in Proceedings of the 51st
International Conference on Parallel Processing, ser. ICPP ’22. New
York, NY, USA: Association for Computing Machinery, 2023. [Online].
Available: https://doi.org/10.1145/3545008.3545088

[3] Message Passing Interface Forum, “MPI: A Message-Passing
Interface Standard Version 4.0,” 2021. [Online]. Available:
https://www.mpi-forum.org/docs/

[4] W. P. Marts, M. G. Dosanjh, S. Levy, W. Schonbein, R. E. Grant, and
P. G. Bridges, “Minimod: A modular miniapplication benchmarking
framework for hpc,” in 2021 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, 2021, pp. 12–22.

[5] O. H. Mondragon, P. G. Bridges, S. Levy, K. B. Ferreira, and P. Widener,
“Understanding performance interference in next-generation HPC
systems,” in SC’16: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE, 2016,
pp. 384–395.

[6] K. B. Ferreira, P. Bridges, and R. Brightwell, “Characterizing application
sensitivity to OS interference using kernel-level noise injection,” in High
Performance Computing, Networking, Storage and Analysis, 2008. SC
2008. International Conference for. IEEE, 2008, pp. 1–12.

[7] W. P. Marts, M. G. F. Dosanjh, W. Schonbein, S. Levy, and P. G.
Bridges, “Measuring thread timing to assess the feasibility of early-bird
message delivery,” in Proceedings of the 52nd International Conference
on Parallel Processing Workshops, ser. ICPP Workshops ’23. New
York, NY, USA: Association for Computing Machinery, 2023, p. 119–126.
[Online]. Available: https://doi.org/10.1145/3605731.3605884

[8] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman, “LogGP:
Incorporating long messages into the LogP model—one step closer towards
a realistic model for parallel computation,” in Proceedings of the Seventh An-
nual ACM Symposium on Parallel Algorithms and Architectures, ser. SPAA
’95. New York, NY, USA: Association for Computing Machinery, 1995,
p. 95–105. [Online]. Available: https://doi.org/10.1145/215399.215427

[9] Y. H. Temuçin, S. Levy, W. Schonbein, R. E. Grant, and A. Afsahi,
“A dynamic network-native mpi partitioned aggregation over infiniband
verbs,” in 2023 IEEE International Conference on Cluster Computing
(CLUSTER), 2023, pp. 259–270.

[10] N. Hjelm, M. G. F. Dosanjh, R. E. Grant, T. Groves, P. Bridges, and
D. Arnold, “Improving MPI multi-threaded RMA communication perfor-
mance,” in Proc. of the Int. Conf. on Parallel Processing, 2018, pp. 1–10.

[11] M. G. F. Dosanjh, T. Groves, R. E. Grant, R. Brightwell, and P. G.
Bridges, “RMA-MT: a benchmark suite for assessing MPI multi-threaded
RMA performance,” in 16th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid). IEEE, 2016, pp. 550–559.

[12] Mantevo, “Minife finite element mini-application,”
https://github.com/Mantevo/miniFE, accessed: 15-May-2023.

[13] ——, “Minimd molecular dynamics mini-application,”
https://github.com/Mantevo/miniMD, accessed: 12-May-2020.

[14] U. of Illinois/NCSA, “miniqmc - qmcpack miniapp,”
https://github.com/QMCPACK/miniqmc, accessed: 15-May-2023.

[15] A. Mathuriya, Y. Luo, A. Benali, L. Shulenburger, and J. Kim,
“Optimization and parallelization of b-spline based orbital evaluations
in qmc on multi/many-core shared memory processors,” in 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2017, pp. 213–223.

[16] National Energy Research Scientific Computing Center, “Cori,”
https://docs.nersc.gov/systems/cori/, retrieved 19 May 2022.

[17] Los Alamos National Laboratory, “Trinity,”
https://www.lanl.gov/projects/trinity/, retrieved 12 April 2019.

[18] W. Schonbein, S. Levy, M. G. F. Dosanjh, W. P. Marts, E. Reid, and R. E.
Grant, “Modeling and benchmarking the potential benefit of early-bird
transmission in fine-grained communication.” New York, NY, USA:
Association for Computing Machinery, 2023.

[19] T. Gillis, K. Raffenetti, H. Zhou, Y. Guo, and R. Thakur, “Quantifying the
performance benefits of partitioned communication in mpi,” in Proceedings
of the 52nd International Conference on Parallel Processing, ser. ICPP
’23. New York, NY, USA: Association for Computing Machinery, 2023,
p. 285–294. [Online]. Available: https://doi.org/10.1145/3605573.3605599

[20] D. E. Bernholdt, S. Boehm, G. Bosilca, M. Venkata, R. E. Grant,
T. Naughton, H. Pritchard, and G. Vallee, “A survey of MPI usage in
the U.S. Exascale Computing Project,” Concurrency and Computation:
Practice and Experience, 2018, dOI: 10.1002/cpe.4851.

[21] P. Mendygral, N. Radcliffe, K. Kandalla, D. Porter, B. J. O’Neill,
C. Nolting, P. Edmon, J. M. Donnert, and T. W. Jones, “WOMBAT: A
scalable and high-performance astrophysical magnetohydrodynamics code,”
The Astrophysical Journal Supplement Series, vol. 228, no. 2, p. 23, 2017.

[22] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and
R. W. Numrich, “Improving Performance via Mini-applications,” Sandia
National Laboratories, Tech. Rep. SAND2009-5574, 2009.

[23] I. Karlin, J. Keasler, and J. Neely, “Lulesh 2.0 updates and changes,”
Lawrence Livermore National Lab.(LLNL), Livermore, CA (United
States), Tech. Rep., 2013.

[24] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling
manycore performance portability through polymorphic memory access
patterns,” Journal of Parallel and Distributed Computing, vol. 74, no. 12,
pp. 3202–3216, 2014.

[25] R. D. Hornung and J. A. Keasler, “The RAJA portability layer: overview
and status,” Lawrence Livermore National Lab.(LLNL), Livermore, CA
(United States), Tech. Rep., 2014.

[26] W. Gropp and E. Lusk, “Reproducible measurements of MPI performance
characteristics,” in European Parallel Virtual Machine/Message Passing
Interface Users’ Group Meeting. Springer, 1999, pp. 11–18.

[27] J. Liu, J. Wu, and D. K. Panda, “High performance RDMA-based
MPI implementation over infiniband,” International Journal of Parallel
Programming, vol. 32, no. 3, pp. 167–198, 2004.

[28] M. Flajslik, J. Dinan, and K. D. Underwood, “Mitigating MPI message
matching misery,” in International Conference on High Performance
Computing. Springer, 2016, pp. 281–299.

[29] K. B. Ferreira, S. Levy, K. Pedretti, and R. E. Grant, “Characterizing
MPI matching via trace-based simulation,” in Proceedings of the 24th
European MPI Users’ Group Meeting, ser. EuroMPI ’17. New York,
NY, USA: ACM, 2017, pp. 8:1–8:11.

[30] S. Levy, K. B. Ferreira, W. Schonbein, R. E. Grant, and M. G. Dosanjh,
“Using simulation to examine the effect of MPI message matching costs on
application performance,” Parallel Computing, vol. 84, pp. 63–74, 2019.

[31] W. Schonbein, M. G. Dosanjh, R. E. Grant, and P. G. Bridges, “Measuring
multithreaded message matching misery,” in European Conference on
Parallel Processing. Springer, 2018, pp. 480–491.

[32] S. M. Ghazimirsaeed, R. E. Grant, and A. Afsahi, “A dynamic, unified
design for dedicated message matching engines for collective and point-
to-point communications,” Parallel Computing, vol. 89, p. 102547, 2019.

[33] W. P. Marts, M. G. Dosanjh, W. Schonbein, R. E. Grant, and P. G. Bridges,
“MPI tag matching performance on ConnectX and ARM,” in Proceedings
of the 26th European MPI Users’ Group Meeting, 2019, pp. 1–10.

[34] R. Grant, A. Skjellum, and P. V. Bangalore, “Lightweight threading with
MPI using persistent communications semantics,” Sandia National Lab-
oratories (SNL-NM), Albuquerque, NM (United States), Tech. Rep., 2015.



[35] D. Holmes, K. Mohror, R. E. Grant, A. Skjellum, M. Schulz, W. Bland,
and J. M. Squyres, “MPI sessions: Leveraging runtime infrastructure to
increase scalability of applications at exascale,” in Proceedings of the
23rd European MPI Users’ Group Meeting, 2016, pp. 121–129.

[36] J. Dinan, R. E. Grant, P. Balaji, D. Goodell, D. Miller, M. Snir, and
R. Thakur, “Enabling communication concurrency through flexible MPI
endpoints,” The International Journal of High Performance Computing
Applications, vol. 28, no. 4, pp. 390–405, 2014.

[37] R. Zambre, A. Chandramowlishwaran, and P. Balaji, “How i learned to
stop worrying about user-visible endpoints and love MPI,” arXiv preprint
arXiv:2005.00263, 2020.

[38] M. G. Dosanjh, A. Worley, D. Schafer, P. Soundararajan, S. Ghafoor,
A. Skjellum, P. V. Bangalore, and R. E. Grant, “Implementation and

evaluation of mpi 4.0 partitioned communication libraries,” Parallel
Computing, vol. 108, p. 102827, 2021.

[39] H. Kamal and A. Wagner, “FG-MPI: Fine-grain MPI for multicore and
clusters,” in 2010 IEEE International Symposium on Parallel & Distributed
Processing, Workshops and Phd Forum (IPDPSW). IEEE, 2010, pp. 1–8.

[40] D. T. Stark, R. F. Barrett, R. E. Grant, S. L. Olivier, K. T. Pedretti, and
C. T. Vaughan, “Early experiences co-scheduling work and communication
tasks for hybrid MPI+X applications,” in Workshop on Exascale MPI.
IEEE Press, 2014, pp. 9–19.

[41] R. F. Barrett, D. T. Stark, C. T. Vaughan, R. E. Grant, S. L. Olivier, and
K. T. Pedretti, “Toward an evolutionary task parallel integrated MPI+X
programming model,” in 6th Intl. Workshop on Programming Models
and Applications for Multicores and Manycores. ACM, 2015, pp. 30–39.


