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Abstract—This paper introduces a method for detecting
stealthy false data injection attacks on the sensors of state
of charge estimation algorithms used in battery management
systems (BMSs). This method is based on sensor encoding, which
is the active modification of sensor data streams. This method
implements low-cost verification of the integrity of measurement
data, allowing for the detection of stealthy additive attack vectors.
It is considered that these attacks are crafted by malicious
actors with knowledge of system models and who are capable
of tampering with any number of measurements. The solution
involves encoding all vulnerable measurements. The effectiveness
of the method is demonstrated by simulations, where a stealthy
attack on an encoded measurement vector captured by a BMS
generates large residuals that trigger a chi-squared anomaly
detector. Within the context of a defense-in-depth strategy, this
method can be combined with other cybersecurity controls, such
as encryption of data-in-transit, to equip cyberphysical systems
with an additional line of defense against cyberattacks.

Index Terms—bad data detection, cyberphysical security, false
data injection attack, sensor encoding, state of charge estimation.

I. INTRODUCTION

The modernization of the electric power grid has driven
the adoption of devices equipped with advanced data pro-
cessing and communications capabilities. For instance, battery
energy storage systems (BESS) are composed of several pro-
grammable electronic devices that control and protect battery
cells [1]. This combination of information technology and
industrial control systems (ICSs) that composes the smart
grid requires establishing a strong cybersecurity posture. This
need has been acknowledged by North America’s power sys-
tem regulators, who have developed mandatory cybersecurity
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standards for bulk power systems [2]. Recent cyberattacks
targeting power grids [3] and other critical infrastructure are
reminders of the importance of cyberphysical security.

Among the power grid applications identified as vulnerable
to cyberattacks are power system state estimators (PSSEs)
employed for grid monitoring [4]. It has been conjectured that
attacks on the data integrity of power grid sensors can severely
impair the situational awareness of power system operators.
One class of such attacks, named false data injection attacks
(FDIAs), has been extensively investigated in the technical
literature on cyberphysical security of ICSs. FDIAs involve
the active tampering of data streams, including control signals
and measurements. Further, if these data modifications cannot
be detected by traditional bad data detection (BDD) methods,
the FDIA is classified as stealthy.

Since [5] introduced stealthy FDIA for static PSSE, ex-
tensions to nonlinear models [6] dynamic linear systems
[7], and dynamic PSSE [8] have been proposed. Proposed
strategies to detect such attacks include model-based advanced
detectors [9], data-driven machine learning approaches [10],
and moving-target defense techniques [11].

More recently, measurement encoding approaches have been
proposed to detect FDIAs in ICS. Their goal is to impair the
capacity of the threat actor to create a stealthy attack sequence
by preemptively modifying the values of sensor readings. The
work [12] introduced a sensor encoding strategy to maximize
the residuals of a previously the proposed stealthy attack
sequence [7]. A sensor encoding technique for detection of
stealthy FDIA in static PSSE was also presented in [13].

Beyond PSSEs, state of charge (SoC) estimation within
BESS is paramount for their operation and safety [1]. SoC
estimation is typically implemented in battery management
systems (BMSs), which are embedded systems that measure
voltage, current, and temperature from battery cells and per-
form several other important protection and safety functions.
Some BMSs employ state estimation algorithms that could
be hardened with BDD capabilities. It has been shown in [14]
that nonlinear control systems are vulnerable to stealthy FDIA
sequences in certain conditions. Methods for detecting small
FDIAs in BMSs have shown promising results in simulations
[15], [16]. These methods, however, might not be able to detect
a stealthy FDIA targeting the sensor streams of BMSs.
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In comparison, cryptographic methods may place large
overheads on ICSs since data-in-transit encryption requires
significant computation, and data integrity verification (e.g.,
hashes, message authentication codes) demands transmitting
additional data. However, embedded field devices, such as
BMSs, operate in real time, implement safety-critical func-
tions, have limited memory and processing capabilities, man-
age a large number of sensors, have limited communications
bandwidth, and have low power consumption requirements.
Sensor encoding, on the other hand, can implement data
integrity verification with a marginal increase in computational
burden. Limitations of sensor encoding include weaker secu-
rity than cryptographic hashing, and need of accurate nonlinear
state estimation [13]. Finally, differentiating between an attack
and a system fault remains an open problem.

This paper extends [13], [16] by applying a sensor encoding
technique for detection of stealthy FDIAs targeting BMS SoC
estimation. In summary, the contributions of this paper are:

1) The development of a stealthy attack sequence targeting
SoC estimation within a BMS considering that the
attacker has knowledge of system models;

2) A sensor encoding approach that allows attack detection
by impairing the attacker’s ability to craft stealthy FDIA.

The remainder of the paper is organized as follows. Section
II describes the problem. Section III presents the rule to
generate a stealthy FDIA sequence. Section IV introduces the
proposed sensor encoding-based solution. The application of
the solution to a simulated problem is presented in Section V.
Finally, Section VI presents the conclusions.

II. PROBLEM DESCRIPTION

Let’s consider the system shown in Fig. 1, where we have
a defender and an attacker. The defender’s state estimator
collects sensor data (input and output) from BMSs and has
good battery cell physical dynamic models and parameters.
The attacker gets hold of these dynamic models. The goal
of the attacker is to introduce a bias to the state estimates
produced by the defender while avoiding attack detection by
using stealthy FDIAs. The goal of the defender is to detect
the stealthy FDIA injected into the measurements. Attack
remediation is out of the scope.

Fig. 1. Problem depiction. The attacker has access to system parameters and
encoded measurements and they can change any measurement.

A. State of Charge Estimation

The problem of SoC estimation closely follows the frame-
work described in [16]. As shown in Fig. 2, we consider the

case where both inputs (e.g., battery stack current) as well
as outputs of the dynamic system (e.g., battery cell and stack
voltages) are corrupted by Gaussian uncorrelated noise.

Fig. 2. The plant input uk is corrupted by the noise nk when it is measured,
so the state estimator observes a noisy input signal zk [16].

We consider that battery dynamics are correctly represented
by equivalent circuit models and charge reservoir models [16],
[17]. As a result, the state transition equations are linear but
the SoC-dependent output functions are nonlinear. The discrete
nonlinear dynamic system with noisy inputs is represented by

xk+1 = Axk +Buk +wk, (1a)

yk = h (xk) +Duk + vk, (1b)

zk = uk + nk, (1c)

where yk ∈ Rm is the measurement vector at time step k,
xk ∈ Rn is the state vector, uk ∈ Rp is the input vector,
A ∈ Rn×n is the state matrix, B ∈ Rn×p is the input matrix,
h(x) : Rn → Rm is a state-dependent nonlinear function,
D ∈ Rm×p is the throughput matrix, wk ∈ Rn, is the process
noise vector with covariance Q, vk ∈ Rm, is the vector of
measurement errors with covariance R, nk ∈ Rp, is the vector
of input measurement noise with covariance N, and zk ∈ Rp,
is the vector of noisy inputs. All noise vectors are Gaussian,
zero-mean, and uncorrelated.

B. Input Noise-Aware Extended Kalman Filter

The states of this nonlinear system are estimated using an
Input Noise-Aware Extended Kalman Filter (INAEKF) [16]:

ŷk|k−1 = h
(
x̂k|k−1

)
+Dzk, (2a)
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where x̂k|k is the corrected state estimate, x̂k|k−1 is the
predicted state estimate, Pk|k is the a posteriori state error
covariance, Pk|k−1 is the predicted state error covariance, ŷk|k
is the a posteriori output estimate, ỹk|k−1 is the predicted
output estimate, ỹk is the vector of innovations, Σk is the
covariance of the innovations, ûk is the estimated input vector,
Ck|k and Ck|k−1 ∈ Rm×n are the partial derivatives of h (x)
with respect to x at x̂k|k and x̂k|k−1 respectively, Kk is the
Kalman gain, and Uk is the input estimation gain matrix.

C. FDIA Detection

In this paper, we chose the χ2 (chi-squared) test to the in-
novation (2b) for FDIA detection. This well-known statistical
test for BDD quantifies how well the data fits the system
model. At each time step, the defender applies this test to
their datasets to detect FDIA. To obtain a χ2 distribution, the
INAEKF innovations are normalized by their covariance (3).

Jỹk
= ỹT

kΣ
−1
k ỹk (3)

If all assumptions regarding the INAEKF hold, Jỹk
will

follow a χ2 distribution with ν = m−n degrees of freedom. A
level of significance α is selected such that P (Jỹk

≥ C) = α,
i.e., the false positive rate for a threshold C = χ2

ν,α is α.
Consequently, if the number of data points flagged by the chi-
squared detector is significantly larger than the expected false
positive rate, the attack is detected.

III. STEALTHY FDIA SEQUENCE

In this paper, it is assumed that goal of the FDIA is to
modify measurements to introduce a bias in the state estima-
tion vector such that a state-dependent protection or safety
feature of a BMS fails to protect the system appropriately.
It is conjectured that such a sequence can be crafted to
cause damage to the battery cells by circumventing protection
algorithms, or by incorrectly triggering a safety mechanism to
cause loss of availability of the BESS to the power grid.

To achieve that, attack vectors ∆zk and ∆yk are devised to
bias the measurements zak = zk +∆zk and ya

k = yk +∆yk

used as inputs to the defender’s INAEKF, where a indicates
attacked variables. The strategy to develop a stealthy FDIA
sequence is to craft attack vectors ∆zk and ∆yk such that the
attacked and unattacked innovation vectors are the same, i.e.,
ỹa
k = ỹk. In this way, the number of attacked samples flagged

by the BDD will be very close to the expected false positive
rate and no attack is detected. The vector is calculated by

∆yk = h
(
x̂a
k|k−1

)
− h
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x̂k|k−1

)
+D∆zk, (4)

where ∆zk is chosen freely by the attacker.

Proof: considering that an attack starts at k, so x̂a
k|k−1 =

x̂k|k−1 and ∆zl = 0, ∆yl = 0,∀l ≤ k−1, applying (4) yields
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for any l ≥ k + 1 we have the following
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The result above indicates that, in order to generate a
stealthy FDIA sequence, the attacker needs both a state
estimator with access to the untampered data set and another
state estimator processing the attacked data set to generate (4).

IV. SENSOR ENCODING

The encoding approach consists of modifying the measure-
ments such that the sensor data cannot be interpreted by the
attacker. If this goal is achieved, then the term h

(
x̂k|k−1

)
cannot be accurately estimated and a stealthy attack will not
be generated, eventually causing innovations large enough to
trigger the defender’s anomaly detector (3). Given the secret
encoding vector sequences czk and cyk, the encoding function
should produce the encoded vectors zck and yc

k that the attacker
will have access to. Conversely, with knowledge of the same
keys, the decoding function recovers the original measurement
vectors zdk = zk and yd

k = yk. Distributed encoding of data
with measuring spans az and ay is implemented with a pair
of encoding (5a) and decoding (5b) functions.

zck = mod (zk + czk,a
z) ,yc

k = mod (yk + cyk,a
y) , (5a)

zdk = mod (zck − czk,a
z) ,yd

k = mod (yc
k − cyk,a

y) , (5b)

where mod is the modulo function that returns the remainder
of division of the first by the second argument.

A simple implementation can use pseudorandom number
(PRN) generators to obtain czk and cyk. If the sensor and
state estimator PRN generators have access to the same seed
and algorithm parameters, they would be able to generate
the same sequence of keys and the encoding and decoding
process would be effective for as long as synchronization is
kept. It is important to note that there are many types of
algorithms to generate sequences of PRNs, each one with
different characteristics such as statistical properties or their
suitability for cryptographic applications, for example. To
maximize the entropy, a uniform distribution is used.

Another point to consider is the detectability of the encoding
by the attacker. If size of noise added by PRNs is small, the
attacker might not notice the encoding method and may not
devise a solution to bypass it. However, a small encoding
vector might not be sufficient to create a large state bias so that
a stealthy FDIA can still be generated by the attacker. On the
other hand a large encoding vector will be easily detected by
the attacker, but it will generate large state estimation errors
in the attacker’s state estimation, which is critical for stealthy
FDIA detection using this encoding scheme.



V. CASE STUDY

To evaluate the effectiveness of the stealthy FDIA and the
sensor encoding approaches, we utilize a simulation where
we have a battery system composed of three series-connected
batteries with cell voltage, stack voltage, and stack current
measurements. The cells are simulated using a second-order
equivalent circuit model, and a third-order polynomial repre-
sents the SoC-dependent open-circuit voltage. More details on
the simulation setup are described in [16]. The PRN keys are
generated using the same algorithms and seeds for encoding
and decoding, and they follow an uniform distribution that
spans the entire range of measurements (0 to 5 V for cell
voltages, 0 to 15 V for cell stack voltage, and -20 to 20 A
for stack current). The false positive rate α is set to 0.01%.
Simulation time is 8100 s and the estimator sampling time is
0.1 s. The battery system is cycled with constant current in
the simulation. Both defender and attacker apply the INAEKF
to track the systems’ states and generate FDIA.

A. Stealthy FDIA: No Encoded Measurements

Let’s suppose the attacker injects a current bias of -1 A.
Then, the input attack vector sequence ∆zk and the corre-
sponding output attack vector sequence ∆yk would look as
shown in Figs. 3a and 3b, respectively, for an attack starting at
1,200 s. The output vector data correspond to voltages of cells
1, 2, 3, and the battery stack (sum of all voltages), respectively.

When the defender’s state estimator ingests the attacked data
streams, the state estimates diverge from the true states of
the battery cells, as shown in Fig. 3c. More specifically, on
the top plot of Fig. 3c, one can notice that before the attack
inception, the SoC plot of estimated states (red SoC[k|k] and
yellow SoC[k|k−1] lines) and the true SoC of cell one (green
line) are superimposed, meaning that the INAEKF can track
accurately the states of the system. Once the attacker starts
to inject the stealthy FDIA sequence, the plots of estimated
and true states of the system separate due to a bias introduced
by the attacker. In spite of the incorrect state estimates, the
defender’s error detector only detects a few anomalous data
points (0.0014%) after the filter settles (about 800 s), which
is in line with the expected false positive data rate predicted
by the theory, as shown in Fig. 3d.

B. Detecting the Stealthy FDIA with Sensor Encoding

By applying the encoding method described in Section IV
we obtain the input and output encoding sequences shown in
Fig. 4a and Fig. 4b, respectively. Those signals appear random
and are dominated by the encoding signal with uniform distri-
bution ranging between the maximum and minimum range of
each sensor. Then, for the same input attack vector sequence
shown in Fig. 3a, the corresponding output attack sequence is
shown in Fig. 5a. The states estimated by the attacker’s state
estimator are depicted in Fig. 5b, where it is clear that the
attacker loses track of the true system states.

The decoded data feeds the defender’s state estimator, as
shown in Fig. 6a. The defender’s BDD scheme can now detect
that the dataset is corrupted by bad data, as shown in Fig. 6b.

(a)

(b)

(c)

(d)
Fig. 3. Stealthy attack sequences in (a) system input and (b) system output.
Those impair the capacity of the defender to track the systems’ states (c)
while not being captured by the BDD (d).

(a) (b)
Fig. 4. Histograms of encoded (a) system input, (b) system output signals.

About 2.48% of data points are flagged as anomalous after
the first 800 seconds of the simulation considering encoded
measurements, which is much higher than the expected false
positive rate of 0.01%, so the attack is detected.

VI. CONCLUSION

In this paper, we proposed a protocol for launching stealthy
FDIAs on nonlinear systems and a sensor encoding scheme
to detect stealthy attacks. The simulations have shown that



(a)

(b)
Fig. 5. Plots of (a) output attack vector, and (b) the attacker’s state estimates
when encoded data is used by the attacker.

(a)

(b)
Fig. 6. Defender’s state estimates (a) and error detector (b) with encoding.

both the attack sequence and the sensor encoding are ef-
fective. The generation of stealthy attack requires system
knowledge, access to all battery data stream, and the ability
to run two state estimators simultaneously to generate stealthy
attack sequences in real time. The encoding approach relies
on the generation of PRNs. Detection is not instantaneous
and requires a significant deviation between attacker state
estimate and system state, which is dependent oh how the
battery is being cycled. This cost-effective approach could
be implemented in BMSs performing SoC estimation with
little computational overhead, no increase in communication
throughput, and no additional hardware. If needed, it could be

combined with more security features, such as data encryption.
Future work will include practical considerations on how the

sequences of PRNs are generated and how to synchronize them
among all sensors, incorporate constraints in the number of
encoded measurements, and apply other detection algorithms
like CUSUM [16]. Further, we plan to extend the encoding
algorithm for other state estimators and develop analytical
proofs for stealthy FDIA detectability.
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