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Section A-A
Monolithic Three-Dimensional Tuning of an Atomically Defined
Silicon Tunnel Junction
Matthew B, l'lunm;ll}'." Joris G, Keizer, Yousun L'Imng, and Michelle ¥, Simmons
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Single-charge detection by an atomic precision tunnel junction
M. G. House,” E. Peretz, J. G. Keizer, S. J. Hile, and M. Y. Simmons”’
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| Computational approach, validation,
predictive transport simulation for Si:P delta-
layer systems

* Charge self-consistent NEGF implemented via Contact Block
Reduction method scales linearly with the simulation volume O(V)

* Electron-electron interaction via DFT-LDA exchange-correlation
* Kinetic energy term: the effective mass tensor
* Real-space scattering on discrete impurities

This approach allows to accurately represent all open-system electron
properties of highly-conducting highly-confined systems:
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| Predictive quantum transport simulations =g
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| Oo-layer Resonant lunneling Junction
devices

Electrostatic potential

O-layer thickness ~ 0.2-2nm

island length ~ 5nm

Two-terminal device: J=J(V)



| O-layer Resonant lTunneling Junction
devices

Electron density

Two-terminal device: J=J(V ) 0 10 20 30 40
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Electrical characteristics: strong NDR,

extremely high responsivity ()
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| High responsivity and the change in DOS
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| LDOS: “Off” and "on” states
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| Quasi-bound and resonant states
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Efficient convergence of the charge self-consistent loop requires a special treatment of
quasi-bound and resonant states. i



Conclusions

*1) We have created a truly predictive, open-system quantum
transport simulator for silicon-based devices. |

e 2) Negative differential resistance devices (NDR) are needed for high
efficiency dc-to-ac current conversion.

* 3) We have proposed a new APAM-based NDR device with TeraHertz
operating frequency, good PVR and extremely high responsivity.

* 4) Predictive simulation of NDR devices benefits from a special
treatment of quasi-bound and resonant states.



