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ABSTRACT 
The use of surrogate models in computational mechanics is 

an area of high interest due to the potential for significant 

savings in computational cost. However, assessment and 

presentation of evidence for surrogate model credibility has yet 

to reach a standard form. The present study utilizes a deep neural 

network as a surrogate for a computational fluid dynamics 

simulation in order to predict the coefficients of lift and drag on 

a NACA 0012 airfoil for various Reynolds numbers and angles 

of attack. Using best practices, the credibility of the underlying 

simulation predictions and of the surrogate model predictions 

are analyzed. Conclusions are drawn which should better inform 

future uses of surrogate models in the context of their credibility. 

Keywords: Surrogate modeling, Machine learning, CFD, 

Credibility, Aerospace, Verification and Validation 

NOMENCLATURE 
α  angle of attack 

𝑅𝑒  Reynolds number 

𝐶𝑙  Coefficient of lift 

𝐶𝑑  Coefficient of drag 

𝑈val  Validation uncertainty 

𝑈num  Numerical uncertainty 

𝑈input Input uncertainty 

𝑈𝐷   Experimental uncertainty 

𝑈surr  Surrogate model uncertainty 

𝐺𝐶𝐼  Grid Convergence Index 

𝐹𝑠  Factor of safety 

𝑓𝑖  QoI value on 𝑖𝑡ℎ grid 

𝑟  Refinement factor 

𝑝  Order of accuracy 

𝐸  Validation comparison error 

𝑆  Simulation result 

𝐷  Experimental result 

𝛿model Model form error 

 

1. INTRODUCTION 
       The use of computational mechanics in engineering is 

widespread and impactful in many ways, from informing details 

of physical mechanisms of complex phenomena to high-level 

design decisions. Computational fluid dynamics (CFD) is no 

exception. CFD models exist at multiple levels of physics 

fidelity, the most common of which in many engineering 

applications is Reynolds-averaged Navier–Stokes (RANS). 

Despite significant computational cost savings over Direct 

Numerical Simulation (DNS) and Large Eddy Simulation (LES), 

RANS can still be quite costly, especially in the context of design 

optimization, in which relatively large parameter spaces are 

simulated over. The use of a surrogate model in this context can 

provide large computational cost reduction without sacrificing 

significant predictive accuracy. From another point of view, 

RANS models sometimes exist as the highest-fidelity model that 

is available for routine aerodynamic analysis, with lower-fidelity 

models being computationally less expensive, but also less 

accurate [1, 2]. Slotnick et al. noted in their “CFD Vision 2030 

Study” that surrogate models had the potential to make 

multidisciplinary design optimization with data corresponding to 

high-fidelity model predictions more feasible [3].  

Surrogate models for  computational mechanics can come in 

a variety of forms but some of the most popular are machine 

learning (ML) models. In the paper “Statistical Modeling: The 

Two Cultures”, Breiman notes that classically, statisticians have 

sought to use data models that have a high level of 

interpretability, but not always sufficient accuracy. He notes that 

interpretability versus accuracy is a false paradigm and that 

predictive accuracy is the goal of modeling. As an example of 

what he calls an “A+ predictor”, Breiman mentions Random 

Forrests, which have relatively low interpretability but can have 

high accuracy [4]. Hemming considered several models 

including kriging and machine learning (ML) algorithms such as 

radial basis function, neural networks, random forests, and 

gradient boosting. He decided on using the latter three in his 

study due to training costs. In this study, the surrogates were used 
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to predict several features of the flow field around a 2D 

hypersonic compression ramp. The problem was broken up into 

two main parts, the first of which was prediction of the location 

of the shock wave and boundary layer and the second of which 

was prediction of quantities of interest in the flow field. Gradient 

boosting performed well on the first task but was too expensive 

for the second, which left random forests and neural networks, 

which had comparable performance. Random forests were faster 

to train and were generally more accurate [5]. The optimal 

activation function for the neural networks was ReLu, which was 

also the case in the study of  Zelong et al. who used a two-layer 

convolutional neural network [6].  

One challenge with surrogate  modeling is the selection of 

an appropriate sampling strategy to fully cover the parameter 

space such that the surrogate model does not predict at points 

that are far from training points. The most simple but expensive 

method is known as full factorial sampling, in which every value 

of each parameter is used. Alternatives include Monte Carlo and 

Latin Hypercube sampling [7]. Dupuis et al. used what they 

termed the Local Decomposition Method to classify different 

regions in a flow field around aircraft, vary the sampling density 

depending on the nonlinearities present in each region, and 

predict quantities of interest (QoIs) in the flow field. The 

surrogate model in this case incorporated proper orthogonal  

decomposition (POD) and Gaussian process regression (GPR). 

The method was able to correctly identify specific regions of the 

flow field for multiple aircraft and accurately predict QoIs 

including the pressure and friction coefficients [8, 9].  

In the CFD community, credibility is often discussed in 

terms of predictive accuracy (or error) and uncertainty. These 

concepts are highly applicable in surrogate modeling for 

computational mechanics applications. In order to obtain a 

wholistic understanding of ML surrogate model credibility, 

however, it is useful to incorporate ideas from the broader ML 

community. The book “Trustworthy Machine Learning”, by 

Kush Varshney is a popular reference, and its breadth of 

exploration immediately presents itself in a cursory glance at the 

back cover, which states that “accuracy is not enough when 

you’re developing machine learning systems for consequential 

application domains” [10]. Safety is defined in terms of the 

minimization of aleatoric and epistemic uncertainty. An 

undesired outcome is defined as a “harm” if its cost exceeds 

some threshold. Varshney goes into great depth in this book, and 

several additional concepts are relevant, but the above summary 

hopefully indicates the value of such a resource for broadening 

understanding of credibility in this field and for providing 

terminology around which discussions and standards can form.  

In the present study, 2D CFD simulations of airflow over the 

NACA 0012 airfoil are done in Ansys Fluent using the RANS 

model with the 𝑘 − 𝜔 shear stress transport (SST) two-equation 

eddy-viscosity model. The simulations are performed over a 

range of Reynolds numbers and angles of attack. Solution 

verification was performed on these simulation results using 

Roache’s GCI approach. A deep neural network (DNN) is used 

as a surrogate for the turbulence model in order to predict the lift 

and drag coefficients based on the Reynolds number and angle 

of attack. A datasheet for this dataset is created. The credibility 

of the RANS simulation results is assessed using the ASME 

VVUQ 20-2009 methodology. The credibility of the machine 

learning model’s predictions is then assessed in light of the 

RANS predictions and experimental data, and the contribution 

of error and uncertainty to the machine learning model’s 

predictions is presented. This work contains a relatively broad 

study of surrogate model credibility in the context of a known 

validation case, highlighting important aspects to overall 

credibility of surrogate model predictions in engineering 

applications involving computational mechanics. 

 

 
2. METHODOLOGY 

 

2.1 NASA Validation Case 
       The physical system chosen for analysis in this study 

corresponded to the NASA NACA 0012 turbulence model 

validation case [11]. This case was created to provide a context 

to perform a rigorous validation analysis of turbulence models, 

and is convenient for such purposes due to the thorough 

description on the NASA site and the experimental data that has 

been compiled and described there. The 2D geometry is specified 

and boundary conditions are given. The default set of conditions 

are for air with standard properties at a bulk flow Mach number 

of 0.15, a Reynolds number per chord of 6 million, and a 

reference temperature of 300 K. Experimental data exist for 

multiple Reynolds numbers and angles of attack from around -

15° to 15°. However, the NASA page notes that the Ladson 

tripped data are most appropriate for comparison with fully 

turbulent simulations, and this data extends from around -4° to 

around 20° at roughly every 2° (the experimental values of 𝛼 are 

not whole numbers). For the purposes of validation in the present 

study, Ladson data at Ma = 0.15 and a fixed (tripped flow) 

transition from -4° to 10° are used [12]. At angles of attack of 

higher magnitude than 10°, flow nears separation and the trend 

in the coefficient of lift 𝐶𝑙 becomes highly nonlinear. Reynolds 

numbers of 2 million, 6 million and 8.95 million are simulated 

and experimental data at these values is used for validation, 

while data at Re = 4 million is compared against ML model 

predictions at this value without any simulation informing the 

surrogate at that point. 

 

 

2.2 RANS Simulations 
       The geometry and meshes for the present study were created 

in Ansys Design Modeler and Mesher, and the simulations were 

run in Ansys Fluent. All tools were academic version 2022 R2. 

 

2.2.1 Geometry and Mesh 

       The geometry of the NACA 0012 airfoil was obtained from 

the NASA validation page and the computational domain was 

created in Ansys Design Modeler. The base mesh was then 

created, which had 240,000 quadrilateral elements, a smooth 

transition inflation from the airfoil surface, and a growth rate of 

1.2. The domain extents were large (>10c) to avoid 
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contamination of the solution from domain extent effects. The 

overall mesh structure is similar to that given on the NASA 

validation page and by Eleni et al. [13]. Two meshes were created 

from this base mesh with uniform refinement ratios of 2 each 

with respect to the next coarsest mesh. Thus, the base mesh was 

labeled the 1X mesh and the two additional meshes were labeled 

the 2X and 4X meshes. In addition, a 0.5X mesh was created and 

used for numerical uncertainty quantification in the tool 

StREEQ. The 2X and 4X meshes both had an initial cell height 

less than y+ for this problem. While the 1X mesh did not, the 

average percent difference in predictions for both coefficients 

was less than 5% with respect to the predictions on the 2X mesh, 

and differences in predictions between the 2X and 4X meshes 

were of similar magnitude. This indicated sufficient refinement 

levels for the purpose of the study, which is focused more on a 

process of credibility assessment than achieving the highest level 

of accuracy possible. Moreover, computational cost constraints 

associated with running the simulations affected this decision. 

2.2.2 Boundary Conditions, Material Properties, and Models 

The boundary conditions of this problem consisted of a 

velocity inlet, a pressure outlet, and a no-slip wall (on the surface 

of the airfoil). On the velocity inlet boundary, the velocity 

magnitude and vector direction were specified, the turbulent 

intensity was set to 5%, and the turbulent viscosity ratio was set 

to 10. The velocity magnitude was computed as 52.08 m/s from 

the Mach number of 0.15 and the properties of ambient air. The 

angle of attack of the airfoil was adjusted by changing the 

velocity vector. On the pressure outlet, gauge pressure was 

specified as zero, backflow turbulent intensity was 5%, and 

backflow turbulent viscosity ratio was 10. Air was the fluid used 

in the simulations, and it had a density of 1.177 kg/m3 and a 

dynamic viscosity that varied depending on the desired Reynolds 

number, from 6.85×10-6 kg/(m s) to 3.07×10-5 kg/(m s). This 

method was exemplified in a related study [14] and proved to 

change the Reynolds number in such a way as to accurately align 

with experimental results in the predicted QoIs, as the 

incompressible nature of the fluid and the Mach number were 

preserved. The Reynolds numbers simulated were 2 million, 6 

million, and 8.95 million, corresponding to three experimental 

Reynolds numbers from Ladson’s study [12]. Throughout this 

report, "Reynolds number" and "Reynolds number per chord" 

are used alternatively, as the chord length was 1 m.  

The turbulence model used in the present study was the 

Reynolds-averaged Navier–Stokes (RANS) model with the 

standard 𝑘 −𝜔 shear stress transport (SST) two-equation eddy-

viscosity model as implemented in Ansys Fluent [15, 16]. This 

choice was informed by a previous study [14] as well as a 

preliminary calculation that compared predictions of the 

coefficients of lift 𝐶𝑙 and drag 𝐶𝑑 for the RANS-SST and RANS-

SA (Spallart–Allmaras) models. In this calculation, RANS-SST 

was found to be more accurate. The coefficients of this model 

were left at their default values for the present study, and these 

values can be readily found in the Fluent interface. 

 

 

 

2.3 Surrogate Model 
       The surrogate model implemented in the present study was 

a deep neural network (DNN) implemented in Python using the 

Keras API within Tensorflow. This choice of model was made 

based on the fact that it offered a good combination of simplicity, 

efficiency, and accuracy for the application. These attributes are 

true in a relative sense when comparing alternative models as 

mentioned in the introduction. The optimizer used was Adam 

[17, 18] and the kernel initializer was he_uniform [19, 20]. The 

network had an input layer with 28 nodes and two hidden layers, 

with 128 and 256 nodes, respectively. This architecture was 

found to be more accurate and efficient than alternatives. 

Predictive accuracy increased significantly with two hidden 

layers over one hidden layer (the ability to capture nonlinearity 

in the QoI trends factored into this), while it stayed roughly the 

same with three hidden layers. The number of nodes per layer 

resulted in good predictive accuracy while allowing the model to 

train relatively quickly (within 20% or 3 seconds to train over 

5,000 epochs as compared with a network with 28, 56, and 112 

neurons in each layer, respectively). Data from the simulations 

for angles of attack of −10° ≤ 𝛼 ≤10° was extracted from the 

simulation reports and put into CSV files. The sampling plan is 

shown in Figure 1. This range of 𝛼-values was chosen because 

1) separated flow significantly affects the coefficient of lift at 𝛼 

near ±15°, 2) not all simulations converged at these 𝛼-values, and 

3) the range of experimental data in the Ladson report was fairly 

limited.  

 
Figure 1. Sampling plan for construction of dataset. 

       The features of the ML model were the Reynolds number 

and angle of attack in degrees. Labels of the ML model were the 

coefficients of lift and drag. In machine learning, features are 

model inputs and labels are model outputs. Thus, the DNN model 

took Reynolds number and angle of attack as inputs and 
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predicted the coefficients of lift and drag. Predictive accuracy 

with unscaled data was poor, so scaling was pursued. The 

Reynolds number was divided by 1×106 and 𝐶𝑑 was multiplied 

by 100. This improved predictive accuracy significantly. The use 

of normalization tools within the Tensorflow package did not 

result in an increase in accuracy relative to this simple scaling. 

Thus, the simple scaling method was used, and resulting 

predictions were scaled back before comparison with simulation 

and experimental data. 70/30, 80/20, and 90/10 training/testing 

splits were explored, with the 80/20 split producing similar but 

slightly lower accuracy to the 90/10 split. The 90/10 split was 

used for the final predictions. The model was trained using 5000 

epochs, a number settled upon after testing at several lower 

numbers. A plot of loss versus number of epochs from this study 

is shown in Figure 2 using mean absolute error (MAE). 5000 

epochs produced low loss and approached asymptotic behavior 

on the loss curve. 10,000 epochs was also tested and resulted in 

negligible improvement in predictive accuracy. K-fold cross-

validation was used with 5,000 epochs for each of 10 splits. The 

resulting average root mean square error (RMSE) for both QoIs 

was on the order of 1×10-4. A plot showing loss using RMSE for 

a training run is shown in Figure 3. The spikes in loss are likely 

due to the adaptive learning rate used in the Adam optimizer by 

default. Additional analysis of this is ongoing. After cross-

validation, the model was used to predict the QoIs. 

 

 
Figure 2. Determining the proper number of training epochs. 

 
Figure 3. Typical loss curve for training run. Note Logarithmic 

scale. 

 

2.6 Uncertainty Quantification Theory 
       The uncertainty quantification methodology in the present 

report follows that of the ASME VVUQ 20-2009 standard [17]. 

According to this standard, the validation uncertainty of a 

simulation, 𝑈val , is written as 

 

𝑈val = √𝑈num
2 + 𝑈input

2 + 𝑈𝐷
2  (1) 

 

       where 𝑈val represents uncertainty at the 95% confidence 

level, which is typically denoted by capitalization. In Equation 1, 

𝑈num is the numerical uncertainty associated with the simulation 

prediction, 𝑈input is the uncertainty on simulation inputs, and 𝑈𝐷 

is the experimental uncertainty. In the scope of the present study, 

numerical and experimental uncertainties are quantified. Input 

uncertainty is not explored due to time and resource constraints. 

However, it could be significant and should be included in a 

comprehensive credibility assessment. In the present study, the 

numerical uncertainty is quantified using the grid convergence 

index (GCI). Additionally, for a test case, a method employed by 

a recently-developed tool named StREEQ at Sandia National 

Laboratories is used. Documentation on this method is currently 

limited and will be further investigated in future study. The input 

uncertainty is not quantified but would be worthy of future 

investigation. The experimental uncertainty was not provided in 

detail in the Ladson report [12], but a (likely conservative) 

estimate is made from a statement in the report.  

       For validation uncertainty associated with ML model 

predictions, Equation 1 is modified to the form shown in 

Equation 2. In this equation, an additional term 𝑈surr is added, 

which represents the surrogate model uncertainty. Below follows 

a description of how each type of uncertainty was quantified. 
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𝑈val = √𝑈num
2 + 𝑈input

2 + 𝑈𝐷
2 + 𝑈surr

2        (2) 

 

       The GCI was computed in the present study using Equation 

3, where 𝑓1, 𝑓2, and 𝑓3 are simulation results on the fine, medium, 

and coarse grids, respectively. The order of accuracy, 𝑝, is the 

result of passing the observed order of accuracy (Equation 4) 

through a filter. In Equation 4, 𝑟 is the refinement ratio, which in 

the present study is 2. The filter applies a ceiling of 2 to the 

observed order of accuracy and a floor of 0.5. These limits 

correspond to "reasonable" limits of code order of accuracy for 

scientific codes. 𝐹𝑠 is 1.25 when the difference between the 

observed and theoretical orders of accuracy is less than 10% and 

3.0 when the difference is greater than or equal to 10%. In 

contrast to the GCI, StREEQ uses four simulation predictions at 

four corresponding levels of mesh refinement and computes an 

estimate mesh-converged value with corresponding levels of 

numerical uncertainty. 

 

𝐺𝐶𝐼 = 𝐹𝑠
|𝑓2−𝑓1|

(𝑟𝑝−1)
   (3) 

 

𝑝obs =
ln(

𝑓3−𝑓2
𝑓2−𝑓1

)

ln (𝑟)
   (4) 

 

In order to quantify the experimental uncertainty, the Ladson 

report was consulted. No specific uncertainties were given, but 

it was mentioned that a repeatability study was conducted which 

found that for two points nominally at 𝛼 = 0◦ and within 0.01◦ of 

each other, the drag coefficient varied by 0.0002 or less and the 

normal-force coefficient varied by 0.004 or less. The normal-

force coefficient variability was applied to the lift coefficient, 

and these values were taken as experimental uncertainties.  

Surrogate model uncertainty was quantified by comparing 

the mean value of the QoI to the maximum value at each angle 

of attack. The data for this exercise came from 100 runs of the 

model, which produced 3-7 values at each angle of attack. The 

difference between the maximum and mean at each angle of 

attack was taken to be the surrogate model uncertainty at that 

angle of attack. 

 

2.6 Validation Theory 
       Model validation can be described as the process of analysis 

of the extent that a model represents physical phenomenon for 

its intended uses [21]. Validation is the anchor to reality for 

computational predictions, and involves comparison with 

experimental results. Though historically, comparison of contour 

plots and other qualitative measures were considered validation, 

the ASME VVUQ 20-2009 standard places an emphasis on 

quantitative assessment by defining the validation comparison 

error as in Equation 5. In this equation, 𝐸 is the validation 

comparison error, 𝑆 is the simulation result, and 𝐷 is the 

experimental data. 

 

𝐸 = 𝑆 − 𝐷   (5) 
 

The validation comparison error includes possible errors from 

measured data and simulation predictions. The actual model 

form error, 𝛿model, is bounded by the validation uncertainty as 

shown in Equation 6. The validation comparison error and 

validation uncertainty are shown in Chapter 7. 

 

𝛿model ∈ [𝐸 − 𝑈val, 𝐸 + 𝑈val]    (6) 
 

 

3. RESULTS AND DISCUSSION 
In this chapter, the predictions of the CFD model and 

surrogate model are presented. The numerical uncertainty 

associated with the CFD simulations is computed and presented. 

A validation analysis is performed using the ASME VVUQ 20-

2009 methodology. Finally, the credibility analysis is discussed 

from a vantagepoint that seeks to collect key overall takeaways 

in surrogate model credibility analysis. 

 

3.1 CFD Predictions 
       The full flow field was predicted using RANS-SST 𝑘−𝜔 

model, with the QoIs being the coefficient of lift 𝐶𝑙 and 

coefficient of drag 𝐶𝑑. Most of the results that follow are focused 

on these QoIs. Simulation predictions of both QoIs for −10° ≤ 𝛼 

≤ 10° are shown in Figures 4 and 5. Because the change in 𝐶𝑙 

over 𝛼-space is relatively large compared to the difference 

between curves, the data was transformed. A line was fit to the 

experimental data and this line was subtracted from each curve. 

This process was repeated for each Reynolds number using the 

associated experimental data. The resulting curves are shown in 

Figure 6. The 𝐶𝑙 predictions for 𝑅𝑒 = 8.95 × 106  deviate less 

from the experimental data than those at other Reynolds 

numbers. RANS-SST simulation results from the NASA 

validation study at two angles of attack for 𝛼 = 2°, 𝑅𝑒 = 6 × 106  

are also shown in these figures for reference, and agree 

reasonably well. These results were obtained using NASA’s 

CFL3D code [22].  

 

 
Figure 4. 𝐶𝑑 from simulations. 
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Figure 5. 𝐶𝑙 from simulations. 

 

 
Figure 6. Transformed 𝐶𝑙 simulation results. 

3.2 ML Model Predictions 
       A given run of the ML model resulted in a prediction of five 

values each of 𝐶𝑑 and 𝐶𝑙 at five angles of attack. A sample result 

showing the predicted and true values from a run is shown in 

Figure 7. Note that the 𝐶𝑑-values are scaled. The predictions 

closely approximate the true values at all points. Though this 

figure gives a clean visual representation of the predictions of the 

model, it cannot be used for rigorous credibility assessment. The 

first step in the credibility assessment process was the use of 

repeated k-fold cross-validation using scikit-learn’s 

RepeatedKFold method with 10 splits and 3 repeats. The 

resulting RMSE for 𝐶𝑙 was 5.68 × 10-4 and for was 2.16 × 10-4.  

       Because each run of the ML model resulted in only five 

predictions at random angles of attack, the model was run 100 

times resulting in 3-7 predictions at each angle of attack. 

Analysis was done comparing the average and the maximum 

values at each angle of attack from these runs. This analysis 

showed that the percent difference between the average and 

maximum values was nearly always below 10% for both QoIs, 

with two exceptions. The first was one data point with slightly 

higher percent difference for 𝐶𝑑. The second was a peak in 

percent difference due to the low magnitude of the quantity for 

𝐶𝑙. Since predictions were consistent from run to run (see Figures 

8 – 9), the average value of the QoIs was used at each angle of 

attack. However, the run-to-run variability was included in the 

overall validation uncertainty as shown in the next section.      

Figures 10 and 11 show the ML model’s predictions for all three 

Reynolds numbers as well as an intermediate Reynolds number 

(Re= 4 × 106) that simulations were not performed at. Figure 11 

shows the linearly transformed 𝐶𝑙 trends. The trend at Re = 4 × 

106 is smoother than that at the other Reynolds numbers. This 

reflects the fact that more runs per angle of attack were 

performed for this Reynolds number, since 100 runs were used 

but only one Reynolds number was predicted at. In the larger 

picture, this reflects the fact that the more runs are used, the 

better the average ML model prediction will converge to the true 

average value. However, given a quantification of the run-to-run 

variability and the reflection of that variability in the validation 

uncertainty, this is a known phenomenon that can be controlled 

or accounted for in the use of the ML model. Moreover, if the 

model used significantly more data (e.g., 100 values each of 𝑅𝑒 

and 𝛼), training costs for such an exercise would be significant. 

 

 
Figure 7. Example of ML predictions from run. 

 
es of 𝐶𝑙 from 100 runs of ML model at 𝑅𝑒 = 6 × 106. 
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Figure 8. Average and max. values for 𝐶𝑑 from 100 runs of ML 

model at 𝑅𝑒 = 6 × 106. 

 
Figure 9. Transformed average and max. values of 𝐶𝑙 from 100 

runs of ML model at 𝑅𝑒 = 6 × 106. 

 

 
Figure 10. Average ML model-predicted values for 𝐶𝑑 for all 

Reynolds numbers. 

 
Figure 11. Transformed average ML model-predicted values 

for 𝐶𝑙 for all Reynolds numbers. 

 

3.3 Uncertainty Quantification 
       Uncertainty quantification in the present study consisted of 

the quantification of numerical (𝑈num), experimental (𝑈𝐷), and 

surrogate (𝑈surr) uncertainties. The methodology used to 

quantify these uncertainties is discussed in Section 2.6. The 

numerical uncertainty was quantified using the GCI, and results 

for each of the QoIs are shown in Figures 12 and 13. The GCI 

for 𝐶𝑑 is generally below 10-3 and that for 𝐶𝑙 is generally below 

10-2. The highest values are generally at the bounds of the 𝛼-

domain, where the flow is more complex and simulation 

predictions were more mesh dependent. 

       The GCI is shown applied to QoI trends as uncertainty 

bounds in Figure 14. Numerical uncertainty is reasonably large 

for the 𝐶𝑑 predictions at 𝑅𝑒 = 2 × 106 and 8.95 × 106, and smaller 
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for 𝑅𝑒 = 6 × 106. It also does not appear as a large uncertainty 

band on the 𝐶𝑙 plots, largely due to the magnitude of the QoI. 

 
Figure 12. GCI computed for 𝐶𝑑 simulation results at 𝑅𝑒 = 2, 

6, and 8.95 × 106. 

 
Figure 13. GCI computed for 𝐶𝑙 simulation results at 𝑅𝑒 = 2, 

6, and 8.95 × 106. 

       Predictions were also made using the surrogate model at 𝑅𝑒 
= 4×106. Since simulations were not run at this Reynolds 

number, numerical uncertainty was calculated as the interpolated 

GCI (using the GCI at 𝑅𝑒 = 2×106 and 6×106). The experimental 

uncertainty was the same as for other Reynolds numbers. 

Surrogate model uncertainty was computed as for other 

Reynolds numbers. These calculations resulted in an uncertainty 

estimate that is reasonable but contains influence from 

neighboring points in the GCI. 

 

 
Figure 14. GCI applied to QoI trends at 𝑅𝑒 = 2 × 106 (top), 

6 × 106 (middle), and 8.95 × 106 (bottom).  

 

3.4 Validation 
       Validation comparison error was computed using the 

methodology described in Section 2.7 for simulation and 

surrogate model predictions. This error and the corresponding 

validation uncertainty were scaled by the experimental values 

and presented as relative error and uncertainty. The results for 

simulation error and validation uncertainty are shown in 

Figure 15. Error and validation uncertainty for the surrogate 

model is shown in Figure 16. Validation comparison error and 

validation uncertainty are not shown for the simulation results at 

𝑅𝑒 = 4 × 106 because simulations were not run at this Reynolds 

number. In each case, validation comparison error was computed 

as a difference between the prediction of the model of interest 

and the corresponding experimental value, before being scaled. 

The validation uncertainty of the surrogate model is different 

from that of the simulations by the inclusion of the surrogate 

model variability as described in Section 2.6. Error levels are 

generally higher for the surrogate model predictions than for the 

simulations, but this is not always the case, as the surrogate 

model deviates from the simulation predictions both above and 

below. Validation uncertainty is higher for the surrogate model, 

which makes sense as the surrogate model variability is only 

additive in its impact on the validation uncertainty. In general, 

two observations can be made. First, the error is generally 

distinguishable from uncertainty, which indicates that actual 

error exists in the model predictions. When uncertainty ex-tends 

to the horizontal line at zero, it is an indication that the model 
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predictions may in fact have zero error at that point, and that 

reduction in uncertainty is the priority. Because error is 

distinguishable, it is possible that an application of the surrogate 

model could correct for the expected bias of the model’s 

predictions. The second observation is that despite error being 

distinguishable from uncertainty, the relative error is reasonable 

in general. It is below 20% over most of the domain of analysis 

for both QoIs, with exceptions primarily in the 𝐶𝑙 predictions 

near 𝛼 = 0, where the magnitude of the QoI is small. While the 

surrogate model was known to perform well in terms of accuracy 

from the cross validation and comparison of predicted to test 

values during prediction, it is helpful to compare the validation 

comparison error of the surrogate model to that of the simulation 

predictions. This allows one to see how much of the overall error 

in a surrogate model prediction is inherited from the parent 

simulations and how much is due to the surrogate model itself. 

Figure 17 shows the validation comparison error corresponding 

to the simulations and that of the surrogate model. In general, the 

surrogate model error follows the simulation error closely. This 

indicates that most of the validation comparison error and model 

form error of the surrogate model comes from the parent 

simulations. The surrogate model has lower error than the 

numerical model for some angles of attack. This reflects minor 

deviations in the surrogate model predictions from the numerical 

model predictions. As percent error, the values for 𝐶𝑙 can be 

significantly lower near zero angle of attack for the surrogate 

model due to the small magnitude of the QoI there. 

 

 
Figure 15. Relative validation comparison error and validation 

uncertainty of simulations.  

 
Figure 16. Relative validation comparison error and validation 

uncertainty of surrogate model. 

 

3.5 The Big Picture 
       Ultimately, credibility assessment must result in a statement 

of whether the model of interest and its predictions are credible 

in the application of interest. If so, the assessment should provide 

an indication of how credible the model and its predictions are 

in that application. The above results showed quantitatively the 

error and uncertainty in the surrogate model’s predictions. 

Figure 18 shows this information for 𝑅𝑒 = 2 × 106, 6 × 106, and 

8.95 × 106 tied up into plots containing simulation predictions, 

surrogate model predictions with accompanying numerical 

uncertainty, and experimental data with accompanying 

uncertainty. Figure 19 shows the surrogate model predictions 

with their accompanying numerical uncertainty as well as the 

experimental data and uncertainty. 
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Figure 17. Validation comparison error corresponding to 

simulation and surrogate model predictions. 

 

   The data for 𝐶𝑙 is transformed in order to highlight the 

difference between the simulation predictions, surrogate model 

predictions, and experimental data. Figures 18 and 19 summarize 

the performance of the model nicely and show that there is a 

substantial but arguably manageable error in the surrogate model 

predictions, stemming primarily from the parent CFD 

simulations. The estimated uncertainty associated with the 

surrogate model’s predictions capture some of the experimental 

data but appear less conservative than necessary to capture a 

majority of it. Uncertainty is relatively high at the edges of the 

domain, where the model struggles relatively more to predict 

values accurately. This is a well-known weakness of ML models 

– difficulty of prediction under extrapolative and near-edge 

conditions. The predictions at 𝑅𝑒 = 4 × 106 are essentially as 

accurate as those at Reynolds numbers for which simulation 

results exist, and this should be the case for any prediction 

between training points in the parameter space. Any use of the 

model should take these results into consideration with 

appropriate correction or conservatism in subsequent design. 

 
Figure 18. Surrogate model predictions (transformed 𝑪𝒍) with 

numerical uncertainty, simulation predictions, and experimental 

data. 𝑅𝑒 = 2 × 106 (top), 𝑅𝑒 = 6 × 106 (middle), 𝑅𝑒 =

8.95 × 106 (bottom). 

 
Figure 19. Surrogate model predictions (transformed 𝑪𝒍) with 

numerical uncertainty for 𝑅𝑒 = 4 × 106. 

 

4. FUTURE WORK 
Although the analysis contained in the present study is 

believed to be thorough and to build on best practices, there are 

many potentials for further analysis in such a credibility 

assessment. The accuracy of the surrogate model predictions was 
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limited by that of the parent CFD simulations. This points to the 

fact that input uncertainty quantification for these simulations 

could 1) help to identify input parameters that should be more 

precisely set for the application (e.g. turbulence levels, 𝑘 − 𝜔 

model coefficients, etc.) and 2) expand the computed validation 

uncertainty to a more conservative level. StREEQ could be used 

for numerical uncertainty quantification on all cases, or the 

comparative assessment between StREEQ and GCI could be 

expanded to all cases and a decision made. The surrogate model 

could be updated to correct for simulation bias. Efforts could be 

made to quantify error and uncertainty on predictions made 

outside of the training space. 
 

5. CONCLUSION 
In the present study, a DNN-based surrogate model was used 

to predict coefficients of lift and drag for a NACA 0012 airfoil at 

various angles of attack. Building on best practices for credibility 

assessment including the PCMM, datasheets for datasets, and the 

VVUQ approach in ASME V&V 20-2009, the predictive 

accuracy and uncertainty of the surrogate model was analyzed. 

Distinguishable but moderate model form error was found to be 

present in the surrogate model predictions. This could potentially 

be addressed by bias correction in the surrogate model. 

Additional uncertainty quantification of the parent CFD model 

could also be done, focusing on input uncertainty and leading to 

correction of the most important inputs. Input uncertainty 

quantification would also increase the estimated validation 

uncertainty, which did not capture much of the experimental 

data. The numerical uncertainty estimates computed using the 

GCI were conservative compared to those of the Sandia National 

Laboratories UQ tool StREEQ. Further work could analyze 

numerical uncertainty estimates from GCI and StREEQ in more 

depth. The credibility of surrogate model predictions between 

training points was assessed and found to be comparable to that 

very near to training points. Future work could potentially 

examine credibility assessment of surrogate model pre-dictions 

outside of the training space. Overall, the present study  showed 

a start-to-finish process for robust credibility assessment of 

surrogate model predictions resulting in a statement of model 

credibility. It is the authors’ belief that the present study 

demonstrates the necessary elements for surrogate model 

credibility assessment and can be built off of in order to establish 

more clearly defined standards in this field. 
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