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ABSTRACT

The use of surrogate models in computational mechanics is
an area of high interest due to the potential for significant
savings in computational cost. However, assessment and
presentation of evidence for surrogate model credibility has yet
to reach a standard form. The present study utilizes a deep neural
network as a surrogate for a computational fluid dynamics
simulation in order to predict the coefficients of lift and drag on
a NACA 0012 airfoil for various Reynolds numbers and angles
of attack. Using best practices, the credibility of the underlying
simulation predictions and of the surrogate model predictions
are analyzed. Conclusions are drawn which should better inform
future uses of surrogate models in the context of their credibility.

Keywords: Surrogate modeling, Machine learning, CFD,
Credibility, Aerospace, Verification and Validation

NOMENCLATURE
a angle of attack
Re Reynolds number
G Coefficient of lift
Cy Coefficient of drag
Ugal Validation uncertainty
Unum Numerical uncertainty
Uinput Input uncertainty
U, Experimental uncertainty
Usurr Surrogate model uncertainty
GCI Grid Convergence Index
F; Factor of safety
fi Qol value on it" grid
T Refinement factor
p Order of accuracy
E Validation comparison error
S Simulation result
D Experimental result
Smodel Model form error

1. INTRODUCTION

The use of computational mechanics in engineering is
widespread and impactful in many ways, from informing details
of physical mechanisms of complex phenomena to high-level
design decisions. Computational fluid dynamics (CFD) is no
exception. CFD models exist at multiple levels of physics
fidelity, the most common of which in many engineering
applications is Reynolds-averaged Navier—Stokes (RANS).
Despite significant computational cost savings over Direct
Numerical Simulation (DNS) and Large Eddy Simulation (LES),
RANS can still be quite costly, especially in the context of design
optimization, in which relatively large parameter spaces are
simulated over. The use of a surrogate model in this context can
provide large computational cost reduction without sacrificing
significant predictive accuracy. From another point of view,
RANS models sometimes exist as the highest-fidelity model that
is available for routine acrodynamic analysis, with lower-fidelity
models being computationally less expensive, but also less
accurate [1, 2]. Slotnick et al. noted in their “CFD Vision 2030
Study” that surrogate models had the potential to make
multidisciplinary design optimization with data corresponding to
high-fidelity model predictions more feasible [3].

Surrogate models for computational mechanics can come in
a variety of forms but some of the most popular are machine
learning (ML) models. In the paper “Statistical Modeling: The
Two Cultures”, Breiman notes that classically, statisticians have
sought to use data models that have a high level of
interpretability, but not always sufficient accuracy. He notes that
interpretability versus accuracy is a false paradigm and that
predictive accuracy is the goal of modeling. As an example of
what he calls an “A+ predictor”, Breiman mentions Random
Forrests, which have relatively low interpretability but can have
high accuracy [4]. Hemming considered several models
including kriging and machine learning (ML) algorithms such as
radial basis function, neural networks, random forests, and
gradient boosting. He decided on using the latter three in his
study due to training costs. In this study, the surrogates were used
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to predict several features of the flow field around a 2D
hypersonic compression ramp. The problem was broken up into
two main parts, the first of which was prediction of the location
of the shock wave and boundary layer and the second of which
was prediction of quantities of interest in the flow field. Gradient
boosting performed well on the first task but was too expensive
for the second, which left random forests and neural networks,
which had comparable performance. Random forests were faster
to train and were generally more accurate [5]. The optimal
activation function for the neural networks was ReLu, which was
also the case in the study of Zelong et al. who used a two-layer
convolutional neural network [6].

One challenge with surrogate modeling is the selection of
an appropriate sampling strategy to fully cover the parameter
space such that the surrogate model does not predict at points
that are far from training points. The most simple but expensive
method is known as full factorial sampling, in which every value
of each parameter is used. Alternatives include Monte Carlo and
Latin Hypercube sampling [7]. Dupuis et al. used what they
termed the Local Decomposition Method to classify different
regions in a flow field around aircraft, vary the sampling density
depending on the nonlinearities present in each region, and
predict quantities of interest (Qols) in the flow field. The
surrogate model in this case incorporated proper orthogonal
decomposition (POD) and Gaussian process regression (GPR).
The method was able to correctly identify specific regions of the
flow field for multiple aircraft and accurately predict Qols
including the pressure and friction coefficients [8, 9].

In the CFD community, credibility is often discussed in
terms of predictive accuracy (or error) and uncertainty. These
concepts are highly applicable in surrogate modeling for
computational mechanics applications. In order to obtain a
wholistic understanding of ML surrogate model credibility,
however, it is useful to incorporate ideas from the broader ML
community. The book “Trustworthy Machine Learning”, by
Kush Varshney is a popular reference, and its breadth of
exploration immediately presents itself in a cursory glance at the
back cover, which states that “accuracy is not enough when
you’re developing machine learning systems for consequential
application domains” [10]. Safety is defined in terms of the
minimization of aleatoric and epistemic uncertainty. An
undesired outcome is defined as a “harm” if its cost exceeds
some threshold. Varshney goes into great depth in this book, and
several additional concepts are relevant, but the above summary
hopefully indicates the value of such a resource for broadening
understanding of credibility in this field and for providing
terminology around which discussions and standards can form.

In the present study, 2D CFD simulations of airflow over the
NACA 0012 airfoil are done in Ansys Fluent using the RANS
model with the k — w shear stress transport (SST) two-equation
eddy-viscosity model. The simulations are performed over a
range of Reynolds numbers and angles of attack. Solution
verification was performed on these simulation results using
Roache’s GCI approach. A deep neural network (DNN) is used
as a surrogate for the turbulence model in order to predict the lift
and drag coefficients based on the Reynolds number and angle

of attack. A datasheet for this dataset is created. The credibility
of the RANS simulation results is assessed using the ASME
VVUQ 20-2009 methodology. The credibility of the machine
learning model’s predictions is then assessed in light of the
RANS predictions and experimental data, and the contribution
of error and uncertainty to the machine learning model’s
predictions is presented. This work contains a relatively broad
study of surrogate model credibility in the context of a known
validation case, highlighting important aspects to overall
credibility of surrogate model predictions in engineering
applications involving computational mechanics.

2. METHODOLOGY

2.1 NASA Validation Case

The physical system chosen for analysis in this study
corresponded to the NASA NACA 0012 turbulence model
validation case [11]. This case was created to provide a context
to perform a rigorous validation analysis of turbulence models,
and is convenient for such purposes due to the thorough
description on the NASA site and the experimental data that has
been compiled and described there. The 2D geometry is specified
and boundary conditions are given. The default set of conditions
are for air with standard properties at a bulk flow Mach number
of 0.15, a Reynolds number per chord of 6 million, and a
reference temperature of 300 K. Experimental data exist for
multiple Reynolds numbers and angles of attack from around -
15° to 15°. However, the NASA page notes that the Ladson
tripped data are most appropriate for comparison with fully
turbulent simulations, and this data extends from around -4° to
around 20° at roughly every 2° (the experimental values of « are
not whole numbers). For the purposes of validation in the present
study, Ladson data at Ma = 0.15 and a fixed (tripped flow)
transition from -4° to 10° are used [12]. At angles of attack of
higher magnitude than 10°, flow nears separation and the trend
in the coefficient of lift C; becomes highly nonlinear. Reynolds
numbers of 2 million, 6 million and 8.95 million are simulated
and experimental data at these values is used for validation,
while data at Re = 4 million is compared against ML model
predictions at this value without any simulation informing the
surrogate at that point.

2.2 RANS Simulations

The geometry and meshes for the present study were created
in Ansys Design Modeler and Mesher, and the simulations were
run in Ansys Fluent. All tools were academic version 2022 R2.

2.2.1 Geometry and Mesh

The geometry of the NACA 0012 airfoil was obtained from
the NASA validation page and the computational domain was
created in Ansys Design Modeler. The base mesh was then
created, which had 240,000 quadrilateral elements, a smooth
transition inflation from the airfoil surface, and a growth rate of
1.2. The domain extents were large (>10c) to avoid

2 © 2024 by ASME



contamination of the solution from domain extent effects. The
overall mesh structure is similar to that given on the NASA
validation page and by Eleni et al. [13]. Two meshes were created
from this base mesh with uniform refinement ratios of 2 each
with respect to the next coarsest mesh. Thus, the base mesh was
labeled the 1X mesh and the two additional meshes were labeled
the 2X and 4X meshes. In addition, a 0.5X mesh was created and
used for numerical uncertainty quantification in the tool
StREEQ. The 2X and 4X meshes both had an initial cell height
less than y+ for this problem. While the 1X mesh did not, the
average percent difference in predictions for both coefficients
was less than 5% with respect to the predictions on the 2X mesh,
and differences in predictions between the 2X and 4X meshes
were of similar magnitude. This indicated sufficient refinement
levels for the purpose of the study, which is focused more on a
process of credibility assessment than achieving the highest level
of accuracy possible. Moreover, computational cost constraints
associated with running the simulations affected this decision.

2.2.2 Boundary Conditions, Material Properties, and Models

The boundary conditions of this problem consisted of a
velocity inlet, a pressure outlet, and a no-slip wall (on the surface
of the airfoil). On the velocity inlet boundary, the velocity
magnitude and vector direction were specified, the turbulent
intensity was set to 5%, and the turbulent viscosity ratio was set
to 10. The velocity magnitude was computed as 52.08 m/s from
the Mach number of 0.15 and the properties of ambient air. The
angle of attack of the airfoil was adjusted by changing the
velocity vector. On the pressure outlet, gauge pressure was
specified as zero, backflow turbulent intensity was 5%, and
backflow turbulent viscosity ratio was 10. Air was the fluid used
in the simulations, and it had a density of 1.177 kg/m? and a
dynamic viscosity that varied depending on the desired Reynolds
number, from 6.85%10° kg/(m s) to 3.07x10" kg/(m s). This
method was exemplified in a related study [14] and proved to
change the Reynolds number in such a way as to accurately align
with experimental results in the predicted Qols, as the
incompressible nature of the fluid and the Mach number were
preserved. The Reynolds numbers simulated were 2 million, 6
million, and 8.95 million, corresponding to three experimental
Reynolds numbers from Ladson’s study [12]. Throughout this
report, "Reynolds number" and "Reynolds number per chord"
are used alternatively, as the chord length was 1 m.

The turbulence model used in the present study was the
Reynolds-averaged Navier—Stokes (RANS) model with the
standard k —w shear stress transport (SST) two-equation eddy-
viscosity model as implemented in Ansys Fluent [15, 16]. This
choice was informed by a previous study [14] as well as a
preliminary calculation that compared predictions of the
coefficients of lift C; and drag C,; for the RANS-SST and RANS-
SA (Spallart—Allmaras) models. In this calculation, RANS-SST
was found to be more accurate. The coefficients of this model
were left at their default values for the present study, and these
values can be readily found in the Fluent interface.

2.3 Surrogate Model

The surrogate model implemented in the present study was
a deep neural network (DNN) implemented in Python using the
Keras API within Tensorflow. This choice of model was made
based on the fact that it offered a good combination of simplicity,
efficiency, and accuracy for the application. These attributes are
true in a relative sense when comparing alternative models as
mentioned in the introduction. The optimizer used was Adam
[17, 18] and the kernel initializer was he uniform [19, 20]. The
network had an input layer with 28 nodes and two hidden layers,
with 128 and 256 nodes, respectively. This architecture was
found to be more accurate and efficient than alternatives.
Predictive accuracy increased significantly with two hidden
layers over one hidden layer (the ability to capture nonlinearity
in the Qol trends factored into this), while it stayed roughly the
same with three hidden layers. The number of nodes per layer
resulted in good predictive accuracy while allowing the model to
train relatively quickly (within 20% or 3 seconds to train over
5,000 epochs as compared with a network with 28, 56, and 112
neurons in each layer, respectively). Data from the simulations
for angles of attack of —10° < a <10° was extracted from the
simulation reports and put into CSV files. The sampling plan is
shown in Figure 1. This range of a-values was chosen because
1) separated flow significantly affects the coefficient of lift at «
near £15°, 2) not all simulations converged at these a-values, and
3) the range of experimental data in the Ladson report was fairly
limited.
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Figure 1. Sampling plan for construction of dataset.

The features of the ML model were the Reynolds number
and angle of attack in degrees. Labels of the ML model were the
coefficients of lift and drag. In machine learning, features are
model inputs and labels are model outputs. Thus, the DNN model
took Reynolds number and angle of attack as inputs and
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predicted the coefficients of lift and drag. Predictive accuracy
with unscaled data was poor, so scaling was pursued. The
Reynolds number was divided by 1x10° and C,; was multiplied
by 100. This improved predictive accuracy significantly. The use
of normalization tools within the Tensorflow package did not
result in an increase in accuracy relative to this simple scaling.
Thus, the simple scaling method was used, and resulting
predictions were scaled back before comparison with simulation
and experimental data. 70/30, 80/20, and 90/10 training/testing
splits were explored, with the 80/20 split producing similar but
slightly lower accuracy to the 90/10 split. The 90/10 split was
used for the final predictions. The model was trained using 5000
epochs, a number settled upon after testing at several lower
numbers. A plot of loss versus number of epochs from this study
is shown in Figure 2 using mean absolute error (MAE). 5000
epochs produced low loss and approached asymptotic behavior
on the loss curve. 10,000 epochs was also tested and resulted in
negligible improvement in predictive accuracy. K-fold cross-
validation was used with 5,000 epochs for each of 10 splits. The
resulting average root mean square error (RMSE) for both Qols
was on the order of 1x10. A plot showing loss using RMSE for
a training run is shown in Figure 3. The spikes in loss are likely
due to the adaptive learning rate used in the Adam optimizer by
default. Additional analysis of this is ongoing. After cross-
validation, the model was used to predict the Qols.

— 5000 Epochs
10" 5 1000 Epochs
— 500 Epochs
— 100 Epochs

0 2000 4000

Epoch

Figure 2. Determining the proper number of training epochs.

0 2000 4000

Epoch

Figure 3. Typical loss curve for training run. Note Logarithmic
scale.

2.6 Uncertainty Quantification Theory

The uncertainty quantification methodology in the present
report follows that of the ASME VVUQ 20-2009 standard [17].
According to this standard, the validation uncertainty of a
simulation, Uy, , is written as

Uyal = \/Ur%um + Uiznput + Ug 1

where Uy, represents uncertainty at the 95% confidence
level, which is typically denoted by capitalization. In Equation 1,
Upnum 18 the numerical uncertainty associated with the simulation
prediction, Uj,py: is the uncertainty on simulation inputs, and Up,
is the experimental uncertainty. In the scope of the present study,
numerical and experimental uncertainties are quantified. Input
uncertainty is not explored due to time and resource constraints.
However, it could be significant and should be included in a
comprehensive credibility assessment. In the present study, the
numerical uncertainty is quantified using the grid convergence
index (GCI). Additionally, for a test case, a method employed by
a recently-developed tool named StREEQ at Sandia National
Laboratories is used. Documentation on this method is currently
limited and will be further investigated in future study. The input
uncertainty is not quantified but would be worthy of future
investigation. The experimental uncertainty was not provided in
detail in the Ladson report [12], but a (likely conservative)
estimate is made from a statement in the report.

For validation uncertainty associated with ML model
predictions, Equation 1 is modified to the form shown in
Equation 2. In this equation, an additional term Uy, is added,
which represents the surrogate model uncertainty. Below follows
a description of how each type of uncertainty was quantified.
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Uval = \/Ur%um + Uiznput + UL% + Uszurr (2)

The GCI was computed in the present study using Equation
3, where f1, f,, and f; are simulation results on the fine, medium,
and coarse grids, respectively. The order of accuracy, p, is the
result of passing the observed order of accuracy (Equation 4)
through a filter. In Equation 4, r is the refinement ratio, which in
the present study is 2. The filter applies a ceiling of 2 to the
observed order of accuracy and a floor of 0.5. These limits
correspond to "reasonable" limits of code order of accuracy for
scientific codes. F; is 1.25 when the difference between the
observed and theoretical orders of accuracy is less than 10% and
3.0 when the difference is greater than or equal to 10%. In
contrast to the GCI, StREEQ uses four simulation predictions at
four corresponding levels of mesh refinement and computes an
estimate mesh-converged value with corresponding levels of
numerical uncertainty.

_ Al

GCI = FS—(rP—1) 3)
ln(fs:fz)

Pobs = — 222 )

In order to quantify the experimental uncertainty, the Ladson
report was consulted. No specific uncertainties were given, but
it was mentioned that a repeatability study was conducted which
found that for two points nominally at @ = 0> and within 0.01° of
each other, the drag coefficient varied by 0.0002 or less and the
normal-force coefficient varied by 0.004 or less. The normal-
force coefficient variability was applied to the lift coefficient,
and these values were taken as experimental uncertainties.

Surrogate model uncertainty was quantified by comparing
the mean value of the Qol to the maximum value at each angle
of attack. The data for this exercise came from 100 runs of the
model, which produced 3-7 values at each angle of attack. The
difference between the maximum and mean at each angle of
attack was taken to be the surrogate model uncertainty at that
angle of attack.

2.6 Validation Theory

Model validation can be described as the process of analysis
of the extent that a model represents physical phenomenon for
its intended uses [21]. Validation is the anchor to reality for
computational predictions, and involves comparison with
experimental results. Though historically, comparison of contour
plots and other qualitative measures were considered validation,
the ASME VVUQ 20-2009 standard places an emphasis on
quantitative assessment by defining the validation comparison
error as in Equation 5. In this equation, E is the validation
comparison error, S is the simulation result, and D is the
experimental data.

E=S-D 5)

The validation comparison error includes possible errors from
measured data and simulation predictions. The actual model
form error, 60461, 1S bounded by the validation uncertainty as
shown in Equation 6. The validation comparison error and
validation uncertainty are shown in Chapter 7.

6model € [E - Uvalt E+ Uval] (6)

3. RESULTS AND DISCUSSION

In this chapter, the predictions of the CFD model and
surrogate model are presented. The numerical uncertainty
associated with the CFD simulations is computed and presented.
A validation analysis is performed using the ASME VVUQ 20-
2009 methodology. Finally, the credibility analysis is discussed
from a vantagepoint that seeks to collect key overall takeaways
in surrogate model credibility analysis.

3.1 CFD Predictions

The full flow field was predicted using RANS-SST k—w
model, with the Qols being the coefficient of lift C; and
coefficient of drag C;. Most of the results that follow are focused
on these Qols. Simulation predictions of both Qols for —10° <
< 10° are shown in Figures 4 and 5. Because the change in C;
over a-space is relatively large compared to the difference
between curves, the data was transformed. A line was fit to the
experimental data and this line was subtracted from each curve.
This process was repeated for each Reynolds number using the
associated experimental data. The resulting curves are shown in
Figure 6. The C; predictions for Re = 8.95 x 10° deviate less
from the experimental data than those at other Reynolds
numbers. RANS-SST simulation results from the NASA
validation study at two angles of attack for @ = 2°, Re = 6 x 10°
are also shown in these figures for reference, and agree
reasonably well. These results were obtained using NASA’s
CFL3D code [22].

0.016 ] * + Re=2e6 +
1 + Re = 6e6 "
0.014 A X Re = 8.95¢6
1 F *  NASA Results x
~ 1 x + + X%
U 0.012 A
] x + + v
| . +
1 X + + X
0.010 1 X, +, AR
] X +++ X
] X X
0.008 1 XX gxX
—10 0 10
a (deg)

Figure 4. C; from simulations.
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Figure 5. C; from simulations.
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Figure 6. Transformed C; simulation results.

3.2 ML Model Predictions

A given run of the ML model resulted in a prediction of five
values each of C; and C; at five angles of attack. A sample result
showing the predicted and true values from a run is shown in
Figure 7. Note that the C4-values are scaled. The predictions
closely approximate the true values at all points. Though this
figure gives a clean visual representation of the predictions of the
model, it cannot be used for rigorous credibility assessment. The
first step in the credibility assessment process was the use of
repeated  k-fold cross-validation wusing  scikit-learn’s
RepeatedKFold method with 10 splits and 3 repeats. The
resulting RMSE for C; was 5.68 x 10** and for was 2.16 x 10,

Because each run of the ML model resulted in only five
predictions at random angles of attack, the model was run 100
times resulting in 3-7 predictions at each angle of attack.
Analysis was done comparing the average and the maximum
values at each angle of attack from these runs. This analysis
showed that the percent difference between the average and

maximum values was nearly always below 10% for both Qols,
with two exceptions. The first was one data point with slightly
higher percent difference for C;. The second was a peak in
percent difference due to the low magnitude of the quantity for
C,. Since predictions were consistent from run to run (see Figures
8 —9), the average value of the Qols was used at each angle of
attack. However, the run-to-run variability was included in the
overall validation uncertainty as shown in the next section.
Figures 10 and 11 show the ML model’s predictions for all three
Reynolds numbers as well as an intermediate Reynolds number
(Re= 4 x 10°) that simulations were not performed at. Figure 11
shows the linearly transformed C; trends. The trend at Re = 4 %
10° is smoother than that at the other Reynolds numbers. This
reflects the fact that more runs per angle of attack were
performed for this Reynolds number, since 100 runs were used
but only one Reynolds number was predicted at. In the larger
picture, this reflects the fact that the more runs are used, the
better the average ML model prediction will converge to the true
average value. However, given a quantification of the run-to-run
variability and the reflection of that variability in the validation
uncertainty, this is a known phenomenon that can be controlled
or accounted for in the use of the ML model. Moreover, if the
model used significantly more data (e.g., 100 values each of Re
and @), training costs for such an exercise would be significant.

<+ Model Prediction C) O Test C)
Model Prediction Cy o Test Cy
1@
1.04@ o)
_ & S
0.5
3 ] $
o ]
0.0
] s *
—0.5 1
14

95 00 25
a (deg)

5.0

Figure 7. Example of ML predictions from run.
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Figure 8. Average and max. values for C; from 100 runs of ML
model at Re = 6 X 10°.
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Figure 9. Transformed average and max. values of C; from 100
runs of ML model at Re = 6 x 10°.
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Figure 10. Average ML model-predicted values for C, for all
Reynolds numbers.
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Figure 11. Transformed average ML model-predicted values
for C, for all Reynolds numbers.

3.3 Uncertainty Quantification

Uncertainty quantification in the present study consisted of
the quantification of numerical (U,,,), experimental (Up), and
surrogate (Ugyr) uncertainties. The methodology used to
quantify these uncertainties is discussed in Section 2.6. The
numerical uncertainty was quantified using the GCI, and results
for each of the Qols are shown in Figures 12 and 13. The GCI
for C, is generally below 10 and that for C, is generally below
102, The highest values are generally at the bounds of the a-
domain, where the flow is more complex and simulation
predictions were more mesh dependent.

The GCI is shown applied to Qol trends as uncertainty
bounds in Figure 14. Numerical uncertainty is reasonably large
for the Cd predictions at Re =2 x 10° and 8.95 x 10°, and smaller
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for Re = 6 x 10°. It also does not appear as a large uncertainty
band on the C; plots, largely due to the magnitude of the Qol.

1077 4 [
— 107* 5
S J
10709 — Re = 2¢6
Re = 6e6
10-6 —— Re = 9¢6
—10 0 10
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Figure 12. GCI computed for C; simulation results at Re = 2,
6, and 8.95 x 10°.
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Figure 13. GCI computed for C; simulation results at Re = 2,
6, and 8.95 x 10°.

Predictions were also made using the surrogate model at Re
= 4x10° Since simulations were not run at this Reynolds
number, numerical uncertainty was calculated as the interpolated
GCI (using the GCI at Re = 2x10° and 6x10°). The experimental
uncertainty was the same as for other Reynolds numbers.
Surrogate model uncertainty was computed as for other
Reynolds numbers. These calculations resulted in an uncertainty
estimate that is reasonable but contains influence from
neighboring points in the GCI.
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\_/ E O
0,01 S)
©0.01 ;0.00-
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0.00 = " y > —0.05+ " y
—10 0 10 —10 0 10
a (deg) a (deg)

Figure 14. GCI applied to Qol trends at Re = 2 x 10° (top),
6 x 10° (middle), and 8.95 x 10° (bottom).

3.4 Validation

Validation comparison error was computed using the
methodology described in Section 2.7 for simulation and
surrogate model predictions. This error and the corresponding
validation uncertainty were scaled by the experimental values
and presented as relative error and uncertainty. The results for
simulation error and validation uncertainty are shown in
Figure 15. Error and validation uncertainty for the surrogate
model is shown in Figure 16. Validation comparison error and
validation uncertainty are not shown for the simulation results at
Re = 4 x 10° because simulations were not run at this Reynolds
number. In each case, validation comparison error was computed
as a difference between the prediction of the model of interest
and the corresponding experimental value, before being scaled.
The validation uncertainty of the surrogate model is different
from that of the simulations by the inclusion of the surrogate
model variability as described in Section 2.6. Error levels are
generally higher for the surrogate model predictions than for the
simulations, but this is not always the case, as the surrogate
model deviates from the simulation predictions both above and
below. Validation uncertainty is higher for the surrogate model,
which makes sense as the surrogate model variability is only
additive in its impact on the validation uncertainty. In general,
two observations can be made. First, the error is generally
distinguishable from uncertainty, which indicates that actual
error exists in the model predictions. When uncertainty ex-tends
to the horizontal line at zero, it is an indication that the model
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predictions may in fact have zero error at that point, and that
reduction in uncertainty is the priority. Because error is
distinguishable, it is possible that an application of the surrogate
model could correct for the expected bias of the model’s
predictions. The second observation is that despite error being
distinguishable from uncertainty, the relative error is reasonable
in general. It is below 20% over most of the domain of analysis
for both Qols, with exceptions primarily in the C; predictions
near a = 0, where the magnitude of the Qol is small. While the
surrogate model was known to perform well in terms of accuracy
from the cross validation and comparison of predicted to test
values during prediction, it is helpful to compare the validation
comparison error of the surrogate model to that of the simulation
predictions. This allows one to see how much of the overall error
in a surrogate model prediction is inherited from the parent
simulations and how much is due to the surrogate model itself.
Figure 17 shows the validation comparison error corresponding
to the simulations and that of the surrogate model. In general, the
surrogate model error follows the simulation error closely. This
indicates that most of the validation comparison error and model
form error of the surrogate model comes from the parent
simulations. The surrogate model has lower error than the
numerical model for some angles of attack. This reflects minor
deviations in the surrogate model predictions from the numerical
model predictions. As percent error, the values for C; can be
significantly lower near zero angle of attack for the surrogate
model due to the small magnitude of the Qol there.
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Figure 15. Relative validation comparison error and validation
uncertainty of simulations.
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Figure 16. Relative validation comparison error and validation
uncertainty of surrogate model.

3.5 The Big Picture

Ultimately, credibility assessment must result in a statement
of whether the model of interest and its predictions are credible
in the application of interest. If so, the assessment should provide
an indication of how credible the model and its predictions are
in that application. The above results showed quantitatively the
error and uncertainty in the surrogate model’s predictions.
Figure 18 shows this information for Re =2 x 105, 6 x 10°, and
8.95 x 10° tied up into plots containing simulation predictions,
surrogate model predictions with accompanying numerical
uncertainty, and experimental data with accompanying
uncertainty. Figure 19 shows the surrogate model predictions
with their accompanying numerical uncertainty as well as the
experimental data and uncertainty.
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Figure 17. Validation comparison error corresponding to
simulation and surrogate model predictions.

The data for C; is transformed in order to highlight the
difference between the simulation predictions, surrogate model
predictions, and experimental data. Figures 18 and 19 summarize
the performance of the model nicely and show that there is a
substantial but arguably manageable error in the surrogate model
predictions, stemming primarily from the parent CFD
simulations. The estimated uncertainty associated with the
surrogate model’s predictions capture some of the experimental
data but appear less conservative than necessary to capture a
majority of it. Uncertainty is relatively high at the edges of the
domain, where the model struggles relatively more to predict
values accurately. This is a well-known weakness of ML models
— difficulty of prediction under extrapolative and near-edge
conditions. The predictions at Re = 4 x 10° are essentially as
accurate as those at Reynolds numbers for which simulation
results exist, and this should be the case for any prediction
between training points in the parameter space. Any use of the
model should take these results into consideration with
appropriate correction or conservatism in subsequent design.

—— Simulation Results
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Figure 18. Surrogate model predictions (transformed C;) with
numerical uncertainty, simulation predictions, and experimental
data. Re = 2 X 10° (top), Re = 6 x 10° (middle), Re =
8.95 x 10° (bottom).
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Figure 19. Surrogate model predictions (transformed C;) with
numerical uncertainty for Re = 4 x 10°.

4. FUTURE WORK

Although the analysis contained in the present study is
believed to be thorough and to build on best practices, there are
many potentials for further analysis in such a credibility
assessment. The accuracy of the surrogate model predictions was
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limited by that of the parent CFD simulations. This points to the
fact that input uncertainty quantification for these simulations
could 1) help to identify input parameters that should be more
precisely set for the application (e.g. turbulence levels, k — w
model coefficients, etc.) and 2) expand the computed validation
uncertainty to a more conservative level. StREEQ could be used
for numerical uncertainty quantification on all cases, or the
comparative assessment between StREEQ and GCI could be
expanded to all cases and a decision made. The surrogate model
could be updated to correct for simulation bias. Efforts could be
made to quantify error and uncertainty on predictions made
outside of the training space.

5. CONCLUSION

In the present study, a DNN-based surrogate model was used
to predict coefficients of lift and drag for a NACA 0012 airfoil at
various angles of attack. Building on best practices for credibility
assessment including the PCMM, datasheets for datasets, and the
VVUQ approach in ASME V&V 20-2009, the predictive
accuracy and uncertainty of the surrogate model was analyzed.
Distinguishable but moderate model form error was found to be
present in the surrogate model predictions. This could potentially
be addressed by bias correction in the surrogate model.
Additional uncertainty quantification of the parent CFD model
could also be done, focusing on input uncertainty and leading to
correction of the most important inputs. Input uncertainty
quantification would also increase the estimated validation
uncertainty, which did not capture much of the experimental
data. The numerical uncertainty estimates computed using the
GCI were conservative compared to those of the Sandia National
Laboratories UQ tool StREEQ. Further work could analyze
numerical uncertainty estimates from GCI and StREEQ in more
depth. The credibility of surrogate model predictions between
training points was assessed and found to be comparable to that
very near to training points. Future work could potentially
examine credibility assessment of surrogate model pre-dictions
outside of the training space. Overall, the present study showed
a start-to-finish process for robust credibility assessment of
surrogate model predictions resulting in a statement of model
credibility. It is the authors’ belief that the present study
demonstrates the necessary elements for surrogate model
credibility assessment and can be built off of in order to establish
more clearly defined standards in this field.
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