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Problem statement

Qubit fidelity can drift under noisy lab conditions

* Correlated charge and magnetic noise present
Randomized benchmarking (RB) is used to quantify
qubit fidelity over time

* Apply L Clifford operators + inverse

* Can we simulate drift and use comparison with
experiment to learn more about the noise itself or
stress test our error models?

e ‘Wall-clock’ simulations: replicate laboratory
conditions over complete RB experiments
* Maintain correlations in background noise over
long timescales
* Efficient simulations allowing for ‘fast-
forwarding’ of noise
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System of interest

* Single qubit in the singlet-triplet encoding
 Hamiltonian:

=
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Exchange Coupling: .J () Hyperfine Splitting: Ab. (1)

* Exchange coupling is a function of voltage
 Temporally correlated voltage and magnetic
noise generate classical Hamiltonian noise

* Unitaries are approximated as

Sampling time (At ~ 1ns)

T/ At

U(T) ~ 1:[ exp [—%HgTo(kAt)]
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Generating voltage pulses

* Realistic voltage pulse timings are optimized
to generate Clifford operators C;
* Objective function: maximize fidelity of

approximated unitary with respect to
target Clifford
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* Pulse durations, rise/decay times, sampling

times, etc. replicate pulses created by

waveform generators
 Environment parameters also adjustable

T [CjU(%(t), Abz)] ‘2)

Frequency

Sample Clifford Pulse Sequence
Co = X(—7/2)Z(-n/2)X(n/2)Z(7/2)
Ab, = 10MHz, At = 2ns, fir = ImHz, fyv = 10MHz
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Calibrating our noise model

Voltage Noise Power Spectral Density
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* Correlated noise modeled as a sum of Ornstein- 10
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Simulated randomized benchmarking schematic

Timet * Depicted SPAM times are not to scale.
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Simulated drift in randomized benchmarking

_ ~ RB decay curves Approximate per-gate error over time
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Error attribution based on per-circuit bitflip probabilities

Actual vs. predicted bitflip probabilities under inferred noise conditions
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Summary

* Singlet-triplet qubits subject to correlated noise

* Wall-clock simulations can be used to calibrate circuit-specific bitflip probability estimators
* Relative sensitivity of individual Clifford sequences can be deduced from fit parameters

* Calibrated estimators can be used to infer unknown background noise levels

* Developed computationally efficient means to simulate realistic device conditions across several RB experiments
(lab time)
* Computationally cheap ‘fast-forwarding’ of 1/f noise without losing correlations
* Pulses, noise parameters, etc. tunable to model realistic device/laboratory conditions
* Can capture the effects of slow drift in noise

* Future work
* Multi-qubit analysis
* Alternate qubit encodings (e.g., exchange-only qubit encoding)
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