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Mass-spring-damper models approximate
the Impact load on pbridges

[1] E. SHAHABPOOR, A. PAVIC, AND V. RACIC, Identification of mass—spring—damper model of walking humans, in Structures,

vol. 5, Elsevier, 2016, pp. 233—246. 2



A one-mass osclllator estimates
a driving car's vertical dynamic pbehavior
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[2] R. PLATZ, Comprehensive testing environment to evaluate approaches in uncertainty quantification for passive and active
vibration isolation, Model Validation and Uncertainty Quantification, Volume 3, (2023), p. 97




A two mass osclllator approximates
the vibration isolation experiment
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[2] R. PLATZ, Comprehensive testing environment to evaluate approaches in uncertainty quantification for passive and active
vibration isolation, Model Validation and Uncertainty Quantification, Volume 3, (2023), p. 97



How do model-torm errors arise”
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Embedded model enrichments reduce
the model-form error and enable extrapolative predictions

X
A> Model —m(x, A)— f(x)

« A is physics-informed — extrapolative
* Quantified uncertainties informed by Bayesian calibration

* Computational cost:
low-fidelity model S enriched model < high-fidelity model
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Case 1: forming mass-spring-damper models
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diag(m)i(t) = ) f
= f.(t) + [,(¢)
Damping=— [, (1) = — ¢;x,(1)
Spring —» f, () = | —k(x(t) — x;_1() + ki O (O = x,(O) | | 1o (1) — X, (D)

ooke's law nonlinear term




The reduced model Is formed
by subsampling the detailled model
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Omitting masses causes error in the
reduced model

etailed mggdel ——- Redukced model
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An enrichment operator Is added to the reduced model
to form the enriched models
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The enrichment operator approximates
the movement of mass M + 1 with a simple oscillator
Enriched model
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. Model parameters: 0 = (5, a, p, a))
0.~ N (,l/tl-, 01.2), where i, E R, 6, € Ry, and i = {1,2,3,4}

. Hyperparameters: ¢p = (¢1,qb2, qb3,q54), where ¢, = (,ul-, Gl-)

* \WWe use hierarchical Bayesian calibration to sample a
posterior on ¢




The enriched model almost perfectly matches

the trajectory of the linear detailed model
Qfl?etailed m%odel —) Reduced mode| =l l!?riched model

, 7 k1 7
Ak k 7 ?
At 2 W~ W~
= =l = =
é ) Co Z C1 / C1
/['. Detailed
50 L “ A — - — Reduced
— Enriched | ~ . .
1 [ A ——  Enriched model is
250 || 1Y /'\\ N \ A calibrated with mass
3 TFRVA /\, N\ ~/ A ./ 7\ _ onesdisplacement data.
T 0.0 | . | 1 N L\ A\
\ -\ ] \
25t \l ,_/ \ | \/
v\ \
~5.0} |
\/
0 5 10 15 20
Time

[3] R. BANDY AND R. MORRISON, Quantifying model form uncertainty in spring-mass-damper systems, Model Validation and
Uncertainty Quantification, Volume 3, Conference Proceedings of the Society for Experimental Mechanics Series, (2024).



Discrepancies emerge between the enriched
model and the nonlinear detailed model

Detailed mode| ==————1p> Reduced model === Enriched model
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[3] R. BANDY AND R. MORRISON, Quantifying model form uncertainty in spring-mass-damper systems, Model Validation and
Uncertainty Quantification, Volume 3, Conference Proceedings of the Society for Experimental Mechanics Series, (2024).



Discrepancies emerge between the enriched
model and the nonlinear detailed model

Detailed mode| =P Reduced mode| =———Pp Enriched model

(3 iy (03]
AW W,
| |
| |
A 32

7

N

ky ky ks ky ky k,

L P I P I = i i

AR
|
|
|
AR
|
|
AT
|
|

A Detailed o
— - — Reduced )
4 — Enriched 4 z
(. o\ A
2 i \ l \ / 2 ~ : , A.:‘A'u‘ \ / \ /
i C A ‘ A .
| \ \ " 'P \ o/ N ~ \ I 5 a [ \ J .-'2"" &, \ 7
— ‘ W a I 2 2004
E"g & A g 2 "A=Av -, H O / \ ] . \ \ \‘té \ “‘},:
0 [ A AR AT o \ e - \ 4
‘ [V e A - = o[ AW L i
W " A doo\ . |
‘ “ . EA \ ./" v _2 \ l A . /
) _k. y \ \
V 4 |
-4 | . | | | T | | | |
0 5 10 15 20 0 5 10 15 20
Time Time

[3] R. BANDY AND R. MORRISON, Quantifying model form uncertainty in spring-mass-damper systems, Model Validation and
Uncertainty Quantification, Volume 3, Conference Proceedings of the Society for Experimental Mechanics Series, (2024).
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How does the degree of nonlinearity
impact model discrepancy”

fs,i(t) = | —ki(x,(1) — x;_1(2) + ki (x4 4(0) — x(t))

[1 + o(x; (1) — x;_1(2))

Hooke's law nonlinear term
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I'he enriched moadel closely matches
the linear detailed trajectories

Detailed mgdel ====3>Reduced model === Enriched model
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The enriched model overestimates the dampening

of mass two for the weakly nonlinear model
Detailed model ====—%>Reduced model === Enriched model
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T'he enriched model overestimates the dampening and
frequency of mass two for the stronger nonlinear model

Detailed model =====%>Reduced model === Enriched model
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The enriched model overestimates the initial amplitude
of mass two for the strongest nonlinear model
Detailed model ====—%>Reduced model === Enriched model
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Case 2

E)gperiment —_— L OW-fidelity
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The low-fidelity model Is a two-mass
oscillator with linear torces
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Acceleration (%(t))

Assumed finear forces cause error
N the low-fidelity model
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AN enrichment operator iIs embedaded
into the low-fidelity model

pEC

kS

T30

mf

202(1) +g,12(2) | 2(0) + gy2(0)°

Enrichment operator

=—{ ~F, (20)~k (200 - 50 |

_ { +k (z(t) - Zf(t)) —kfzf}

[4] D. ROETTEGEN, B.R. PACINI, AND R. MAYES. Techniques for nonlinear identification and maximizing modal response,
Nonlinear Structures and Systems, Volume 1, Conference Proceedings of the Society for Experimental Mechanics Series, (2024). 23



T'he enriched model Is a two-mass
osclllator with nonlinear active damping
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1The enriched moagel covers most
experimental observations
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[5] R. BANDY, T. PORTONE, AND R. MORRISON, Stochastic model correction for the adapftive vibration isolation round-robin
challenge, Model Validation and Uncertainty Quantification, Volume 3, Conference Proceedings of the Society for Experimental

Mechanics Series, (to be released). 29



Conclusions

* Mass-spring-damper models illustrate model-form error that can
arise In many structural dynamics applications.

* Expert knowledge about a potential source of model-form error
iInforms the enrichment operators.

* Enriched models decrease discrepancies and retains interpretability.
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