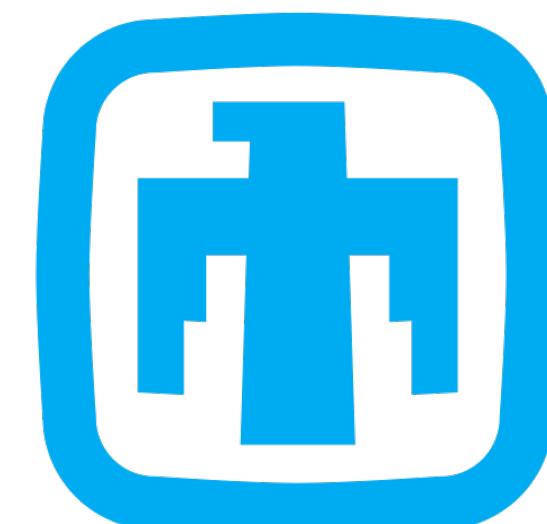


Nonlinear Forces and Omitted Masses: Mass-Spring-Damper Models and Their Model-Form Errors

Rileigh Bandy¹, Teresa Portone², and Rebecca Morrison¹

1. Department of Computer Science, University of Colorado Boulder
2. Sandia National Laboratories

February 29, 2024

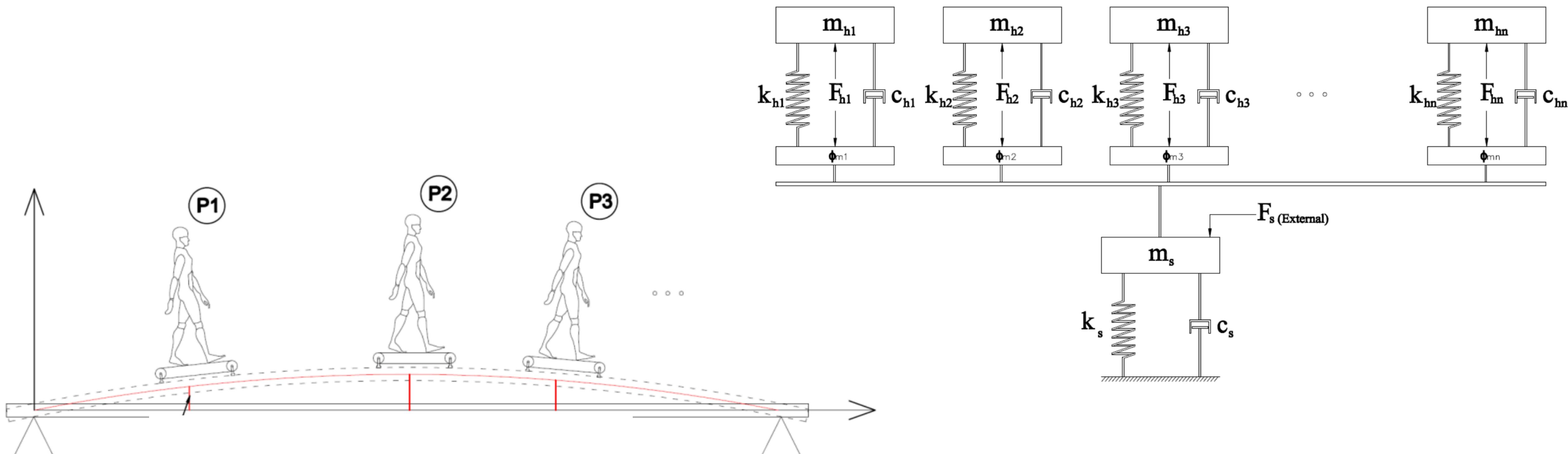


**Sandia
National
Laboratories**

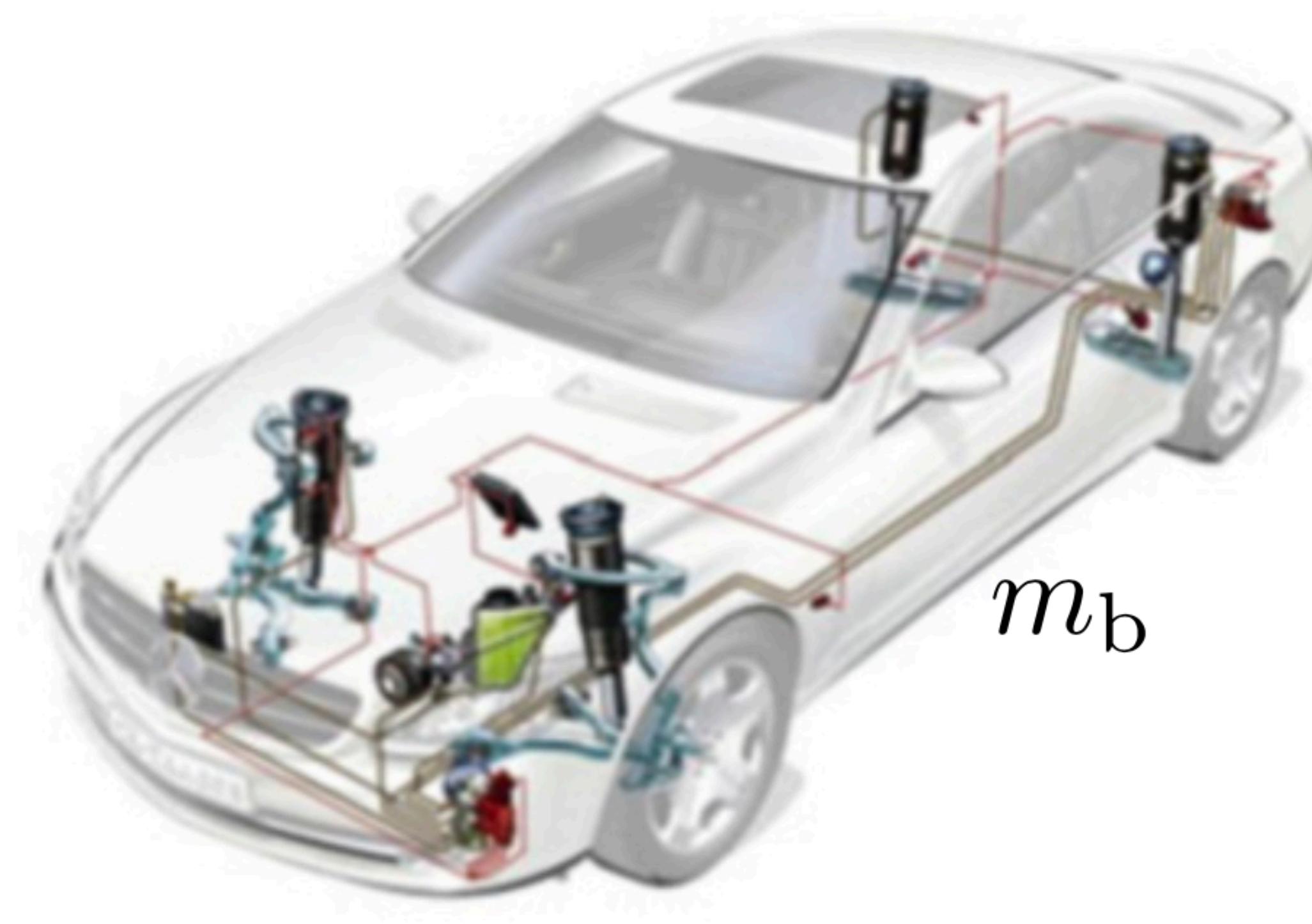
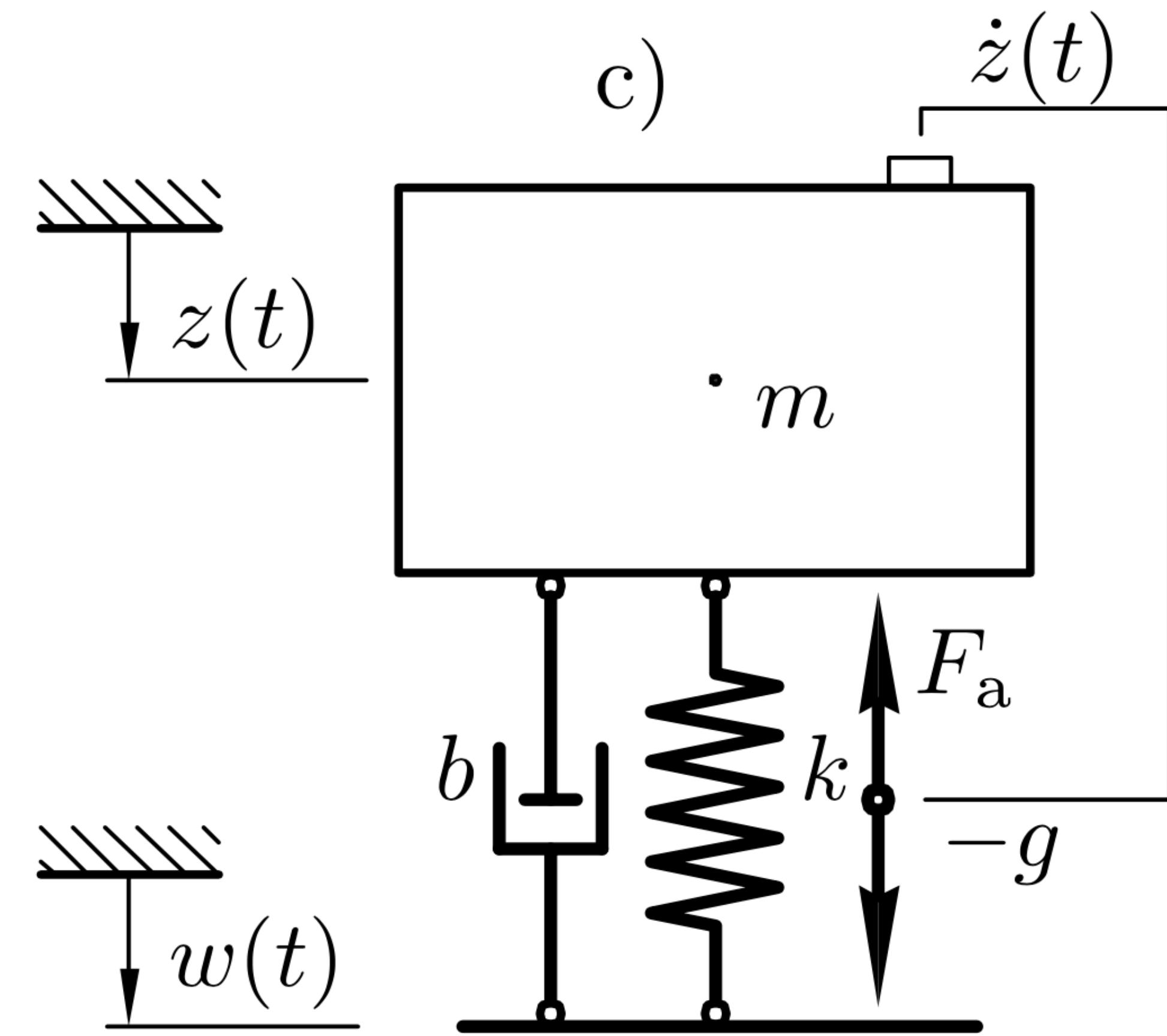
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

SAND:TODO

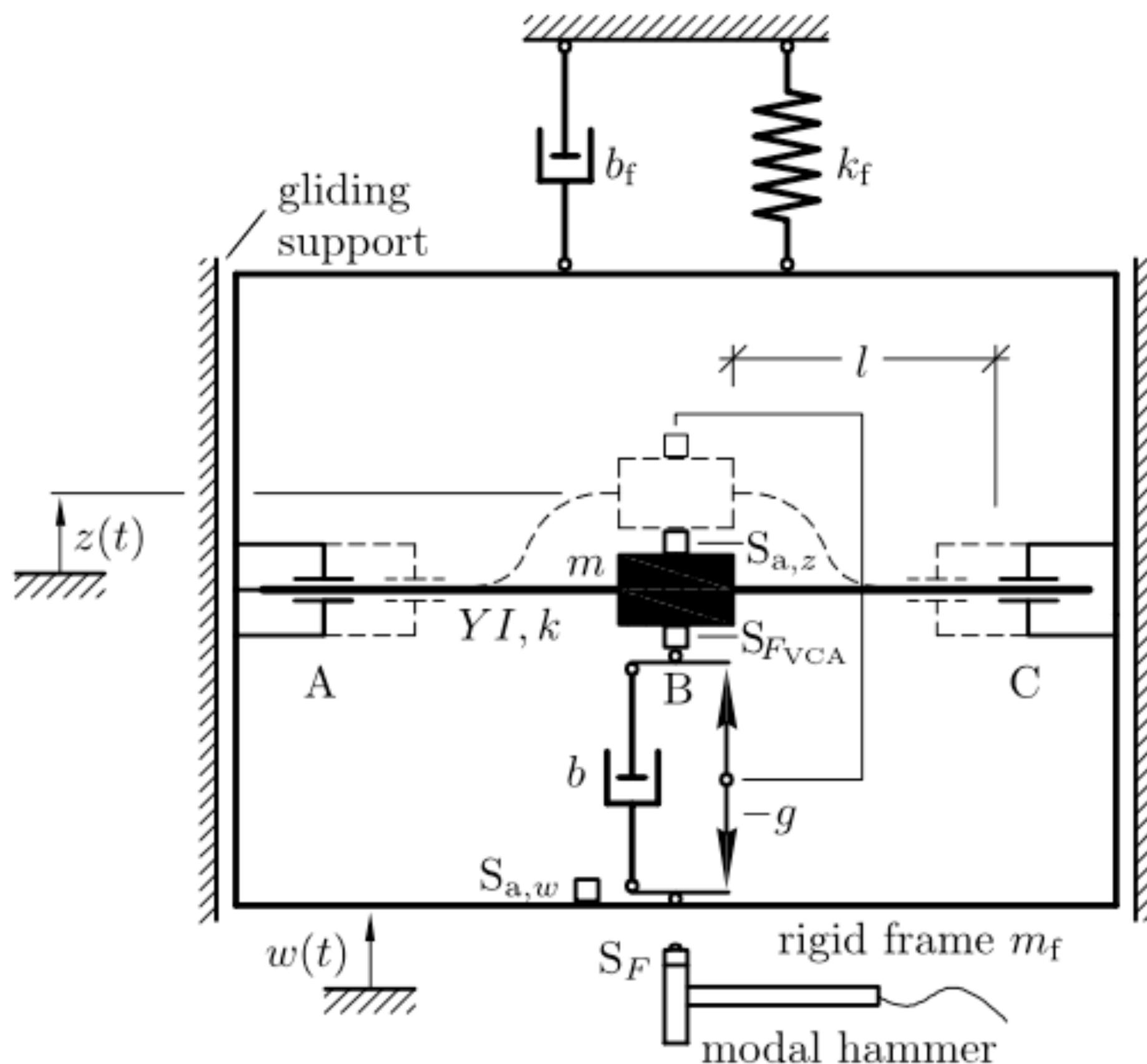
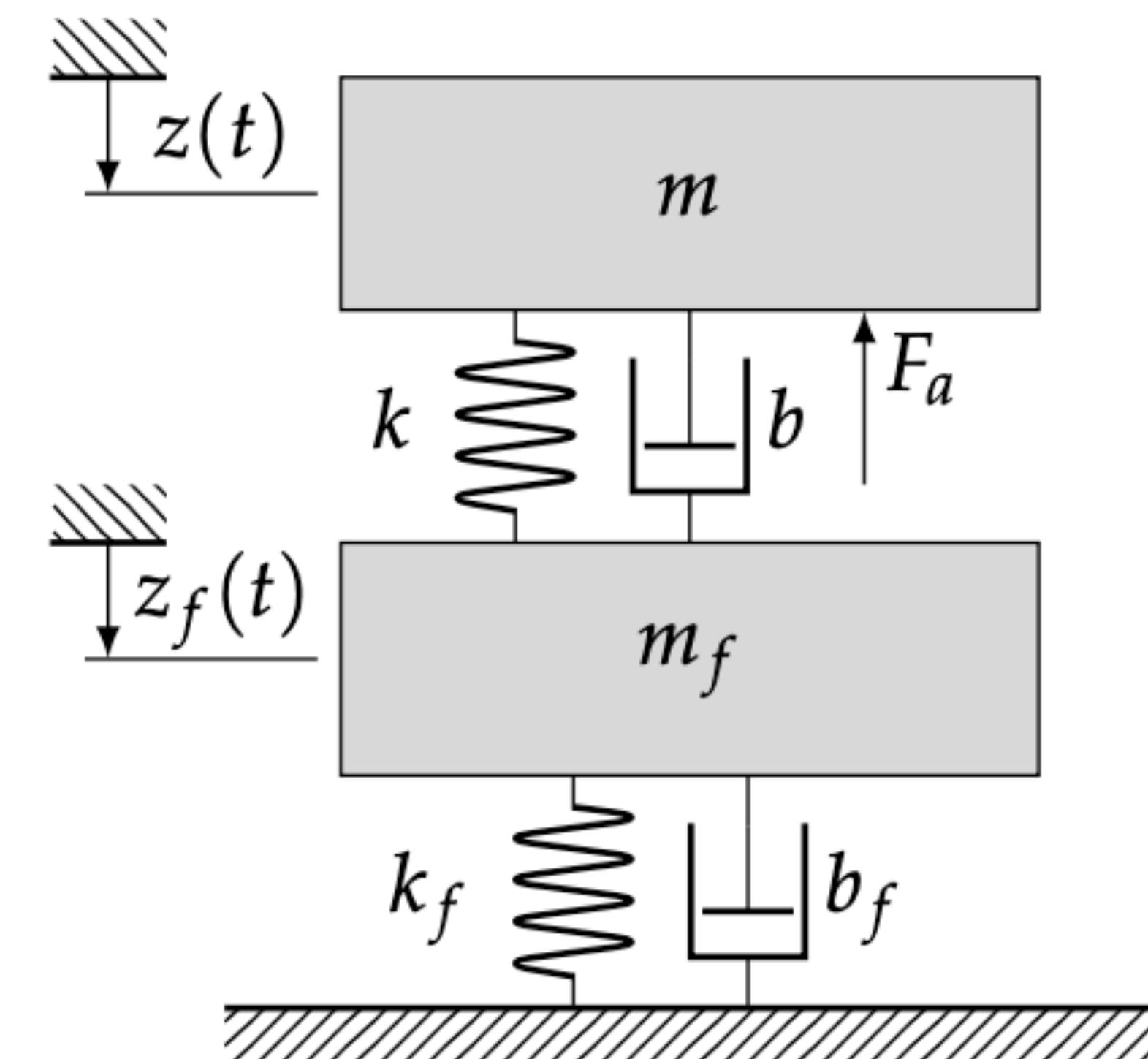
Mass-spring-damper models approximate the impact load on bridges



A one-mass oscillator estimates a driving car's vertical dynamic behavior

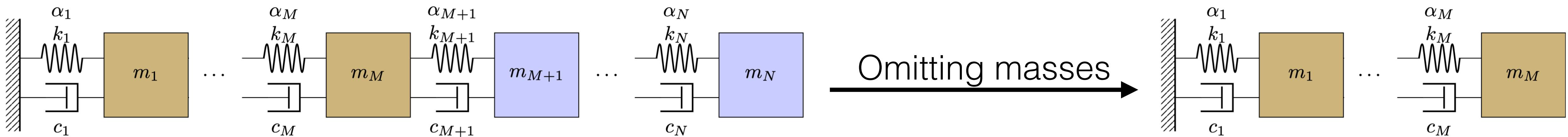


A two mass oscillator approximates the vibration isolation experiment

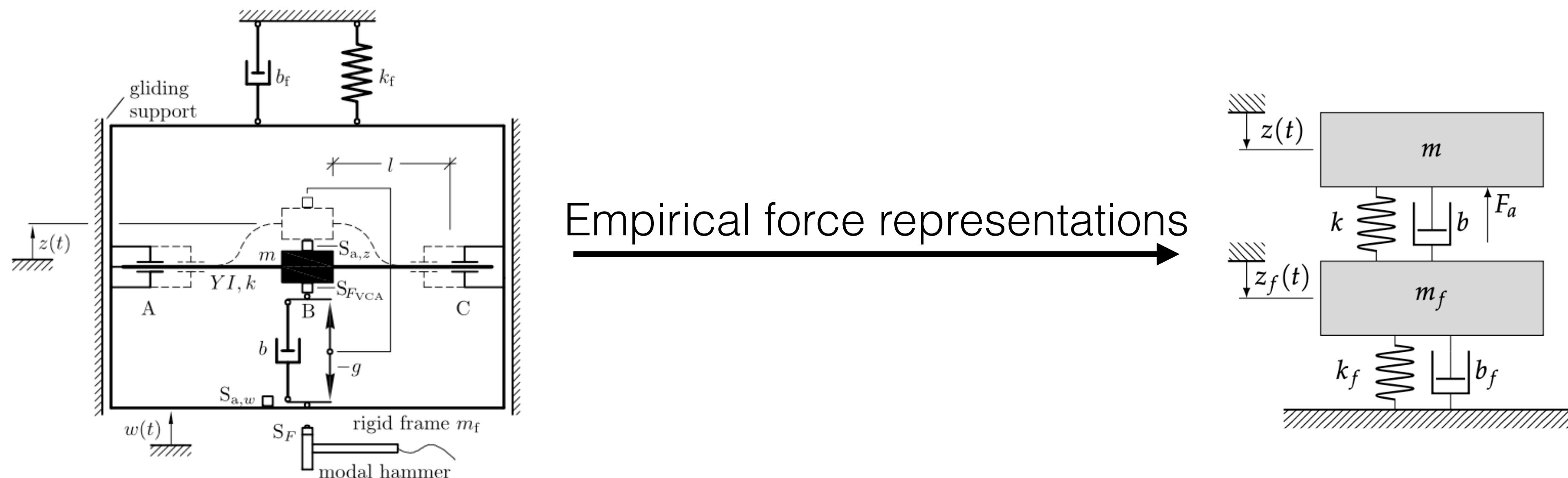


How do model-form errors arise?

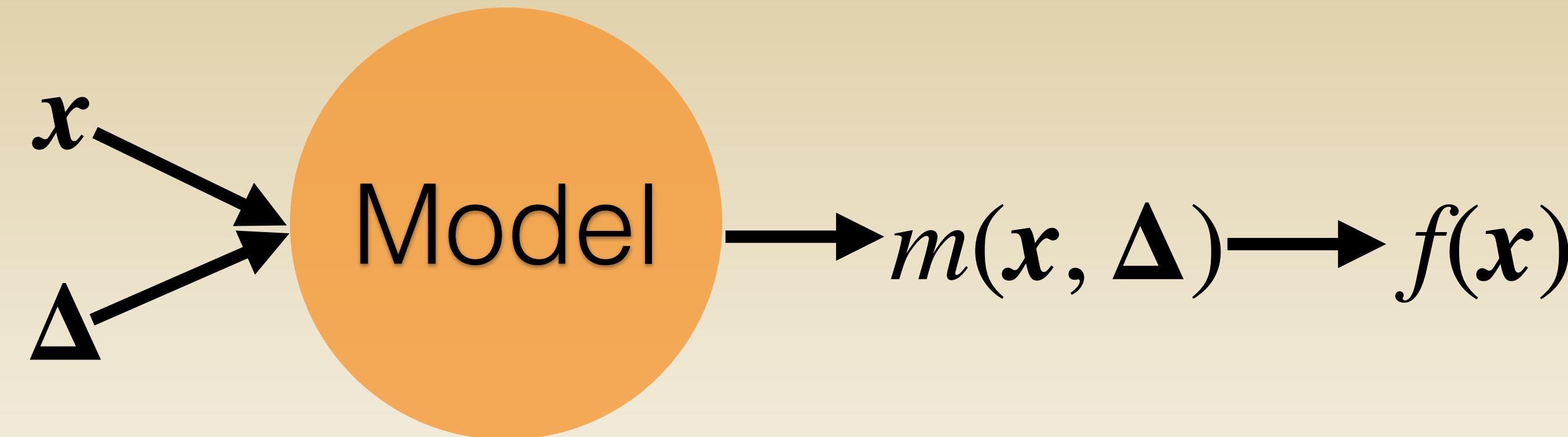
Case 1



Case 2

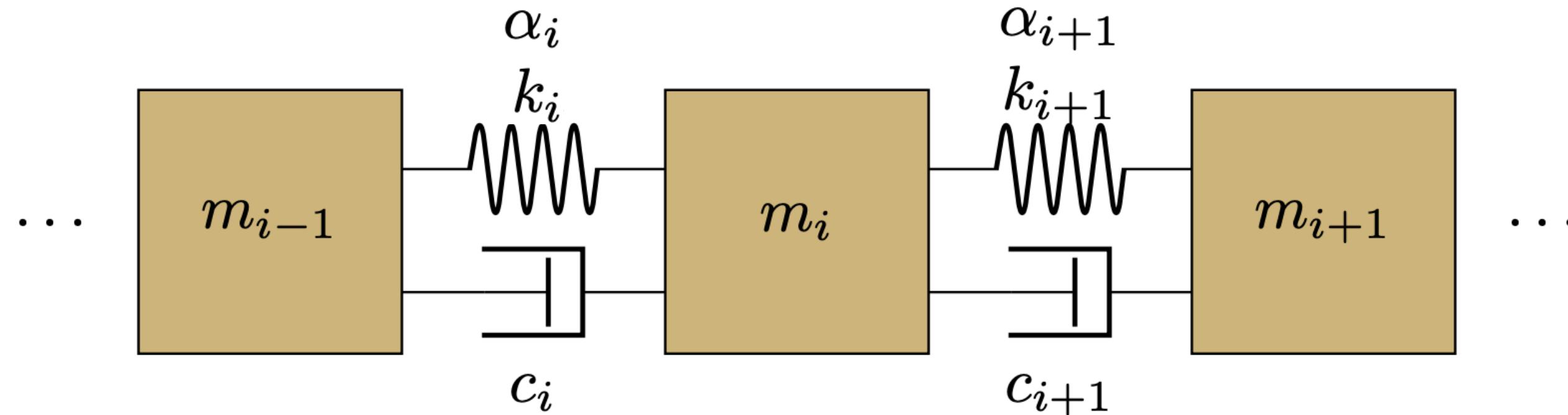


Embedded model enrichments reduce the model-form error and enable extrapolative predictions



- Δ is physics-informed \rightarrow extrapolative
- Quantified uncertainties informed by Bayesian calibration
- Computational cost:
low-fidelity model \lesssim enriched model \ll high-fidelity model

Case 1: forming mass-spring-damper models



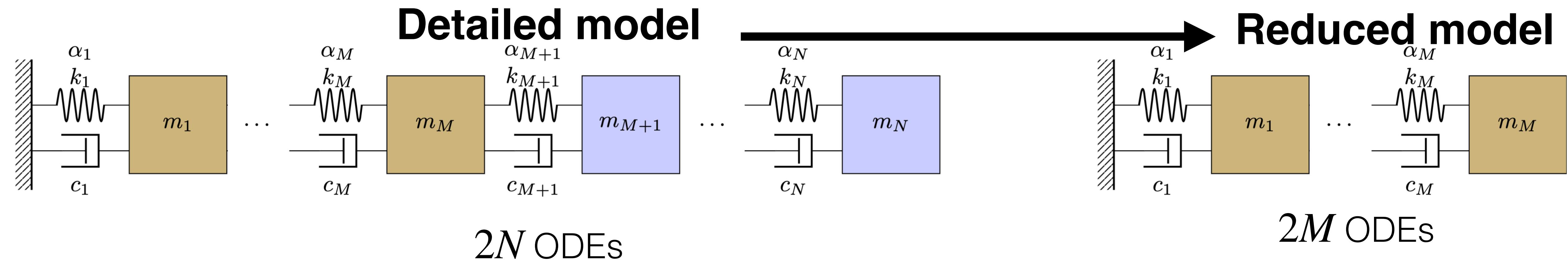
Newton's Second Law of Motion:

$$\text{diag}(\mathbf{m})\ddot{\mathbf{x}}(t) = \sum f \\ = f_d(t) + f_s(t)$$

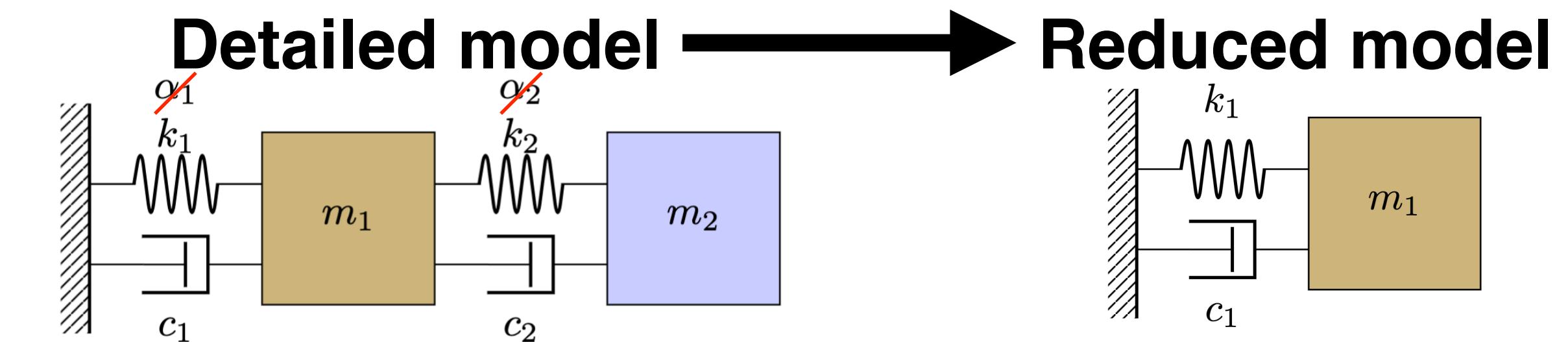
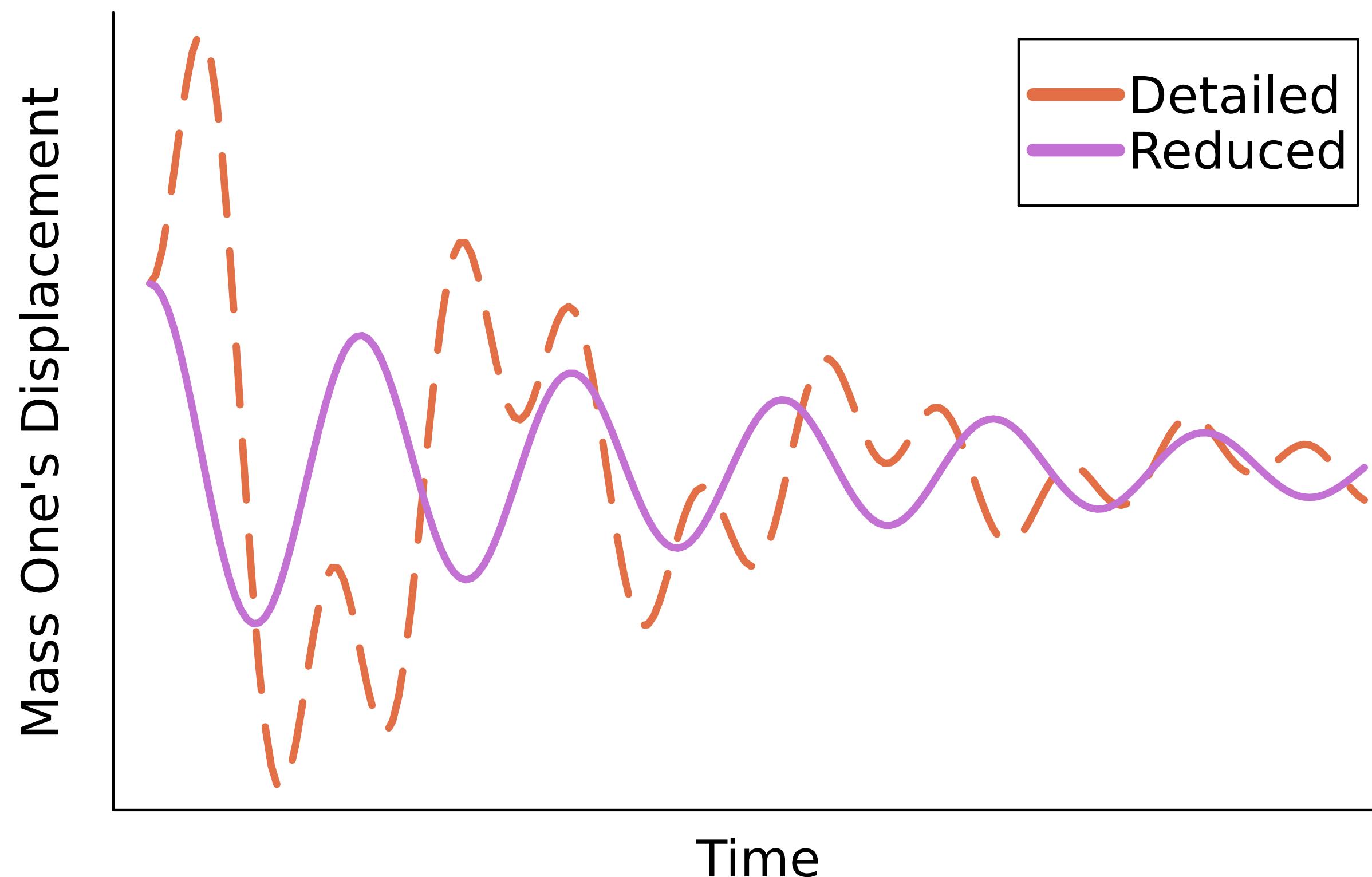
Damping $\rightarrow f_{d,i}(t) = -c_i \dot{x}_i(t)$

Spring $\rightarrow f_{s,i}(t) = \left[\underbrace{-k_i(x_i(t) - x_{i-1}(t)) + k_{i+1}(x_{i+1}(t) - x_i(t))}_{\text{Hooke's law}} \right] \left(1 + \underbrace{\alpha_i(x_{i+1}(t) - x_{i-1}(t))}_{\text{nonlinear term}} \right)$

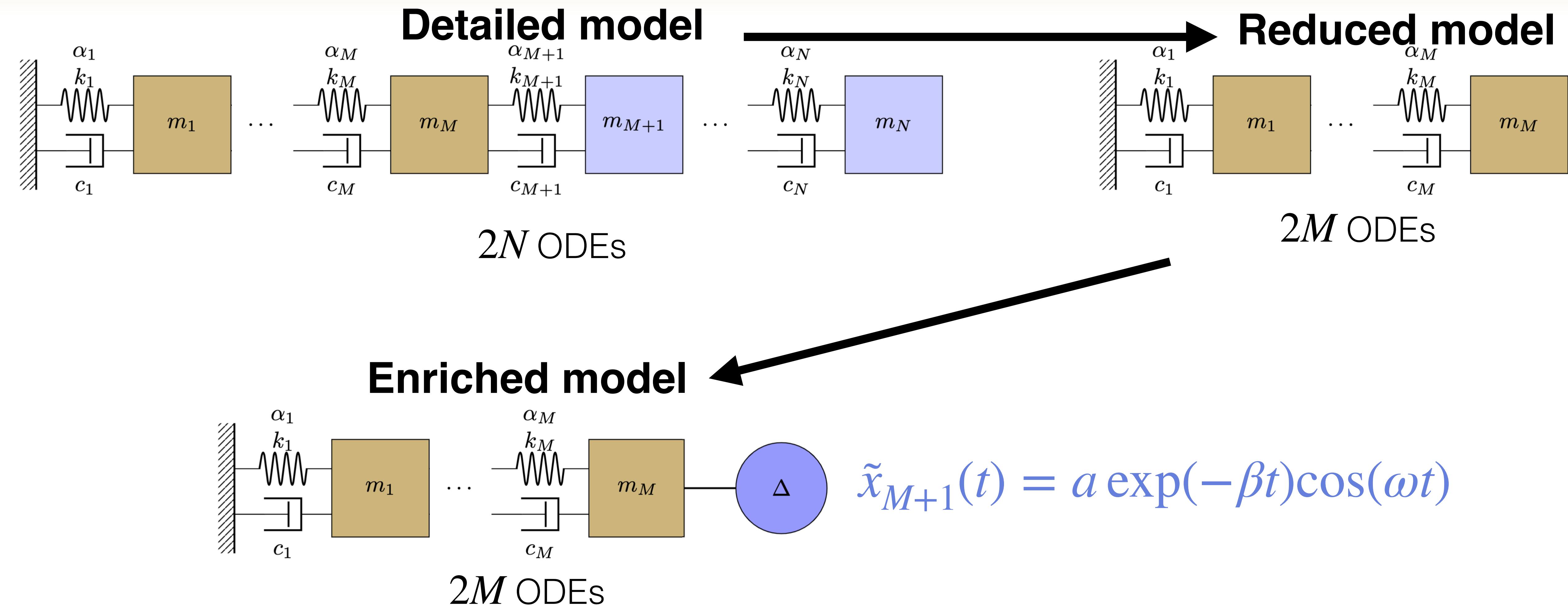
The reduced model is formed
by subsampling the detailed model



Omitting masses causes error in the reduced model

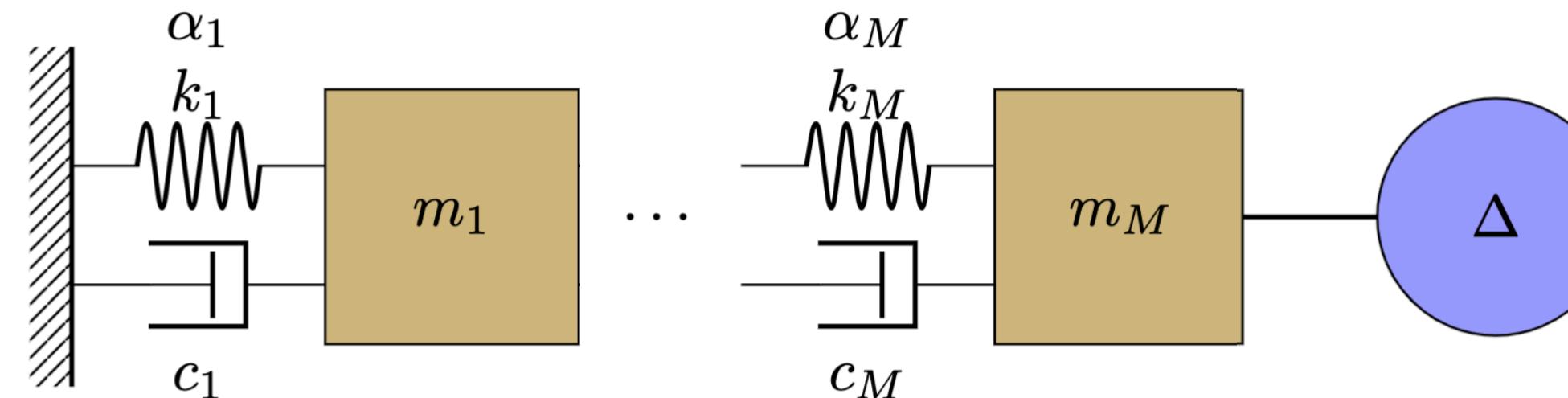


An enrichment operator is added to the reduced model to form the enriched models



The enrichment operator approximates the movement of mass $M + 1$ with a simple oscillator

Enriched model

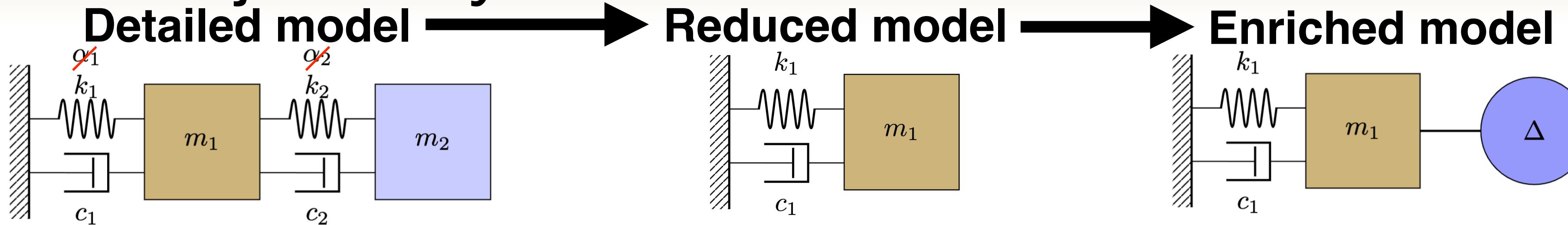
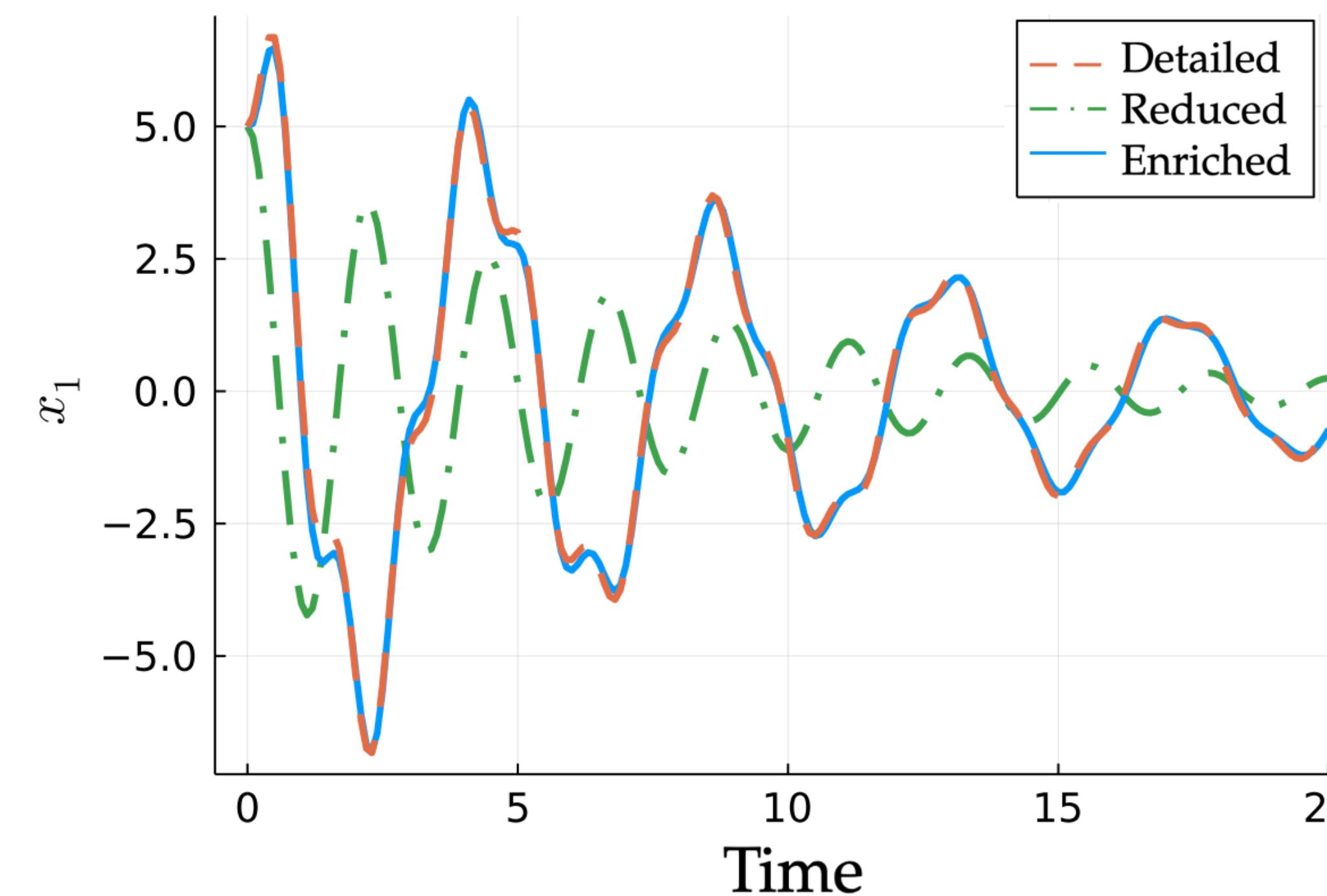


$$\tilde{x}_{M+1}(t) = a \exp(-\beta t) \cos(\omega t)$$

$$\ddot{x}_M(t) = \frac{1}{m_M} \left\{ -c_M \dot{x}(t) + \left[-k_M (x_M(t) - x_{M-1}(t)) + \delta(\tilde{x}_{M+1}(t) - x_M(t)) \right] (1 + \alpha_i(\tilde{x}_{M+1}(t) - x_{M-1}(t))) \right\}$$

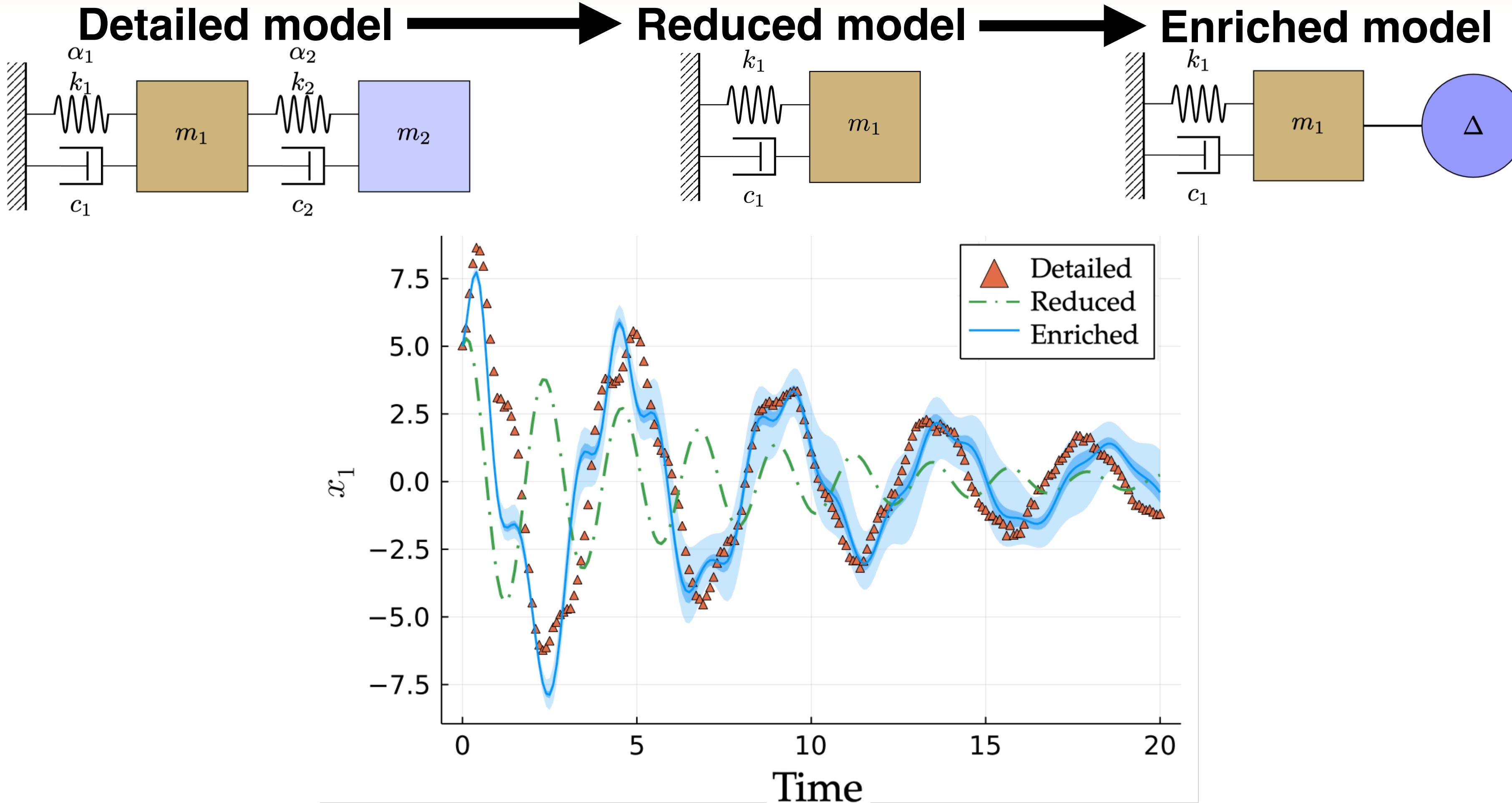
- Model parameters: $\theta = (\delta, a, \beta, \omega)$
- $\theta_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$, where $\mu_i \in \mathbb{R}$, $\sigma_i \in \mathbb{R}_{\geq 0}$, and $i = \{1, 2, 3, 4\}$
- Hyperparameters: $\phi = (\phi_1, \phi_2, \phi_3, \phi_4)$, where $\phi_i = (\mu_i, \sigma_i)$
- We use hierarchical Bayesian calibration to sample a posterior on ϕ

The enriched model almost perfectly matches the trajectory of the **linear** detailed model

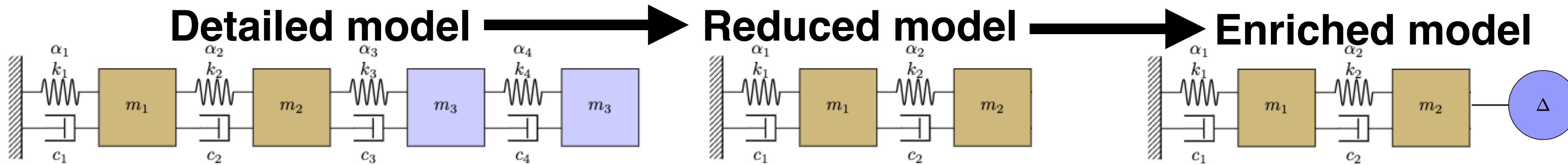
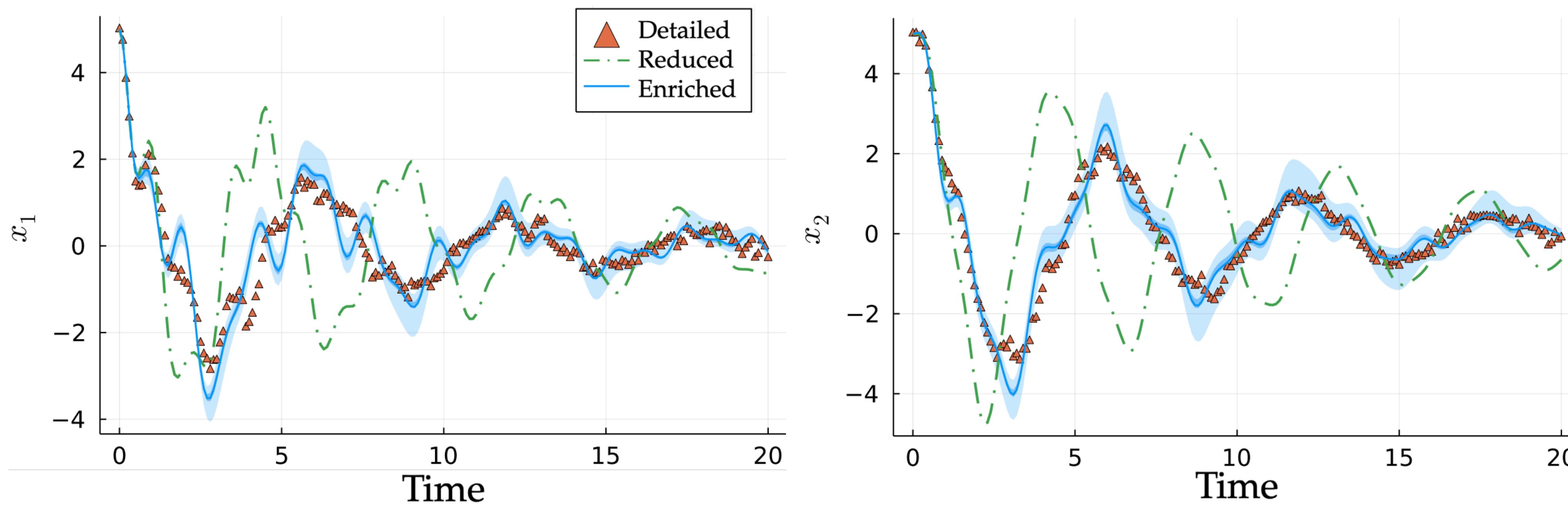


Enriched model is calibrated with mass one's displacement data.

Discrepancies emerge between the enriched model and the **nonlinear** detailed model

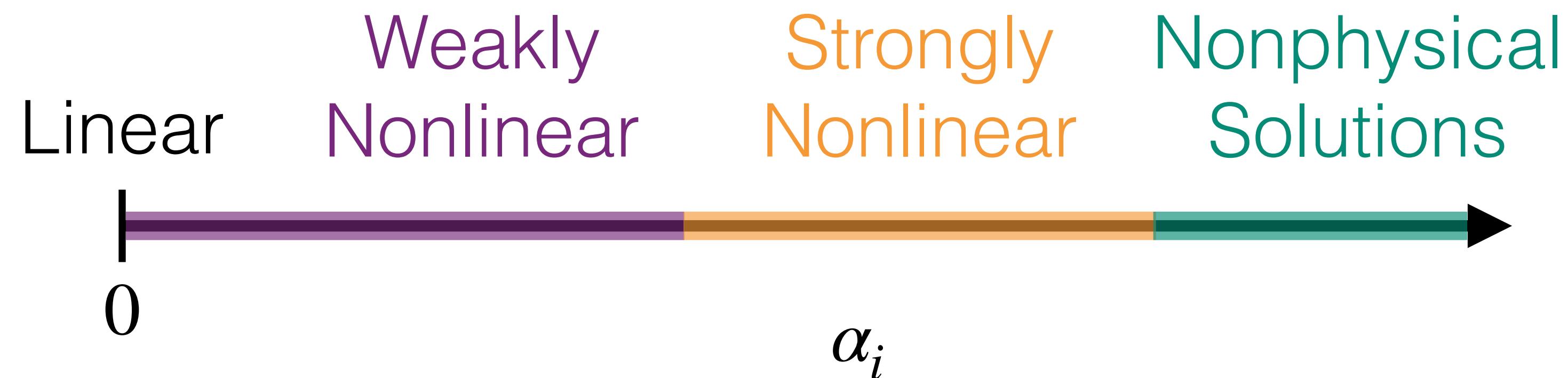


Discrepancies emerge between the enriched model and the **nonlinear** detailed model

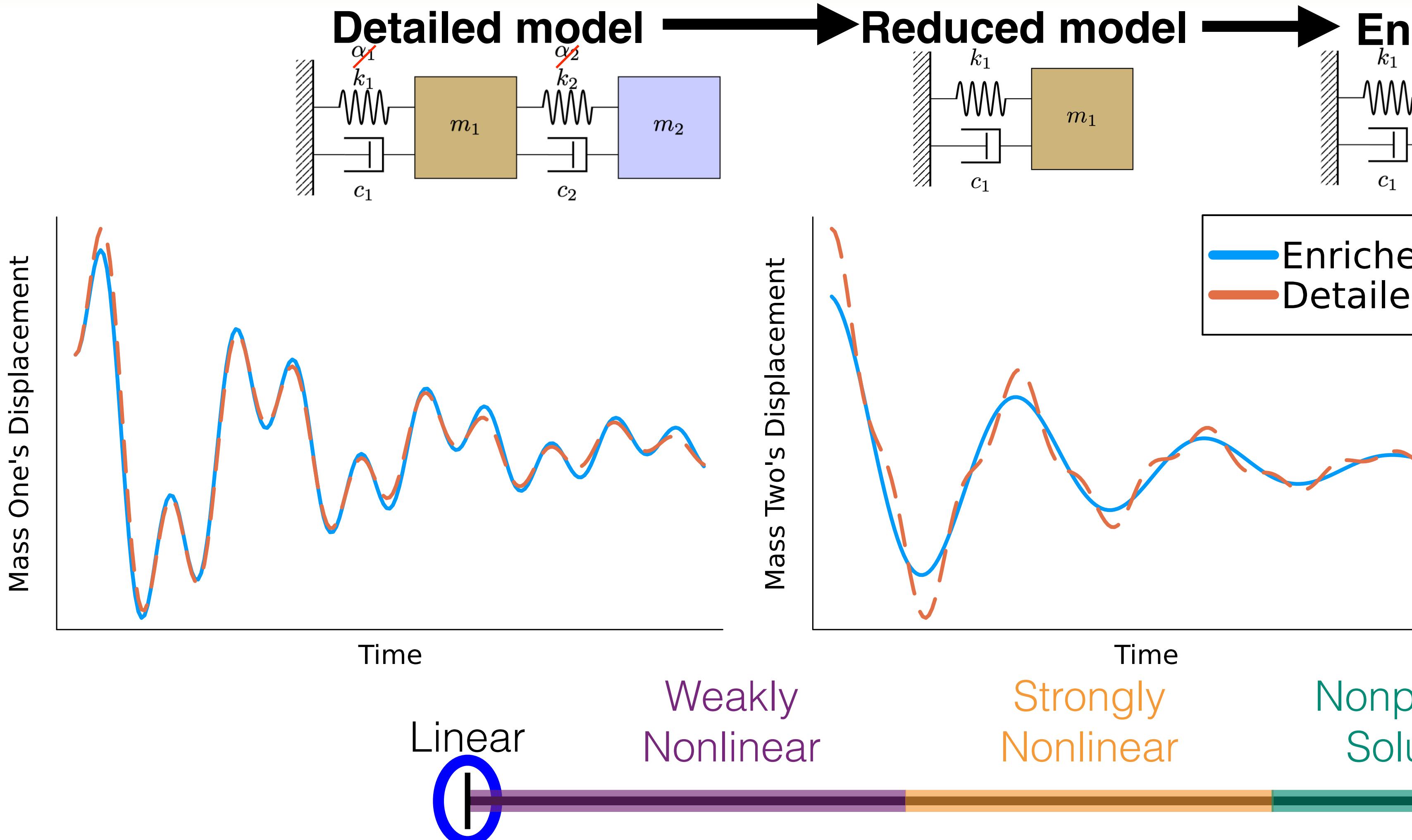


How does the degree of nonlinearity impact model discrepancy?

$$f_{s,i}(t) = \left[\underbrace{-k_i(x_i(t) - x_{i-1}(t)) + k_{i+1}(x_{i+1}(t) - x_i(t))}_{\text{Hooke's law}} \right] \left(1 + \underbrace{\alpha_i(x_{i+1}(t) - x_{i-1}(t))}_{\text{nonlinear term}} \right)$$

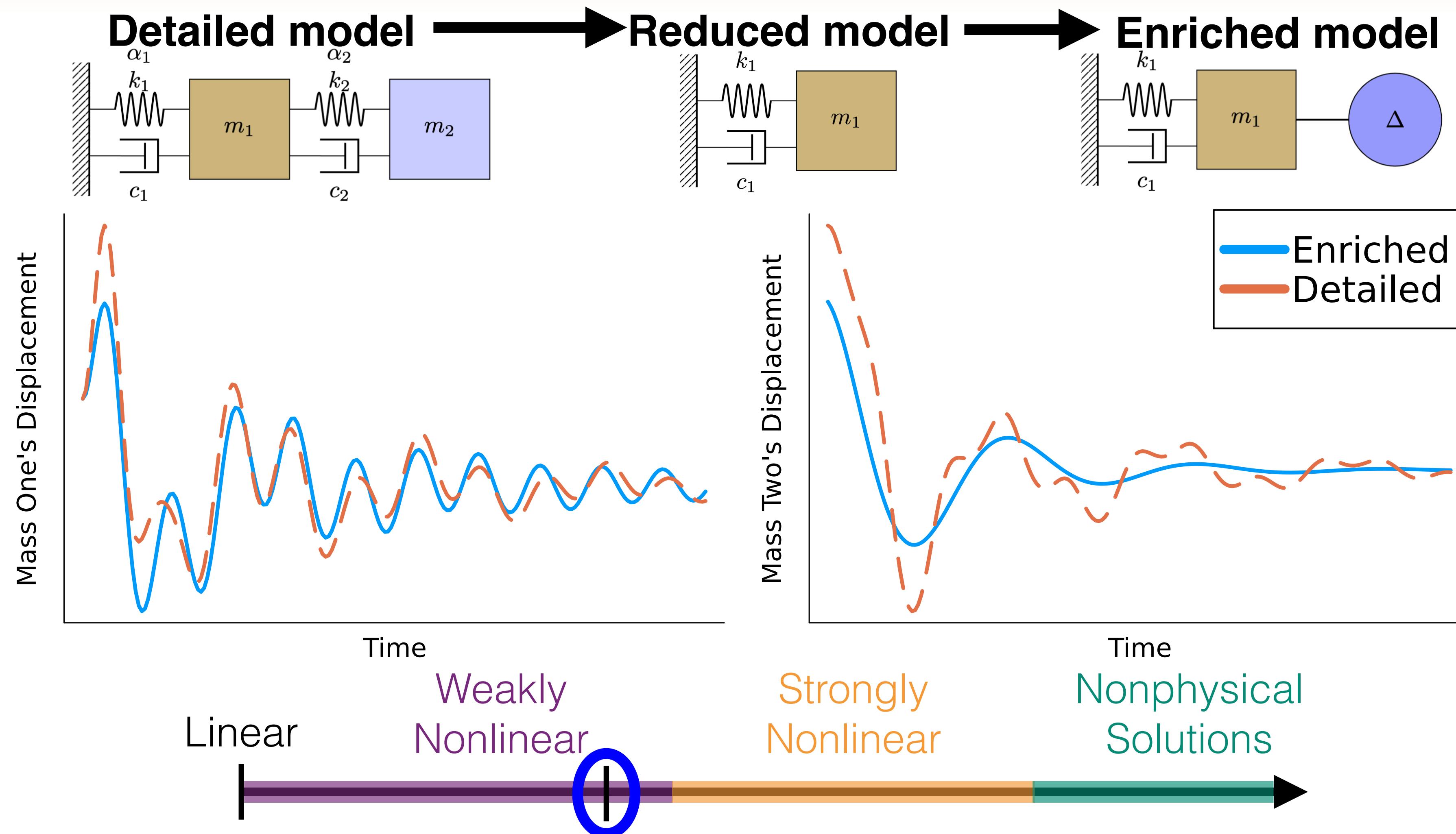


The enriched model closely matches the **linear** detailed trajectories

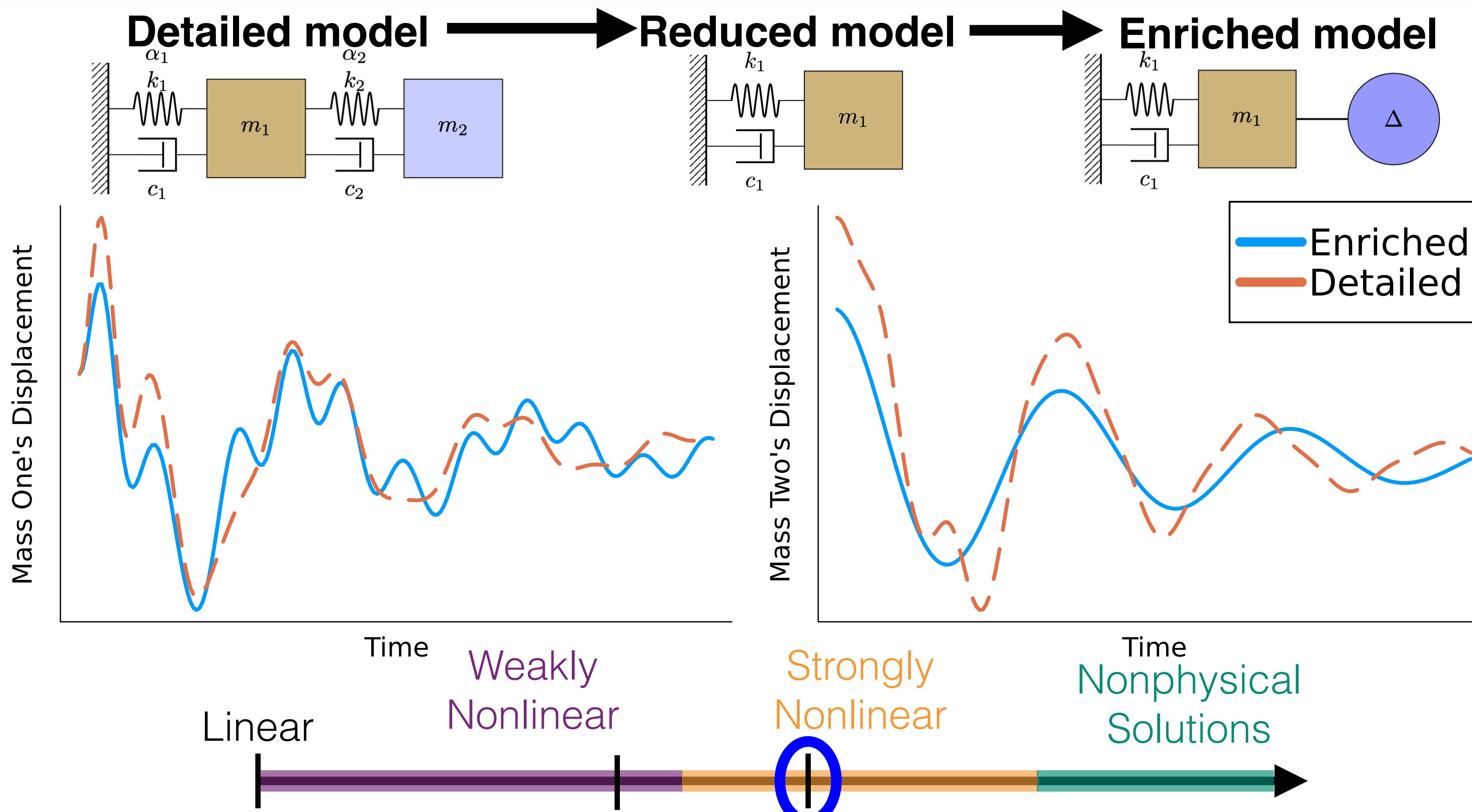


Enriched model predictions are using MAP estimates of model parameters.

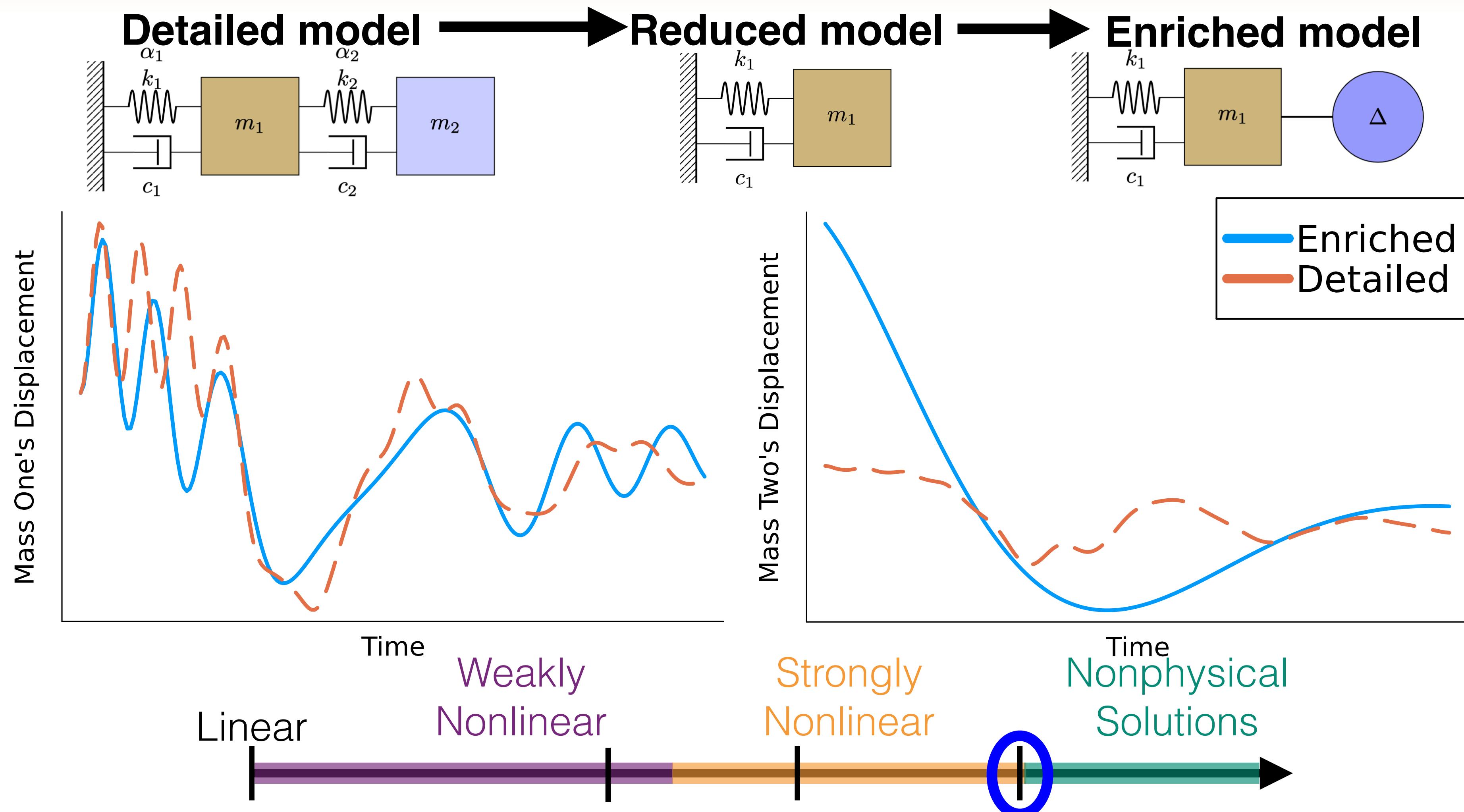
The enriched model overestimates the dampening of mass two for the **weakly nonlinear** model



The enriched model overestimates the dampening and frequency of mass two for the **stronger nonlinear** model

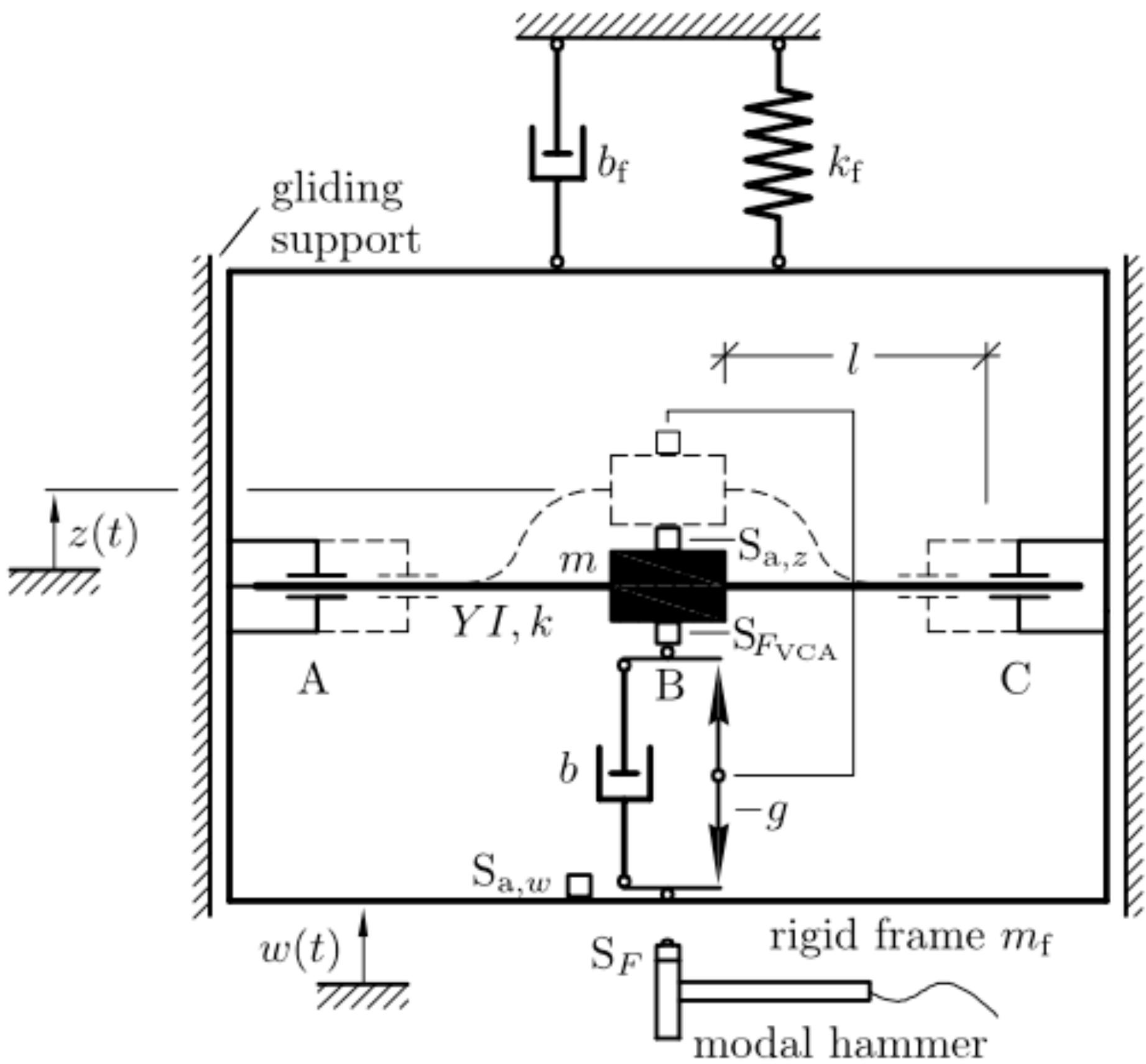


The enriched model overestimates the initial amplitude of mass two for the **strongest nonlinear** model

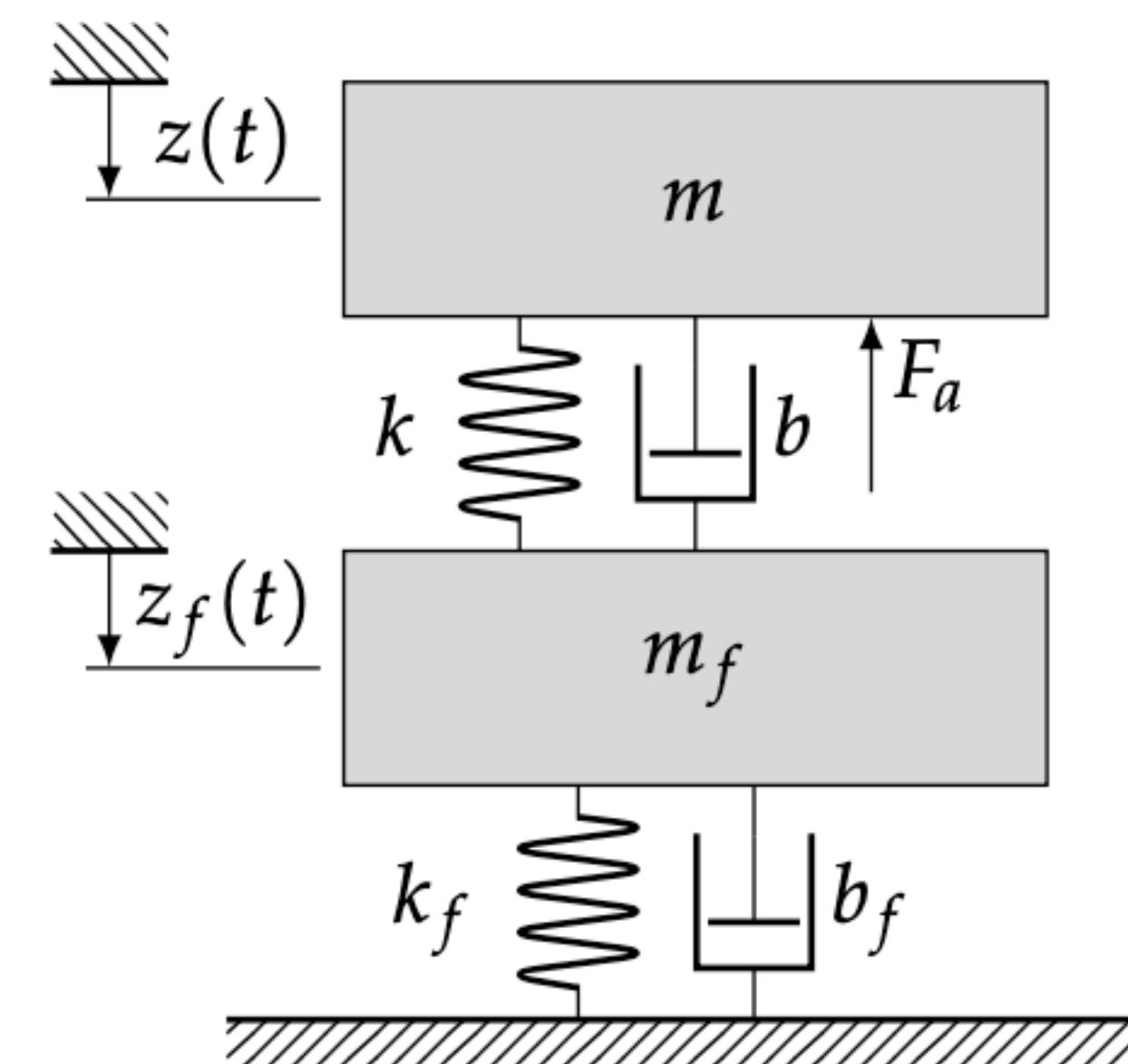


Case 2

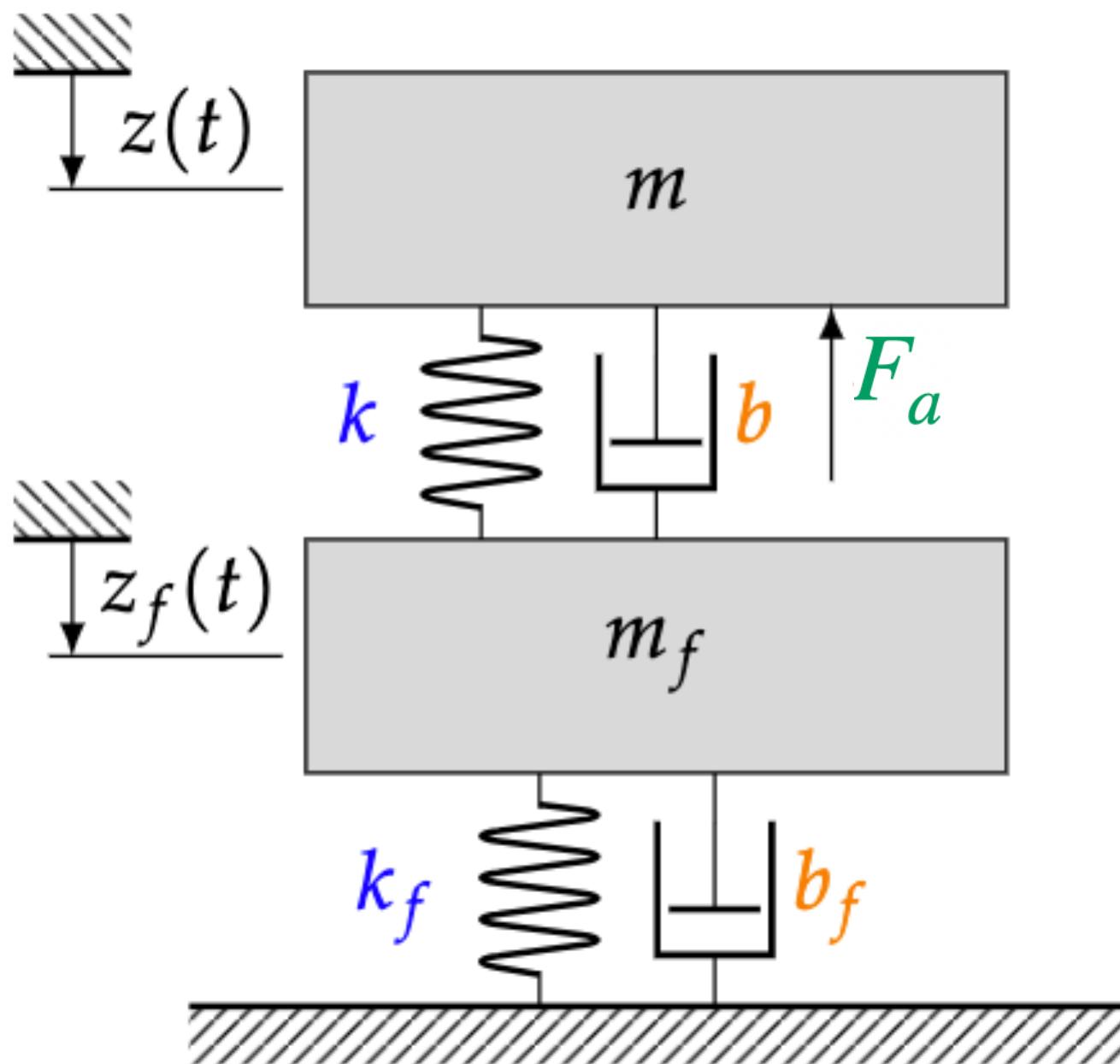
Experiment



Low-fidelity model



The low-fidelity model is a two-mass oscillator with *linear* forces



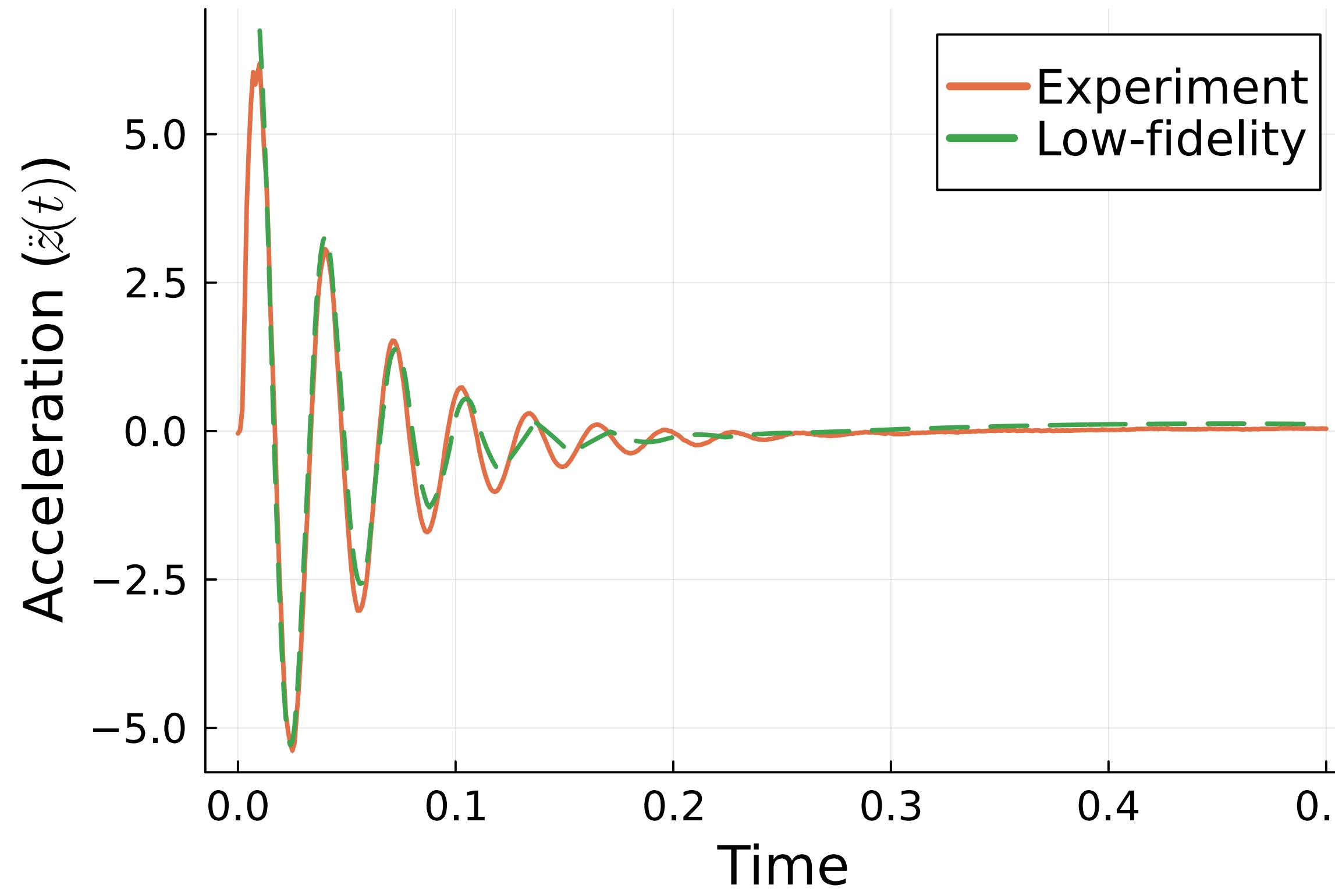
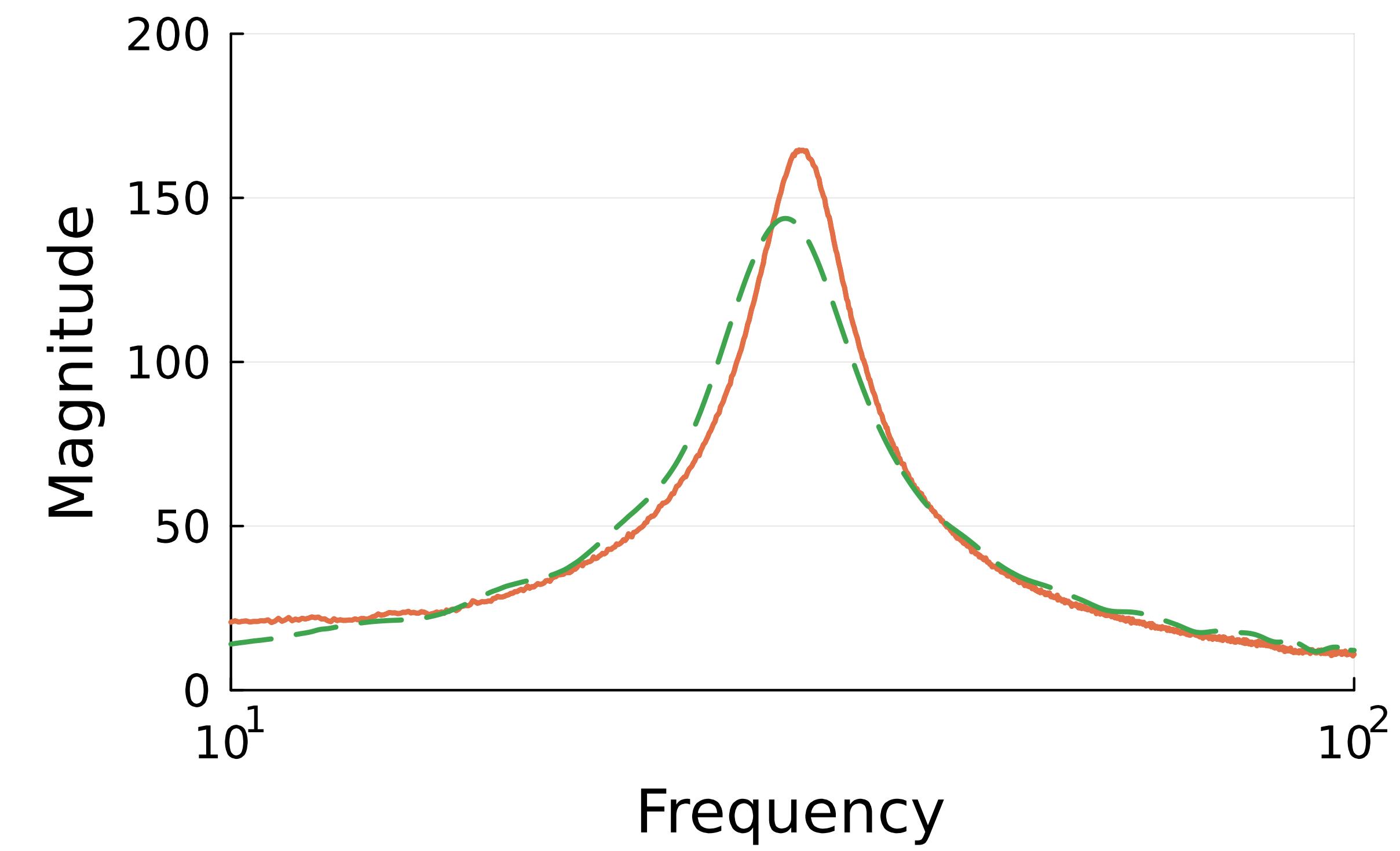
$$\ddot{z}(t) = \frac{1}{m} \left\{ -b \left(\dot{z}(t) - \dot{z}_f(t) \right) - F_a \left(\dot{z}(t) \right) - k \left(z(t) - z_f(t) \right) \right\}$$

$$\ddot{z}_f(t) = \frac{1}{m_f} \left\{ b \left(\dot{z}(t) - \dot{z}_f(t) \right) + k \left(z(t) - z_f(t) \right) - b_f \dot{z}_f - k_f z_f \right\}$$

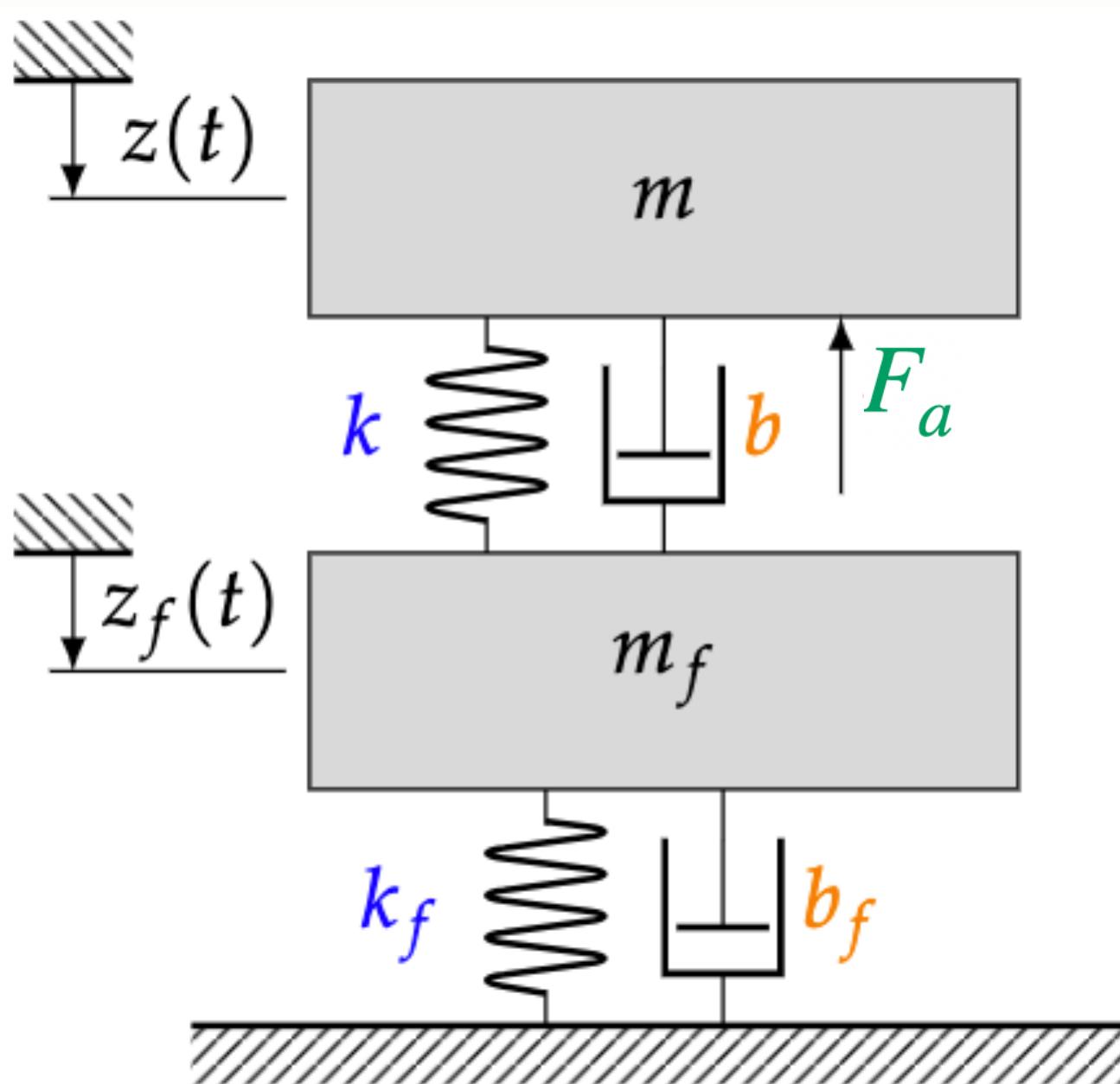
Spring force
Passive damping force
Active damping force

$g_0 \dot{z}(t)$

Assumed *linear* forces cause error
in the low-fidelity model



An enrichment operator is embedded into the low-fidelity model

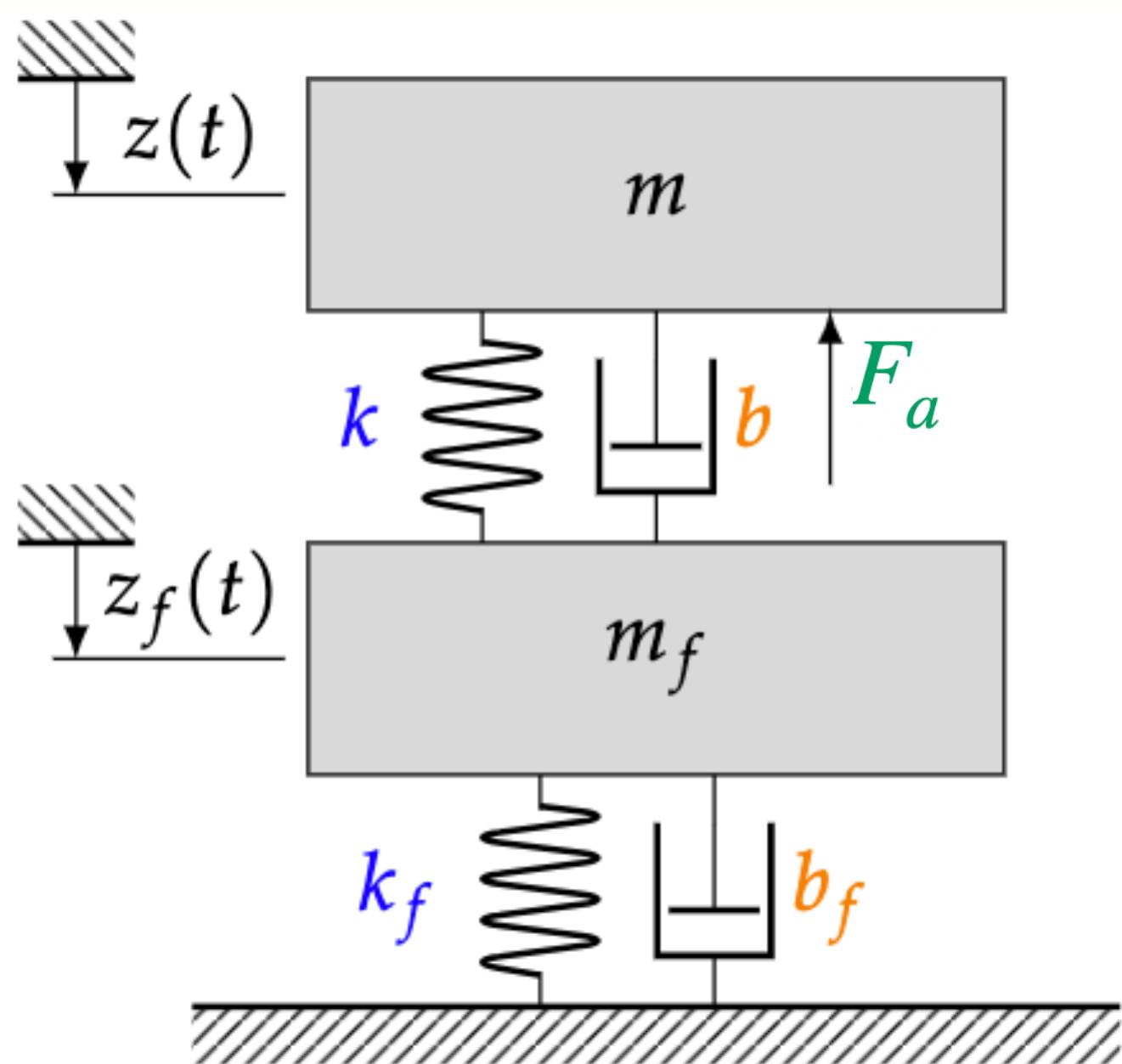


$$\ddot{z}(t) = \frac{1}{m} \left\{ -b \left(\dot{z}(t) - \dot{z}_f(t) \right) - F_a \left(z(t) \right) - k \left(z(t) - z_f(t) \right) \right\}$$

$$\ddot{z}_f(t) = \frac{1}{m_f} \left\{ b \left(\dot{z}(t) - \dot{z}_f(t) \right) + k \left(z(t) - z_f(t) \right) - b_f \dot{z}_f - k_f z_f \right\}$$

$g_0 \dot{z}(t) + g_1 |\dot{z}(t)| \dot{z}(t) + g_2 \dot{z}(t)^3$
Enrichment operator

The enriched model is a two-mass oscillator with *nonlinear active damping*



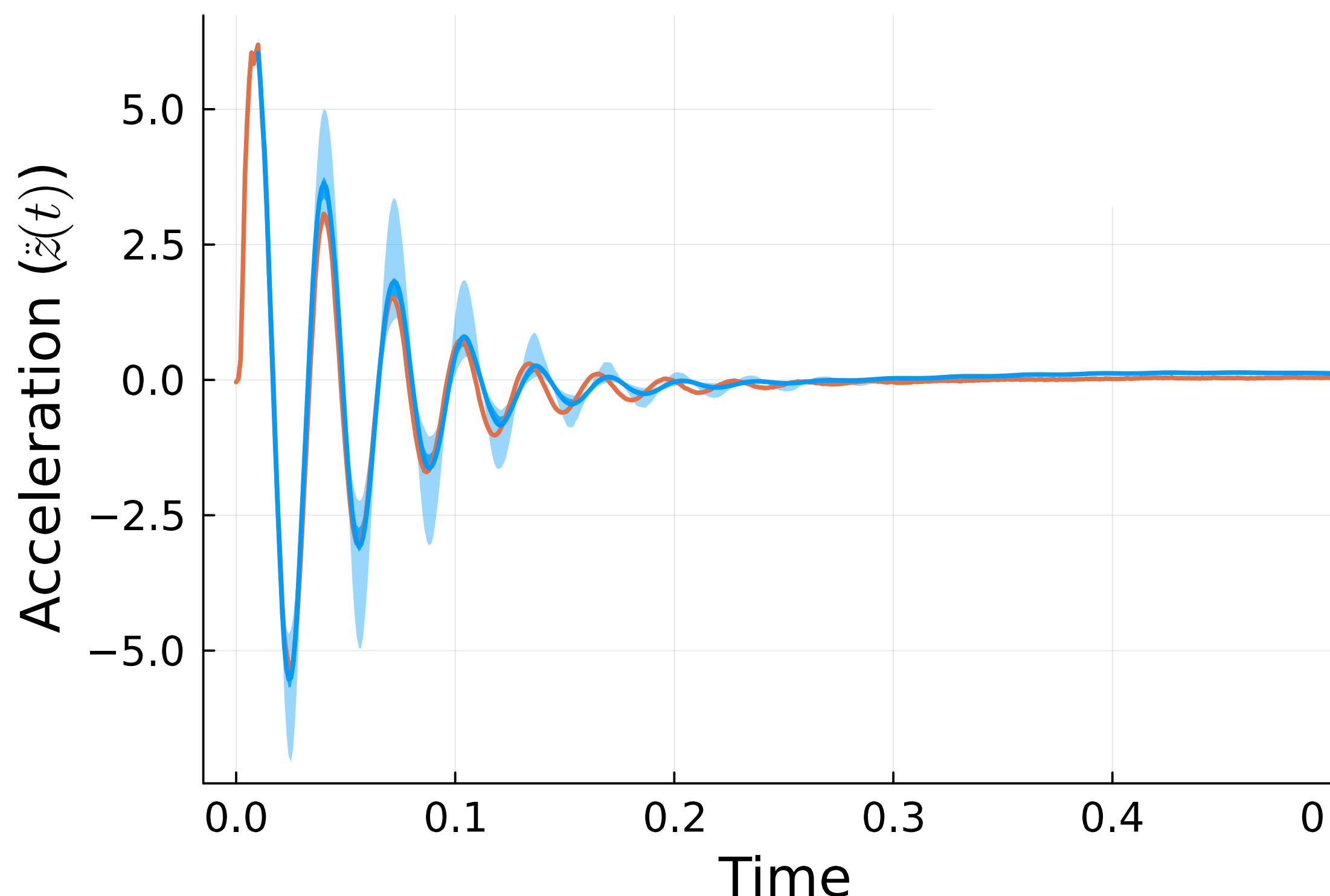
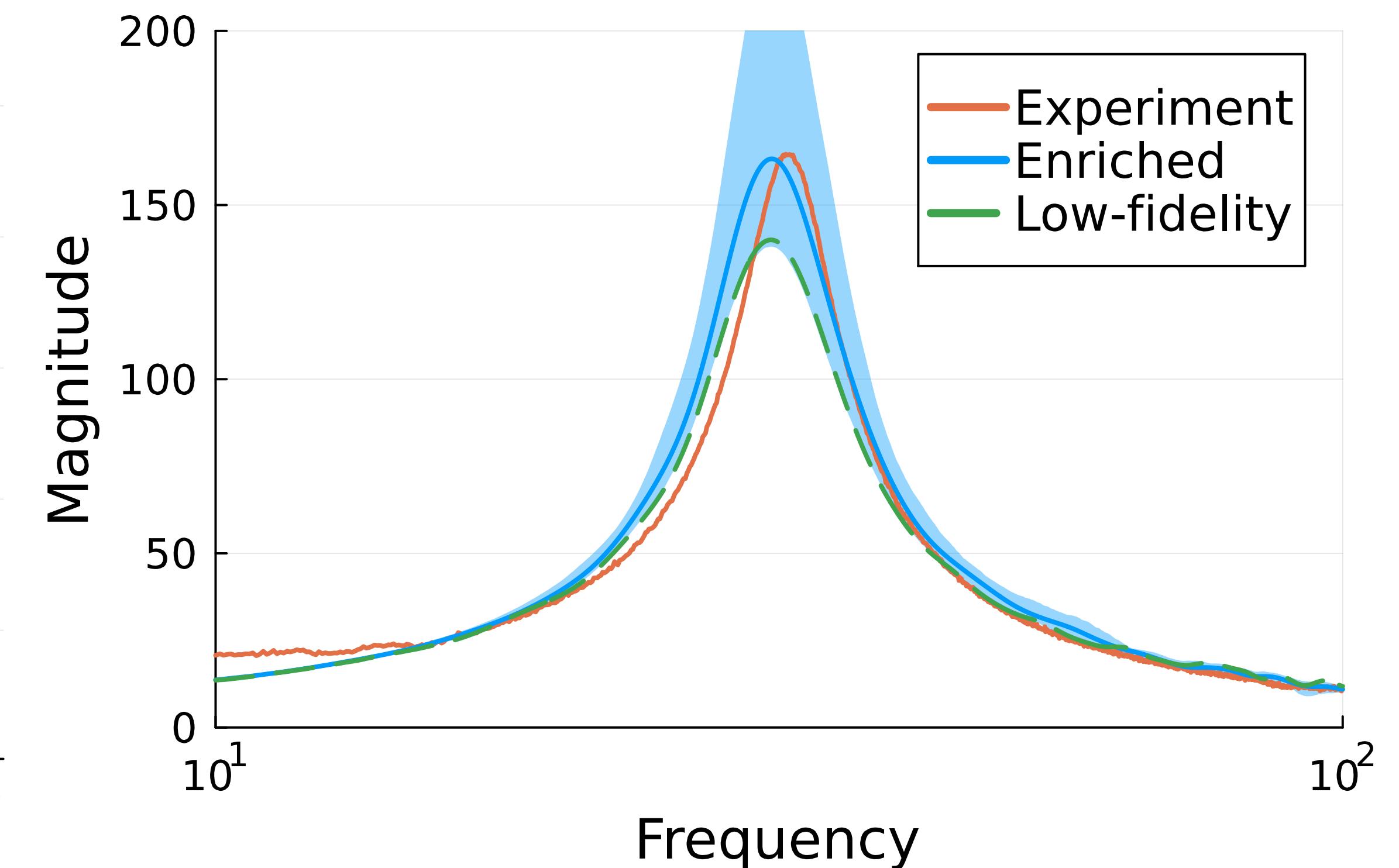
$$\ddot{z}(t) = \frac{1}{m} \left\{ -b \left(\dot{z}(t) - \dot{z}_f(t) \right) - F_a \left(\dot{z}(t) \right) - k \left(z(t) - z_f(t) \right) \right\}$$

$g_0 \dot{z}(t) + g_1 |\dot{z}(t)| \dot{z}(t) + g_2 \dot{z}(t)^3$
Enrichment operator

- Model parameters: $\theta = (g_1, g_2)$

$$g_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$$
, where $\mu_i \in \mathbb{R}$, $\sigma_i \in \mathbb{R}_{\geq 0}$, and $i = \{1,2\}$
- Hyperparameters: $\phi = (\phi_1, \phi_2)$, where $\phi_i = (\mu_i, \sigma_i)$
- We use hierarchical Bayesian calibration to sample a posterior on ϕ

The enriched model covers most experimental observations



[5] R. BANDY, T. PORTONE, AND R. MORRISON, *Stochastic model correction for the adaptive vibration isolation round-robin challenge*, *Model Validation and Uncertainty Quantification*, Volume 3, Conference Proceedings of the Society for Experimental Mechanics Series, (to be released).

Conclusions

- Mass-spring-damper models illustrate model-form error that can arise in many structural dynamics applications.
- Expert knowledge about a potential source of model-form error informs the enrichment operators.
- Enriched models decrease discrepancies and retains interpretability.

Questions

Rileigh.Bandy@colorado.edu



**Sandia
National
Laboratories**

