SAND2024-01829C

UQTK

The UQTk C++/Python Toolkit for Uncertainty
Quantification: Overview and Applications

Caitlin Curry, Khachik Sargsyan, Cosmin Safta, and
Bert Debusschere

bjdebus@sandia.gov
Sandia National Laboratories, Livermore, CA, USA

Thursday Feb 29, 2024 — SIAM UQ 24
SAND2024-NNNN C

Sandia —
National N
Laboratories MATH

Debusschere — SNL UQTk



Acknowledgements

This material is based upon work supported by the U.S. Department of Energy, Office
of Science, Office of Advanced Scientific Computing Research (ASCR), Scientific
Discovery through Advanced Computing (SciDAC), Applied Mathematics Research
(AMR), and Workforce Development for Teachers and Scientists (WDTS) programs.

Sandia National Laboratories is a multimission laboratory managed and operated by
National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National

Nuclear Security Administration under contract DE-NA0003525. )

Disclaimer:

The views expressed in this talk do not necessarily represent the views of the U.S.
Department of Energy or the United States Government.

Debusschere — SNL UQTk



Authors ahd Contnbutors

UQTk Authors (alphabetical by first name):

Bert Debusschere (SNL), Caitlin Curry (SNL), Cosmin
Safta (SNL), Katherine Johnston, Kenny Chowdhary,
Khachik Sargsyan (SNL), Luke Boll, Mohammad Khalil
(SNL), Pieterjan Robbe (SNL), Prashant Rai, Tiernan
Casey (SNL), Xiaoshu Zeng (USC)

UQTk Contributors (alphabetical by first name):

Habib Najm (SNL), Helgi Adalsteinsson, Linus Seelinger
(KIT), Majid Latif, Olivier Le Maitre (LIMSI-CNRS), Omar
Knio (KAUST), Roger Ghanem (USC), Sarah Castorena,
Sarah de Bord, Xun Huan, and many others . ..

Debusschere — SNL UQTk



UQTk
Outline

© UQTK Overview

® Bayesian Compressed Sensing lllustration
@ Future Developments

® Summary

@ References

@ Extra Material

@ Bayesian Model Inference and Comparison

® SciDAC: Application in Climate Modeling

Debusschere — SNL UQTk



UQTk

UQ is about enabling predictive simulations

Experiments
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UQTk

UQ methods extract information from all sources to

enable predictive simulation

. Inference PN
Experiments
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e UQ not just about propagating uncertainties
¢ The term UQ covers a wide range of methods
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An example UQTk workflow
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UQTKk provides tools to build a general UQ workflow

e Tools for

* Representation of random variables and stochastic
processes

Forward uncertainty propagation

Inverse problems / Model calibration

Embedded model error

Global Sensitivity Analysis

Dimensionality reduction

Bayesian Compressive Sensing

Low Rank Tensors

Gaussian Processes

e Tools can be used stand-alone or combined into a
general workflow

Debusschere — SNL UQTk



UQTk

UQTK is geared towards research, education,

prototyping

e Target usage:
¢ Rapid prototyping of UQ workflows
* Algorithmic research in UQ
¢ Tutorials / educational
* Expertise in UQ methods (or a desire to acquire it)
helpful
¢ Released under the BSD 3-Clause License
® https://github.com/sandialabs/UQTk
e Current version 3.1.4
e Some dependencies included with UQTk. Others
(Sundials) downloaded by CMake build system as
needed
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UQTk

UQTk supports a wide variety of Polynomial Chaos

Expansions (PCEs) operations

e Standard PC Basis types supported:
e Gauss — Hermite
¢ Uniform — Legendre
e Gamma — Laguerre
® Beta — Jacobi

¢ Also support for custom orthogonal polynomials
* Defined by user-provided three-term recurrence
formula
¢ Both intrusive and non-intrusive PC tools provided

¢ Primarily Galerkin projection methods

* Some regression approaches offered through
Bayesian Compressed Sensing module

® See also Debusschere, et al. 2004; Sargsyan, et al.
2014
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UQTk

UQTk uses a combination of C++ and Python

e Main libraries in C++
® PCBasis and PCSet classes: PC tools (intrusive and
non-intrusive)
® Quad class: quadrature rules (full tensor and sparse
tensor product rules)
® MCMC, Gprog,...
¢ Functionality available via
® Direct linking of C++ code
e Standalone apps
® Python interface using pybind11

e Examples of common workflows provided
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UQTk

Recent Features in UQTk 3.1.x

¢ New functionality (UQTk 3.1.0)
Canonical Low Rank Tensor (LRT) Representations
Data Free Inference (DFI) Library
tempered MCMC (tMCMC)
Basis adaptation
¢ Improved software engineering
¢ Refactored MCMC Class (UQTk 3.1.1)
¢ Interface to Python moved from swig to pybind11 (UQTk
3.1.2)
e Miscellaneous improvements
* New DFI app, compatibility with Sundials 6.x, expanded
Python pce_tools (UQTk 3.1.3)
e UM-Bridge example, upgraded BCS interface (UQTk 3.1.4)
e Watch the UQTk repo and discussion at
https://github.com/sandialabs/UQTk
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UQTk Github Repo Clones

Cumulative UQTk Clones
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e Clones from https://github.com/sandialabs/UQTk/
e =~ 200 clones per year
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UQTk

UQTK is used in a variety of applications

e Direct collaborations

e US DOE SciDAC FASTMath Inst.
https://scidac5-fastmath.1lbl.gov/

* Variety of US DOE SciDAC partnership projects
e DOE BER E3SM climate model analysis

e Many other groups at universities, National Labs,
and industry

e Common uses: Surrogate Construction, Global
Sensitivity Analysis, Bayesian Inference, Forward
uQ

¢ Always welcome new applications / collaborations
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BCS lllustration

Compressed Sensing addresses sparsity in samples

Sparse regression (Compressive Sensing):

2
¢ = argming > (f(x(g(i))) > cawa(ﬁ("))) A eal
i=1

a€el acl

~ argming [|If — el + Allells]

...and in a Bayesian framework — Bayesian Compressive Sensing [Sargsyan, et
al., 2014]:

Posterior Likelihood Prior

=
p(c|D) x p(D|c) p(c) — AP = arg max, log p(c|D) = arg max, [log Lp(c) + log p(c)]

with Laplace sparsifying prior

p(c) = (g)“exp (—A wa)
ac
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BCS lllustration

UQTk BCS Function Call

def UQTkBCS (pc_begin, xdata, ydata, eta=l.e-3, niter=1,\
mindex_growth=None, ntry=1, eta_folds=5,\
eta_growth=False, eta_plot = False,\
regparams=None, sigma2=1le-8, npccut=None, \
pcf_thr=None, verbose=0, return_sigma2=False):

Inputs:

pc_begin: PC object with information about the starting basis

xdata: Sampled input values [#samples, #dimensions]

ydata: Function evaluations (QoIs)

eta: NumPy array, list, or float with the threshold for
stopping the evidence maximization algorithm.

niter: Number of iterations for order growth

ntry: Number of folds cross-validation of the retained basis

Outputs:

pc_model_final: PC object with retained basis terms

cfs_final: Corresponding PC coefficients
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BCS lllustration

Genz Oscillatory Function Test Case
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® https://www.sfu.ca/~ssurjano/oscil.html
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BCS lllustration

Cross-validation identifies the optimal stop criterion

import PyUQTk.pce as ugtkpce

import PyUQTk.PyPCE.pce_tools as pce_tools

nord = 4; ndim = 4; type = "LU"; alpha = 0.0; beta = 1.0

pc_begin = ugtkpce.PCSet ("NISPnoqg", nord, ndim, type, alpha, beta)
eta_range = 1/np.power (10, [1 for i in range(0,12)])

pc_final, c_k = pcetools.UQTkBCS (pc_begin, xdata,ydata,eta=eta_range)

Debusschere



BCS lllustration

BCS approximates the Genz function quite well using

only 10 basis terms
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¢ QOriginal full PCE has 70 terms
¢ Lower dimensions show up with highest order
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BCS lllustration

Regression with full basis set has larger testing error
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e Full PCE basis with 70 terms leads to overfitting
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BCS lllustration

Higher-Dimensional Genz Oscillatory Function
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e f(x)=cos (2%, ax
e d=10,a =2.0/i,04ata = 0.05, nTrain = 400

® https://www.sfu.ca/~ssurjano/oscil.html
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BCS lllustration
Compressed sensing on full basis is challenging
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e Selects 31 basis terms out of a total of 1001
e Agreement is OK, but not stellar
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BCS lllustration

lterative basis growth better captures important terms

1.0
==== BCS with multiindex of size 66 ==== ~ 05
BCS has selected 53 basis terms out of 66 3
== BCS with multiindex of size 267 ==== %
BCS has selected 37 basis terms out of 267 2 0.0
==== BCS with multiindex of size 222 ====
BCS has selected 65 basis terms out of 222 - <
-0.5

—-0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Test Data y

import PyUQTk.pce as ugtkpce

import PyUQTk.PyPCE.pce_tools as pce_tools

nord = 4; ndim = 4; type = "LU"; alpha = 0.0; beta = 1.0; n_it = 3

pc_begin = ugtkpce.PCSet ("NISPnoqg", nord, ndim, type, alpha, beta)

eta_r = 1/np.power (10, [1 for 1 in range(0,12)])

pc_final,c_k = pcetools.UQTkBCS (pc_begin, xdata,ydata,
mindex_growth=’nonconservative’,eta=eta_r,niter=n_it)
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Future

A Python-only implementation will provide more

flexibility

e Current mix of C++ and Python is main source of
install problems

¢ Original C++ data structures limit new developments
(mixed PC bases) and make coupling to other
packages challenging

¢ Original implementation pre-dates github
development tools

e Some (large) Third Party Libraries (TPLs) support
only legacy functionality (intrusive UQ)

¢ Plan to take main Python functionality into standalone
Python Toolkit for UQ

* Installation via pip install
¢ Documentation directly into github pages
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Future

General Python Surrogate Modeling Interface

e There are many Python UQ tools and libraries in the
community

¢ Most of them have different implementations of
commonly used UQ operations
* Surrogate models
* Global Sensivity Analysis
® Bayesian Inference
e Can we develop general interfaces to some of these
operations?
e Start with surrogate modeling interface
* Avoid duplication and allow codes like DAKOTA to call
surrogate models implemented by multitude of
Python UQ toolboxes

Debusschere — SNL UQTk



Surrogate Modeling Interface Specifications

¢ Python class

¢ Allow scalar and multivariate Quantities of Interest
(Qols)
* Provide option to return derivatives?
* Provide option to return Sobol’ indices?
* Provide option for adaptive refinement?
e [llustrative examples:

e SMT: Surrogate Modeling Toolbox
(https://smt.readthedocs.io/)
® Others?

e Other suggestions?
¢ |nput welcome at bjdebus@sandia.gov
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Summary
Summary

e UQTk provides a powerful set of tools for building
general UQ workflows
e Multiple ways to access functionality

¢ Direct linking of C++ code
e Standalone apps
* Python interface through pybind11

¢ Available at
https://github.com/sandialabs/UQTk

e Suggestions and questions welcome at https://
github.com/sandialabs/UQTk/discussions

¢ Python-only version with general surrogate modeling
interface in the planning stages
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Extra

DAKOTA and UQTk implement similar methods but

are geared towards different user groups.

e DAKOTA:

e Geared towards end-user, analyst
* Fully packaged, parallel workflow
e UQTk:

e Geared towards developers, students, researchers

e Components to build a workflow with

* More lightweight and easier to get “under the hood”
There are plans to couple DAKOTA and UQTk through
sharing libraries
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Extra

General Uncertainty Quantification Workflow

Calibration
D Forward modeling (Poly. Chaos)
Inverse modeling (Bayesian) Prior p(}, )
Embedded
Model Surrogate model Data
— (. | GSABF (T
flxis A FxisA) Fxis X+ 0a(8)) Likelihood
Preprocess
[
/ Any Qol
[ Prediction p(h(x)[y) ]«—[ h(x; A+ 0a(8)) ]«—[ Posterior p(\, aly) ]
Prediction

¢ Predictive uncertainty decomposition: Total Variance =

Parametric uncertainty + Data noise + Model error + Surrogate error
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Many flavors of MCMC are available

Single Site MCMC (ssMCMC)

Adaptive MCMC (aMCMC)

Metropolis-adjusted Langevin algorithm (MALA) or
Langevin sampling

Tempered MCMC (tMCMC)
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Extra

Surrogate models reduce the cost of computing Sobol’

indices.

Variance-based decomposition:

f(xX1, %, Xa) =+ D )+ D finx)+ D> k(XX X) +
1<i<d 1<i<j<d 1<i<j<k<d

® f, fij. fijk, - .- are mutually orthogonal

Sobol’ sensitivity indices measure fractional contributions of each parameter or group
of parameters towards the total variance of selected Qols

o VX; [Ex_i[f(x)] |X,']
' VIf(x)]

(main), ST =
main V[f(x)]

(total)

® joint (most of the time between two variables) can also be informative
Sobol’ indices estimates:

® Random Sampling — need computationally cheap (surrogate) models & slow to
converge

® Polynomial Chaos Expansions — exploit orthogonality of basis terms
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Extra

Compressed Sensing addresses sparsity in samples.

f (ELM-LF) is high-dimensional (47 input parameters)
® standard regression approaches are underdetermined —

Sparse regression (Compressive Sensing):

o
Il

2
cs arg ming Z <f(x(£(i))) - Z Ca\lia(ﬁ(i))) + A Z [Col
i=1

a€el a€cl

argming [IIf — wellf + Allell]

...and in a Bayesian framework — Bayesian Compressive Sensing [Sargsyan, et
al., 2014]:

Posterior Likelihood Prior

p(c|D) x p(D|c) p(c) — AP = arg max, log p(¢c|D) = arg max, [log Lp(€) + log p(c)]

with Laplace sparsifying prior

p(e) = (g)“exp (—A Zz|ca|)
oac
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Extra
Longer Term Plans

e Coupling with other libraries
¢ Better support for user specified third-party libraries,
e.g. random number generators, integrators, ...
¢ Coupling with DAKOTA (SNL) and MUQ (MIT) for
leveraging functionality
Mixed PC basis types
¢ More general multi-index specification
Data structures amenable to parallelization and GPU
acceleration
Other developments you would like to see?

e |etus know at https://github.com/
sandialabs/UQTk/discussions
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Extra

Polynomial Chaos Expansions represent random

variables

P
e u: Random Variable (RV)
represented with 1D PCE
* uy: PC coefficients
(deterministic)

® 9. 1D Hermite polynomial
of order k R

* ¢ Gaussian RV U= 0.5+ 0.2¢54 () + 0.1¢(¢)
Expansion in terms of functions of random variables
multiplied with deterministic coefficients

X
=
X

w

~N w &

Prob. Dens. [-]

-

¢ Set of deterministic PC coefficients fully describes RV
e Separates randomness from deterministic dimensions
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Extra

PCEs can be seen as a functional map from standard
RVs to the represented RV

U= 0.5+ 0.2¢1(€) + 0.01¢2(€)
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Extra
One-Dimensional Hermite Polynomials

Yo(§) = 1
dk

w&):(—n%ﬁﬁgeﬁ@ k=12 ...

Di(€) =& W) =€ -1, Wa(§) =€ -3¢, ...
The Hermite polynomials form an orthogonal basis over
[—o0, oo] with respect to the inner product

(i) = \/LZ_W / Z SENHEW(E)E = b5 (42

where w(¢) = e ¢*/2 is the weight function.

Note that e:f;Z is the density of a standard normal

random variable

Debusschere — SNL UQTk




Extra

Propagation of Uncertain Inputs Represented with

PCEs

Galerkin Projection Collocation

Match PCE to random
variable at chosen sample

Residual orthogonal to points: interpolation or
space covered by basis regression
functions
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Extra

Galerkin projection methods are either intrusive or

non-intrusive

e Use same projection but in different ways

\
Uy = <L:|;2">, k=0,... P
(Vi)
¢ Intrusive methods apply Galerkin projection to governing

equations
¢ Results in set of equations for the PC coefficients
* Requires redesign of computer code
¢ PCEs for all uncertain variables in system
¢ Non-intrusive approaches apply Galerkin projection to
outputs of interest
e Sampling to evaluate projection operator
¢ Can use existing code as black box
* Only computes PCEs for quantities of interest
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Extra

Collocation approaches are non-intrusive and

minimize errors at sample points

P
D ukVk(&) = u(&)

k=0
i:1,...,NC

¢ Use functional representation point of view
e Can use interpolation, e.g. Lagrange interpolants

e Or use regression approaches: P + 1 degrees of
freedom to fit N, points
e Can position points where most accuracy desired
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Extra

Bayesian inference offers a probabilistic approach for

inverse problems

. Inference P()
Experiments

_ P(DIx NP1 A Predictive
|:]—> P(\ID, 1) =
P(D) Simulation

Propagation pu .~
Theory | 2w+ v @p¥m) = v-65) + 65, + o, g ( )| f S
u

xw

s

du
T f(u; N)

ot

e Bayesian inference can handle various sources of
data

¢ Probabilistic formulation readily accommodates
various sources of uncertainty
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Extra

Bayes’ rule updates prior belief with information

extracted from data

e Bayes'rule
Likelihood  Prior
Posterior /ID—’Z/)T/I;/)\\
PD) = PPN popnyp(a

P(D)

Evidence

e Update prior distribution/knowledge about parameter
A to posterior distribution given data D, using
likelihood function £(A) = P(D|A)

e Data D = {d;}Y, - measurements of some quantities
of interest (Qols)

e Evidence P(D) can be seen as a normalizing term
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Extra

The prior distribution represents prior information

about the inferred quantities

e Based on prior data, literature, or expert opinion

¢ Prior distribution helps to keep inference well defined,
e.g. if quantity needs to remain positive

¢ |f not much data available, posterior will be strongly
influenced by the prior

e When a lot of data available, data will have
predominant influence on posterior

¢ Prior is both powerful and dangerous

e |f no prior information is available, non-informative
priors can be used
® E.g. uniform from —oo to +oo
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The likelihood function measures goodness-of-fit

¢ The key component that connects the model inputs to
measured Qols

* The noise model accounts for disagreement between
model and data

e Common case is i.i.d. Gaussian measurement noise in

each data point
N

. f 2
£O) = PO = Gy o0 <— > (dgf,ﬁ”))

i=1

¢ |f the model itself is uncertain, then the noise model needs
to reflect that

e Generally the log-likelihood is used to avoid underflow

In £(A) = In P(D|A) = _g In(27) — Z (di — fi(A))? f(>\

Debusschere — SNL UQTk



Extra

The posterior contains updated knowledge about

inferred parameters

¢ Gives the inferred values of the parameters as well as
their uncertainty based on all sources of uncertainty

e The maximum value is referred to as the Maximum A
Posteriori (MAP) value

e Posterior distribution generally not analytically
tractable

e Commonly people resort to MCMC sampling
approaches to draw samples from this distribution
e Samples can then be used to construct a PCE
expansion for the inferred parameters
* Can be fed into other models for forward propagation
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Extra

Bayes’ rule derives from elementary probability theory

Conditional probability:

P(A,B) = P(AIB)P(B) = P(B|A)P(A)

P(B|A)P(A)

P(AIB) = )
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Model Comparison

Bayesian Inference and Model Comparison

¢ Model for thermodynamic properties of RedOx active
materials

e Used in design of materials for solar thermochemical
hydrogen production
e General model form § = f(po,, T)

® Model A: 4 parameters
* Model B: 8 parameters

e Bayesian parameter inference and model comparison

e Joint work with Dr. Ellen Stechel at Arizona State
University and Tony McDaniel at Sandia

¢ Funded by the DOE Office of Energy Efficiency and
Renewable Energy (EERE)
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Model Comparison
Bayesian Inference and Model Comparison

Employed UQTk Python Bayesian Inference tools to
infer parameters and compare the two models

Model properties and numerical settings specified via
flexible xml input file

Python postprocessing and model evidence
computation

Workflow is an example included in the UQTK release
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Model Comparison

Both models agree well with data

e model e model

+ data + data
0.125 0.125
0.100 0.100
0.075(‘Q 0.075,
0.050 0.050
0.025 0.025
0.000 0.000

1800 1800

1.00e-15 1.00e-15
2129 00e-05 P19 00605
.00e- .00e-
atmj 1.00e+00 2% atmj 1.00e+00 *2%°

¢ Model A (left) and Model B (right)




Model Comparison

Both models agree well with data

Predicted vs. Observed 6
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e Model B (right) has smaller residuals
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Model Comparison

Posterior distributions were sampled with adaptive
MCMC

e Well-defined unimodal distributions

¢ Model B has more dependencies between its
parameters
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Model Comparison
Model evidence favors model B

¢ Model evidence computed from posterior samples,
using a Gaussian approximation
* Model A: Ln(evidence) = 1580
* Model B: Ln(evidence) = 1939
e Despite its higher complexity, model B is clearly
favored.
¢ For situations with more measurement noise, or
fewer data points, a simpler model may be preferred
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SciDAC BER Partnership Application

Improving Climate Model Predictions
PI: Daniel Ricciuto at ORNL
Joint work with MIT FASTMath team (Youssef Marzouk)

Two applications of UQTk

® Surrogate models for Global Sensitivity Analysis (GSA) —
Cosmin Safta (SNL)

® Bayesian calibration with model error — Khachik Sargsyan
(SNL)

Optimization of Sensor Networks for @

Sandi
o (s i

Laboratories
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E3SM Land Model (ELM)
US Department of Energy (DOE) sponsored Earth system model

Land, atmosphere, ocean, ice, human system components

High-resolution, employ DOE leadership-class computing facilities

Some of the results shown here are with ELM-LF: a lower-fidelity,
python version

Climate
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GSA is needed for multiple Quantities of Interest.

Gross Prlmary Production (GPP, July 2004) Net Ecosystem Exchange (NEE, July 2004)

=

\._:\;

Quantities of Interest
® Gross Primary Production (GPP)
® Total Leaf Area Index (LAI)
® Net Ecosystem Exchange (NEE)
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Total Effect Sobol’ Indices for Model Parameters

Relevant at US-Ha1 (42.5°N,72.2° W)

GPP LAI

® Sparse regression model accuracy around 10%

® |dentified a set of 8-12 parameters (out of 47) that control model outputs of
interest.

® Expected time dependencies recovered via sparse regression techniques.

Debusschere — SNL UQTk



Calibration with embedded model error

® Model structural error embedding approach [Sargsyan, et al. 2015, 2019]

g(x) =f(x; A+ 0(x)) + ¢

Physics-driven model correction

Meaningful extrapolation to full set of Qol predictions
Disambiguation between model error and data noise

e Simultaneous Bayesian inference of physical parameters and embedded
model correction parameters

¢ |ikelihood computation requires uncertainty propagation of embedded
stochastic terms

e UQTk provides machinery for both Bayesian inference (adaptive MCMC)
and uncertainty propagation via Polynomial Chaos (non-intrusive spectral
projection)
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ELM calibration with FLUXNET observations

U of Michigan Biological Station
1501 '« Data —— Mean prediction Model error ~ W Surrogate error ~ EEEE Posterior uncertainty
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—— Mean prediction Model error
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S
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¢ Predictive variance decomposition with model-error
component

¢ Allows meaningful prediction of other Qols
(e.g. no data/observable)

Debusschere — SNL UQTk



ELM calibration with FLUXNET observations

U of Michigan Biological Station

1501 '« Data —— Mean prediction Model error ~ W Surrogate error ~ EEEE Posterior uncertainty
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Tonzi Ranch Site

120-

100] ¢ Data —— Mean prediction Model error ~ B Surrogate error BB Posterior uncertainty
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¢ Predictive variance decomposition with model-error
component

¢ Allows (a more dangerous) extrapolation to other
sites
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ELM-LF calibration with FLUXNET observations

CA-Gro — US-Hal US-UMB
: .
. . . .
e /N [N
71T\ V4 \ / \
7\ 7\ /\
Y N A N . 4 il
Month Pt N?Ongh v h:onfh
CA-Gro US-Hal US-UMB

GPP
GPP
GPP

e Embedding removes biases and avoids overfitting
e Model error is the dominant uncertainty component
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