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UQ is about enabling predictive simulations

Predictive Simulation 

Theory 

Experiments 
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UQ methods extract information from all sources to
enable predictive simulation

Predictive 
Simulation 

Theory 

Experiments 

Introduction Introduction UQ Software PCES Summary References

Formulation

du
dt

= f (u;λ)

P(λ|D, I) =
P(D|λ, I)p(λ, I)

P(D)
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Inference 

Forward 
Propagation 
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dt
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• UQ not just about propagating uncertainties
• The term UQ covers a wide range of methods
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An example UQTk workflow

Forward UQ

Inverse UQ

f(λ)

Model

fc(λ)

Surrogate

Dim.
Red.

Likelihood D = {yi}

Data

Posterior p(λ|D)

Prior p(λ)

g(λ)

Any model

Prediction p(g(λ)|D)
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UQTk provides tools to build a general UQ workflow

• Tools for
• Representation of random variables and stochastic

processes
• Forward uncertainty propagation
• Inverse problems / Model calibration
• Embedded model error
• Global Sensitivity Analysis
• Dimensionality reduction
• Bayesian Compressive Sensing
• Low Rank Tensors
• Gaussian Processes
• . . .

• Tools can be used stand-alone or combined into a
general workflow

Debusschere – SNL UQTk
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UQTk is geared towards research, education,
prototyping

• Target usage:
• Rapid prototyping of UQ workflows
• Algorithmic research in UQ
• Tutorials / educational
• Expertise in UQ methods (or a desire to acquire it)

helpful
• Released under the BSD 3-Clause License

• https://github.com/sandialabs/UQTk
• Current version 3.1.4

• Some dependencies included with UQTk. Others
(Sundials) downloaded by CMake build system as
needed

Debusschere – SNL UQTk

https://github.com/sandialabs/UQTk
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UQTk supports a wide variety of Polynomial Chaos
Expansions (PCEs) operations

• Standard PC Basis types supported:
• Gauss – Hermite
• Uniform – Legendre
• Gamma – Laguerre
• Beta – Jacobi

• Also support for custom orthogonal polynomials
• Defined by user-provided three-term recurrence

formula
• Both intrusive and non-intrusive PC tools provided

• Primarily Galerkin projection methods
• Some regression approaches offered through

Bayesian Compressed Sensing module
• See also Debusschere, et al. 2004; Sargsyan, et al.

2014
Debusschere – SNL UQTk
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UQTk uses a combination of C++ and Python

• Main libraries in C++
• PCBasis and PCSet classes: PC tools (intrusive and

non-intrusive)
• Quad class: quadrature rules (full tensor and sparse

tensor product rules)
• MCMC, Gproc, . . .

• Functionality available via
• Direct linking of C++ code
• Standalone apps
• Python interface using pybind11

• Examples of common workflows provided

Debusschere – SNL UQTk
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Recent Features in UQTk 3.1.x

• New functionality (UQTk 3.1.0)
• Canonical Low Rank Tensor (LRT) Representations
• Data Free Inference (DFI) Library
• tempered MCMC (tMCMC)
• Basis adaptation

• Improved software engineering
• Refactored MCMC Class (UQTk 3.1.1)
• Interface to Python moved from swig to pybind11 (UQTk

3.1.2)
• Miscellaneous improvements

• New DFI app, compatibility with Sundials 6.x, expanded
Python pce_tools (UQTk 3.1.3)

• UM-Bridge example, upgraded BCS interface (UQTk 3.1.4)
• Watch the UQTk repo and discussion at
https://github.com/sandialabs/UQTk

Debusschere – SNL UQTk
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UQTk Github Repo Clones
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Cumulative UQTk Clones

• Clones from https://github.com/sandialabs/UQTk/

• ≈ 200 clones per year
Debusschere – SNL UQTk
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UQTk is used in a variety of applications

• Direct collaborations
• US DOE SciDAC FASTMath Inst.
https://scidac5-fastmath.lbl.gov/

• Variety of US DOE SciDAC partnership projects
• DOE BER E3SM climate model analysis

• Many other groups at universities, National Labs,
and industry

• Common uses: Surrogate Construction, Global
Sensitivity Analysis, Bayesian Inference, Forward
UQ

• Always welcome new applications / collaborations

Debusschere – SNL UQTk
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Compressed Sensing addresses sparsity in samples

Sparse regression (Compressive Sensing):

cCS = argminc
m∑

i=1

f (x(ξ(i)))−
∑
α∈I

cαΨα(ξ(i))

2

+ λ
∑
α∈I

|cα|

= argminc
[
||f −Ψc||22 + λ||c||1

]
. . . and in a Bayesian framework → Bayesian Compressive Sensing [Sargsyan, et
al., 2014]:

Posterior︷ ︸︸ ︷
p(c|D) ∝

Likelihood︷ ︸︸ ︷
p(D|c)

Prior︷︸︸︷
p(c) −→ cMAP = argmaxc log p(c|D) = argmaxc [log LD(c) + log p(c)]

with Laplace sparsifying prior

p(c) =
(
λ

2

)K
exp

−λ
∑
α∈I

|cα|



Debusschere – SNL UQTk
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UQTk BCS Function Call

def UQTkBCS(pc_begin, xdata, ydata, eta=1.e-3, niter=1,\
mindex_growth=None, ntry=1, eta_folds=5,\
eta_growth=False, eta_plot = False,\
regparams=None, sigma2=1e-8, npccut=None,\
pcf_thr=None, verbose=0, return_sigma2=False):

Inputs:
pc_begin: PC object with information about the starting basis
xdata: Sampled input values [#samples, #dimensions]
ydata: Function evaluations (QoIs)
eta: NumPy array, list, or float with the threshold for

stopping the evidence maximization algorithm.
niter: Number of iterations for order growth
ntry: Number of folds cross-validation of the retained basis

Outputs:
pc_model_final: PC object with retained basis terms
cfs_final: Corresponding PC coefficients

Debusschere – SNL UQTk
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Genz Oscillatory Function Test Case

• f (x) = cos
(∑d

i=1 aixi

)
• d = 4,ai = 2.0/i2, σdata = 0.05,nTrain = 100
• https://www.sfu.ca/~ssurjano/oscil.html

Debusschere – SNL UQTk
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Cross-validation identifies the optimal stop criterion

10 10 10 8 10 6 10 4 10 2 100

Eta

10 1

RM
SE

Optimum
Testing
Training

import PyUQTk.pce as uqtkpce
import PyUQTk.PyPCE.pce_tools as pce_tools
nord = 4; ndim = 4; type = "LU"; alpha = 0.0; beta = 1.0
pc_begin = uqtkpce.PCSet("NISPnoq", nord, ndim, type, alpha, beta)
eta_range = 1/np.power(10,[i for i in range(0,12)])
pc_final, c_k = pcetools.UQTkBCS(pc_begin,xdata,ydata,eta=eta_range)

Debusschere – SNL UQTk
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BCS approximates the Genz function quite well using
only 10 basis terms
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• Original full PCE has 70 terms
• Lower dimensions show up with highest order

Debusschere – SNL UQTk
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Regression with full basis set has larger testing error
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• Full PCE basis with 70 terms leads to overfitting
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Higher-Dimensional Genz Oscillatory Function

• f (x) = cos
(∑d

i=1 aixi

)
• d = 10,ai = 2.0/i , σdata = 0.05,nTrain = 400
• https://www.sfu.ca/~ssurjano/oscil.html

Debusschere – SNL UQTk
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Compressed sensing on full basis is challenging
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• Selects 31 basis terms out of a total of 1001
• Agreement is OK, but not stellar

Debusschere – SNL UQTk
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Iterative basis growth better captures important terms
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import PyUQTk.pce as uqtkpce
import PyUQTk.PyPCE.pce_tools as pce_tools
nord = 4; ndim = 4; type = "LU"; alpha = 0.0; beta = 1.0; n_it = 3
pc_begin = uqtkpce.PCSet("NISPnoq", nord, ndim, type, alpha, beta)
eta_r = 1/np.power(10,[i for i in range(0,12)])
pc_final,c_k = pcetools.UQTkBCS(pc_begin,xdata,ydata,

mindex_growth=’nonconservative’,eta=eta_r,niter=n_it)

Debusschere – SNL UQTk
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A Python-only implementation will provide more
flexibility

• Current mix of C++ and Python is main source of
install problems

• Original C++ data structures limit new developments
(mixed PC bases) and make coupling to other
packages challenging

• Original implementation pre-dates github
development tools

• Some (large) Third Party Libraries (TPLs) support
only legacy functionality (intrusive UQ)

• Plan to take main Python functionality into standalone
Python Toolkit for UQ

• Installation via pip install
• Documentation directly into github pages

Debusschere – SNL UQTk



UQTk BCS Illustration Future Summary References Extra Model Comparison Climate

General Python Surrogate Modeling Interface

• There are many Python UQ tools and libraries in the
community

• Most of them have different implementations of
commonly used UQ operations

• Surrogate models
• Global Sensivity Analysis
• Bayesian Inference

• Can we develop general interfaces to some of these
operations?

• Start with surrogate modeling interface
• Avoid duplication and allow codes like DAKOTA to call

surrogate models implemented by multitude of
Python UQ toolboxes

Debusschere – SNL UQTk
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Surrogate Modeling Interface Specifications

• Python class
• Allow scalar and multivariate Quantities of Interest

(QoIs)
• Provide option to return derivatives?
• Provide option to return Sobol’ indices?
• Provide option for adaptive refinement?

• Illustrative examples:
• SMT: Surrogate Modeling Toolbox

(https://smt.readthedocs.io/)
• Others?

• Other suggestions?
• Input welcome at bjdebus@sandia.gov

Debusschere – SNL UQTk

https://smt.readthedocs.io/
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Summary

• UQTk provides a powerful set of tools for building
general UQ workflows

• Multiple ways to access functionality
• Direct linking of C++ code
• Standalone apps
• Python interface through pybind11

• Available at
https://github.com/sandialabs/UQTk

• Suggestions and questions welcome at https://
github.com/sandialabs/UQTk/discussions

• Python-only version with general surrogate modeling
interface in the planning stages

Debusschere – SNL UQTk

https://github.com/sandialabs/UQTk
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DAKOTA and UQTk implement similar methods but
are geared towards different user groups.

• DAKOTA:
• Geared towards end-user, analyst
• Fully packaged, parallel workflow

• UQTk:
• Geared towards developers, students, researchers
• Components to build a workflow with
• More lightweight and easier to get “under the hood”

There are plans to couple DAKOTA and UQTk through
sharing libraries

Debusschere – SNL UQTk
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General Uncertainty Quantification Workflow

• Predictive uncertainty decomposition: Total Variance =

Parametric uncertainty + Data noise + Model error + Surrogate error

Debusschere – SNL UQTk
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Many flavors of MCMC are available

• Single Site MCMC (ssMCMC)
• Adaptive MCMC (aMCMC)
• Metropolis-adjusted Langevin algorithm (MALA) or

Langevin sampling
• Tempered MCMC (tMCMC)

Debusschere – SNL UQTk
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Surrogate models reduce the cost of computing Sobol’
indices.

Variance-based decomposition:

f (x1, x2, . . . , xd ) = f0+
∑

1≤i≤d

fi (xi )+
∑

1≤i<j≤d

fi,j (xi , xj )+
∑

1≤i<j<k≤d

fi,j,k (xi , xj , xk )+ . . .

• fi , fi,j , fi,j,k , . . . are mutually orthogonal

Sobol’ sensitivity indices measure fractional contributions of each parameter or group
of parameters towards the total variance of selected QoIs

Si =
Vxi

[
Ex−i [f (x)

]
|xi ]

V [f (x)]
(main), ST

i =
Ex−i

[
Vxi [f (x)|x−i ]

]
V [f (x)]

(total)

• joint (most of the time between two variables) can also be informative

Sobol’ indices estimates:
• Random Sampling → need computationally cheap (surrogate) models & slow to

converge
• Polynomial Chaos Expansions → exploit orthogonality of basis terms

Debusschere – SNL UQTk
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Compressed Sensing addresses sparsity in samples.
f (ELM-LF) is high-dimensional (47 input parameters)

• standard regression approaches are underdetermined →

Sparse regression (Compressive Sensing):

cCS = argminc
m∑

i=1

f (x(ξ(i)))−
∑
α∈I

cαΨα(ξ(i))

2

+ λ
∑
α∈I

|cα|

= argminc
[
||f −Ψc||22 + λ||c||1

]
. . . and in a Bayesian framework → Bayesian Compressive Sensing [Sargsyan, et
al., 2014]:

Posterior︷ ︸︸ ︷
p(c|D) ∝

Likelihood︷ ︸︸ ︷
p(D|c)

Prior︷︸︸︷
p(c) −→ cMAP = argmaxc log p(c|D) = argmaxc [log LD(c) + log p(c)]

with Laplace sparsifying prior

p(c) =
(
λ

2

)K
exp

−λ
∑
α∈I

|cα|


Debusschere – SNL UQTk
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Longer Term Plans

• Coupling with other libraries
• Better support for user specified third-party libraries,

e.g. random number generators, integrators, ...
• Coupling with DAKOTA (SNL) and MUQ (MIT) for

leveraging functionality
• Mixed PC basis types
• More general multi-index specification
• Data structures amenable to parallelization and GPU

acceleration
• Other developments you would like to see?

• Let us know at https://github.com/
sandialabs/UQTk/discussions

Debusschere – SNL UQTk
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Polynomial Chaos Expansions represent random
variables

u =
P∑

k=0

ukψk(ξ)

• u: Random Variable (RV)
represented with 1D PCE

• uk : PC coefficients
(deterministic)

• ψk : 1D Hermite polynomial
of order k

• ξ: Gaussian RV
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u = 0.5 + 0.2ψ1(ξ) + 0.1ψ2(ξ)
Expansion in terms of functions of random variables
multiplied with deterministic coefficients

• Set of deterministic PC coefficients fully describes RV
• Separates randomness from deterministic dimensions
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PCEs can be seen as a functional map from standard
RVs to the represented RV
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One-Dimensional Hermite Polynomials

ψ0(ξ) = 1

ψk(ξ) = (−1)keξ2/2 dk

dξk e−ξ2/2, k = 1,2, . . .

ψ1(ξ) = ξ, ψ2(ξ) = ξ2 − 1, ψ3(ξ) = ξ3 − 3ξ, . . .

The Hermite polynomials form an orthogonal basis over

[−∞,∞] with respect to the inner product

⟨ψiψj⟩ ≡
1√
2π

∫ ∞

−∞
ψi(ξ)ψj(ξ)w(ξ)dξ = δij

〈
ψ2

i

〉
where w(ξ) = e−ξ2/2 is the weight function.
Note that e−ξ2/2

√
2π

is the density of a standard normal
random variable

Debusschere – SNL UQTk
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Propagation of Uncertain Inputs Represented with
PCEs

Galerkin Projection
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uk =
⟨uΨk ⟩〈
Ψ2

k

〉 , k = 0, . . . ,P

Residual orthogonal to
space covered by basis
functions

Collocation
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Match PCE to random
variable at chosen sample
points: interpolation or
regression
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Galerkin projection methods are either intrusive or
non-intrusive

• Use same projection but in different ways

uk =
⟨uΨk ⟩〈
Ψ2

k

〉 , k = 0, . . . ,P

• Intrusive methods apply Galerkin projection to governing
equations

• Results in set of equations for the PC coefficients
• Requires redesign of computer code
• PCEs for all uncertain variables in system

• Non-intrusive approaches apply Galerkin projection to
outputs of interest

• Sampling to evaluate projection operator
• Can use existing code as black box
• Only computes PCEs for quantities of interest
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Collocation approaches are non-intrusive and
minimize errors at sample points

P∑
k=0

ukΨk (ξi) = u(ξi)

i = 1, . . . ,Nc
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1
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u

1

• Use functional representation point of view
• Can use interpolation, e.g. Lagrange interpolants
• Or use regression approaches: P + 1 degrees of

freedom to fit Nc points
• Can position points where most accuracy desired
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Bayesian inference offers a probabilistic approach for
inverse problems

Predictive 
Simulation 

Theory 

Experiments 

Introduction Introduction UQ Software PCES Summary References

Formulation

du
dt

= f (u;λ)

P(λ|D, I) =
P(D|λ, I)p(λ, I)

P(D)
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Inference 

Forward 
Propagation 
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Formulation

du
dt

= f (u;λ)

P(λ|D, I) =
P(D|λ, I)P(λ, I)

P(D)

λ u

P(u) P(λ)
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Formulation

du
dt

= f (u;λ)

P(λ|D, I) =
P(D|λ, I)P(λ, I)

P(D)

λ u

P(u) P(λ)
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• Bayesian inference can handle various sources of

data
• Probabilistic formulation readily accommodates

various sources of uncertainty
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Bayes’ rule updates prior belief with information
extracted from data

• Bayes’ rule

Posterior︷ ︸︸ ︷
P(λ|D) =

Likelihood︷ ︸︸ ︷
P(D|λ)

Prior︷ ︸︸ ︷
P(λ)

P(D)︸ ︷︷ ︸
Evidence

∝ P(D|λ)P(λ)

• Update prior distribution/knowledge about parameter
λ to posterior distribution given data D, using
likelihood function L(λ) ≡ P(D|λ)

• Data D = {di}N
i=1 - measurements of some quantities

of interest (QoIs)
• Evidence P(D) can be seen as a normalizing term
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The prior distribution represents prior information
about the inferred quantities

• Based on prior data, literature, or expert opinion
• Prior distribution helps to keep inference well defined,

e.g. if quantity needs to remain positive
• If not much data available, posterior will be strongly

influenced by the prior
• When a lot of data available, data will have

predominant influence on posterior
• Prior is both powerful and dangerous
• If no prior information is available, non-informative

priors can be used
• E.g. uniform from −∞ to +∞
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The likelihood function measures goodness-of-fit

• The key component that connects the model inputs to
measured QoIs

• The noise model accounts for disagreement between
model and data

• Common case is i.i.d. Gaussian measurement noise in
each data point

L(λ) = P(D|λ) = 1
(2π)N/2σN exp

(
−

N∑
i=1

(di − fi(λ))2

2σ2

)

• If the model itself is uncertain, then the noise model needs
to reflect that

• Generally the log-likelihood is used to avoid underflow

lnL(λ) = lnP(D|λ) = −N
2
ln(2π)−N ln(σ)−

N∑
i=1

(di − fi(λ))2

2σ2
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The posterior contains updated knowledge about
inferred parameters

• Gives the inferred values of the parameters as well as
their uncertainty based on all sources of uncertainty

• The maximum value is referred to as the Maximum A
Posteriori (MAP) value

• Posterior distribution generally not analytically
tractable

• Commonly people resort to MCMC sampling
approaches to draw samples from this distribution

• Samples can then be used to construct a PCE
expansion for the inferred parameters

• Can be fed into other models for forward propagation
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Bayes’ rule derives from elementary probability theory

Conditional probability:

P(A,B) = P(A|B)P(B) = P(B|A)P(A)

P(A|B) =
P(B|A)P(A)

P(B)
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Bayesian Inference and Model Comparison

• Model for thermodynamic properties of RedOx active
materials

• Used in design of materials for solar thermochemical
hydrogen production

• General model form δ = f (pO2 ,T )
• Model A: 4 parameters
• Model B: 8 parameters

• Bayesian parameter inference and model comparison
• Joint work with Dr. Ellen Stechel at Arizona State

University and Tony McDaniel at Sandia
• Funded by the DOE Office of Energy Efficiency and

Renewable Energy (EERE)
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Bayesian Inference and Model Comparison

• Employed UQTk Python Bayesian Inference tools to
infer parameters and compare the two models

• Model properties and numerical settings specified via
flexible xml input file

• Python postprocessing and model evidence
computation

• Workflow is an example included in the UQTk release
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Both models agree well with data

• Model A (left) and Model B (right)
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Both models agree well with data

• Model B (right) has smaller residuals
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Posterior distributions were sampled with adaptive
MCMC

• Well-defined unimodal distributions
• Model B has more dependencies between its

parameters
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Model evidence favors model B

• Model evidence computed from posterior samples,
using a Gaussian approximation

• Model A: Ln(evidence) = 1580
• Model B: Ln(evidence) = 1939

• Despite its higher complexity, model B is clearly
favored.

• For situations with more measurement noise, or
fewer data points, a simpler model may be preferred
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SciDAC BER Partnership Application

• Optimization of Sensor Networks for
Improving Climate Model Predictions

• PI: Daniel Ricciuto at ORNL
• Joint work with MIT FASTMath team (Youssef Marzouk)
• Two applications of UQTk

• Surrogate models for Global Sensitivity Analysis (GSA) –
Cosmin Safta (SNL)

• Bayesian calibration with model error – Khachik Sargsyan
(SNL)
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E3SM Land Model (ELM)
• US Department of Energy (DOE) sponsored Earth system model

• Land, atmosphere, ocean, ice, human system components

• High-resolution, employ DOE leadership-class computing facilities

• Some of the results shown here are with ELM-LF: a lower-fidelity,
python version
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GSA is needed for multiple Quantities of Interest.

Gross Primary Production (GPP, July 2004)
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Net Ecosystem Exchange (NEE, July 2004)
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Quantities of Interest
• Gross Primary Production (GPP)
• Total Leaf Area Index (LAI)
• Net Ecosystem Exchange (NEE)
• . . .
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Total Effect Sobol’ Indices for Model Parameters
Relevant at US-Ha1 (42.5◦N,72.2◦W )
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• Sparse regression model accuracy around 10%
• Identified a set of 8-12 parameters (out of 47) that control model outputs of

interest.
• Expected time dependencies recovered via sparse regression techniques.
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Calibration with embedded model error

• Model structural error embedding approach [Sargsyan, et al. 2015, 2019]

• g(x) = f (x ;λ+ δ(x)) + ϵ
• Physics-driven model correction
• Meaningful extrapolation to full set of QoI predictions
• Disambiguation between model error and data noise

• Simultaneous Bayesian inference of physical parameters and embedded
model correction parameters

• Likelihood computation requires uncertainty propagation of embedded
stochastic terms

• UQTk provides machinery for both Bayesian inference (adaptive MCMC)
and uncertainty propagation via Polynomial Chaos (non-intrusive spectral
projection)
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ELM calibration with FLUXNET observations
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• Predictive variance decomposition with model-error
component

• Allows meaningful prediction of other QoIs
(e.g. no data/observable)

• Allows (a more dangerous) extrapolation to other
sites
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ELM calibration with FLUXNET observations
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• Predictive variance decomposition with model-error
component

• Allows meaningful prediction of other QoIs
(e.g. no data/observable)

• Allows (a more dangerous) extrapolation to other
sites
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ELM-LF calibration with FLUXNET observations
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• Embedding removes biases and avoids overfitting
• Model error is the dominant uncertainty component
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