

XeF₂ – A new MOCVD source for removal of surface Si contamination and *in-situ* etching of GaN for epitaxial regrowth

*A. A. Allerman, A. T. Binder, A. M. Armstrong, L. Yates, J. Steinfeldt, H. M. Vuong, and R. J. Kaplar

Sandia National Laboratories, Albuquerque, NM, 87185

*Email: aaaller@sandia.gov

Epitaxial regrowth is being developed for fabricating advanced power and RF devices in III-Nitride semiconductor materials. For example, epitaxial regrowth of p-GaN on a lightly doped, thick ($> 100 \mu\text{m}$) n-GaN drift layer grown by MOCVD or HVPE would enable MPS diodes and JFETs with breakdown voltages exceeding 10 kV. The development of regrown PN junctions has been frustrated by the presence of Si contamination at the regrowth surface from atmospheric sources and residual crystalline damage from *ex-situ* etch or CMP processes which results in excessive leakage current. Additionally, Si functions as an effective micro-mask, on air-exposed GaN surfaces resulting in rough surfaces following *in-situ* etching using common bromine and chlorine -based precursors. *Ex-situ* processes such as Ozone oxidation followed by HF can remove surface Si contamination. However, the surface is still exposed to the atmosphere prior to loading the MOCVD system, risking re-contamination by an unknown quantity of Si. *Ex-situ* Si removal processes thus appear challenging to implement in high yield, commercial production unless re-contamination of Si can be prevented.

We present the novel use of XeF₂ for *in-situ* removal of surface Si contamination and subsequent etching of GaN in the MOCVD chamber. While XeF₂ is ubiquitous in the processing of Si devices, we are not aware of the source being used in MOCVD growth systems. Unlike chlorine (TBCl and CCl₄) and bromine (CBr₄) -based precursors we have studied; we obtained a smooth surface following *in-situ* fluorine etching of air-exposed GaN.

We also report that *in-situ* fluorine etching of ICP etched n-GaN Schottky barrier diodes (SBDs) formed by shadow mask evaporation results in reverse leakage currents more than 3 orders of magnitude lower than those formed on n-GaN layers that have only experienced ICP etching. Additionally, *in-situ* fluorine treated, ICP etched SBDs show reverse leakage currents equal to those of SBDs formed on as-grown n-GaN layers. This suggests that the *in-situ* fluorine etching is effective at removing the residual damage from the ICP etch process.

Next, this *in-situ* fluorine etch lowered the peak density of surface Si from an unusually high level of $1\text{-}2 \times 10^{19} \text{ cm}^{-3}$ to the detection level ($2\text{-}4 \times 10^{15} \text{ cm}^{-3}$) of the SIMS measurement prior to the regrowth of uid-GaN. Finally, PN diodes with a regrown p-GaN anode on a blanket etched n-GaN drift layer following *in-situ* fluorine etching exhibit reverse leakage current of $\sim 1 \times 10^{-8} \text{ A/cm}^2$ to -1000V, matching reverse leakage current measured in continuously grown PN diodes of similar structure. Optimization of the XeF₂ process is expected to reduce the ideality factor from 2.0 to the 1.5-1.6 typically measured in our continuously grown PN diodes. The similar reverse and forward current characteristics of these *in-situ* XeF₂ etched and regrown PN diodes and continuously grown PN diodes indicates that a device quality PN junction can be formed by epitaxial regrowth on *ex-situ* etched GaN. The use of *in-situ* XeF₂ etching for the first time overcomes two critical obstacles preventing the formation of more advanced PN junction devices such as MPS diodes and JFETs in GaN by epitaxial regrowth and demonstrates the utility of XeF₂ as a precursor for MOCVD processes.

This work was supported in part by the Advanced Research Projects Agency – Energy (ARPA-E), U.S. Department of Energy under the PN DIODES program directed by Dr. Isik Kizilyalli, and in part by the U.S. Department of Energy (DOE) Vehicle Technologies Office (VTO) under the Electric Drive Train Consortium. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525. The views expressed in the presentation do not necessarily represent the views of the U.S. Department of Energy or the United States Government.