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Personal Introduction: Who is David?
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3 ‘ Personal Introduction: Rambling Wreck all the Way! m
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, ‘ Introduction: What is Innovation?

* The introduction of something new that
addresses the most pressing challenges.

Georgia Tech m
@GeorgiaTech
4 international students invent an automatic

keg tap that fills a pitcher in 3 seconds.
#GTExpo

* Solving a tough problem by expanding/adopting skills I
from many different fields. I

5:14 PM - Dec 4, 2014 I

[Harvard Business Review (2017), McKinsey & Company (2022)] I



5 ‘ Introduction: How does the Future Look Like?

* Design of new materials that can withstand the intense
heat from the plasma.

* Ultra-thin optical technologies for next-generation I
screens and monitors.

e o .
* Advanced manufacturing that can process and shape I

new materials. I



i ‘ Introduction: How are Innovation and Sandia Connected?

THE WHITE HOUSE
WAl s GT oM

May 13, 1943

Sandia National Laboratories is an Engineering Lab.

Doar Er. Wilsan:

I a= inforued that the Atesle Energy Coomdssion imtends
o ask that the Pell Telephone lahoratories socept under somtract
the direction of the Sandis Laborstery at Albuguarque, New Wexico.

* Our origins can be traced to the Manhattan Project and Los

This opsration, which is a vital segment of the atasic
Alamos. Iy s aiebaiiamanbe
tional defenss, and should kave the best poasible techniesl direc-
* InJuly 1945, J. Robert Oppenheimer established “Z B e e e S
Momle Energy Commission, your organisation will find it peasible
Division” at Sandia Base to perform stockpile development el
L. . . to pender an sxceptional sesvice in the patfonal intereet.
activities and non-nuclear component engineering. T e weing o iaiiar sote diech S0 6 0 5r Dy

h-;m“?%,:

* Our ethos is: “Exceptional service in the national interest.”

* 'This is the Lab to which the nation (and the world) turn to
solve the toughest and most complex engineering

challenges.




Introduction: Historic Impact of Sandia's Innovations

N

Sandia pioneered
clean room

& technology

to protect the

| circuitry that
controls nuclear
weapons.

It went on to be
used in hospitals,
computetrs

and smartphones.

Sandia’s mobile
SpinDX diagnostic
device can test for
viruses, bacteria and
active toxins in less
than an hour while the
microneedles technique
extracts interstitial fluid
to quickly diagnose
major illnesses or
measure exposure to
chemical or biological

Sandia found it was
possible to build and
operate a high-speed
passenger ferry and
research vessel powered
solely by zero-emission
hydrogen

fuel cells. The research
led to the first fuel cell
vessel built in the U.S.
and the world’s first
commercial fuel cell
ferry.

Sandia is a leader in
research for Unmanned
Aerial Vehicles and
associated
countermeasures
building off our robotics
legacy. Our robotics
have been used to
reach trapped miners,
demilitarize
submunitions and
disable IEDs.

An innovative, 27.5-
meter wind turbine
blade developed by
Sandia and industry
produces up to 10
percent more
energy than
traditional linear
blade designs
without increasing
wear and tear on the
machine




s | Introduction: How is Innovation Fostered?

* The Labs integrate state-of-the-art
facilities with a highly specialized
interdisciplinary technical experts.




o I Innovation in Materials: A pathway to Advanced Manufacturing

Sandia’s National Security Mission DOE and Industry Common Challenges

Lattice Materials #4240

high throughput
dogbone sample




10 ‘ Motivation: Traditional Manufacturing is not Agile

SYNTHESIS PROCESS MATERIAL STRUCTURE PROPERTY

£ 300K 1E-4/5 (41.2)
- 300K 1E-3/s (D1.1)
= 300K 1E-3/s (E1.2)
“— 300K 1E-3/s (E2.1)
<} 300K 1E-2/5 (B2.1)
<o 300K 1ED/s (D1.2)
300K 1E1/5 (C1.2)
300K 1E2/s (11.1)




o

Generate a diverse training set on
which the model will be trained.

!
Innovation in Materials: How can it be done?

Obtain a unique ﬁngerprmt descriptor

of the structure.

3. Integrate Machine Learning to
develop Linkage.




!
‘ Innovation in Materials: Small Particles, Big Effects

D Neutron * Massively energetic process where two light nuclei merge to form a single
b D heavier nucleus.
- r\ * Energy/Plasma generated needs to be contained in a reactor.
=) Energy .

Metal of the surface facing parts are heavily bombarded by energetic

z\J

Fusion

particles and massive amount of heat/energy.

T

[https://www.energy.gov/science/doe-explainsnuclear-fusion-reactions]

* How do material react to these conditions?

*  What is the fundamental behavior/response of a material to an
impact from these particles?

Answers to these questions are not easily obtained experimentally.




13 ‘ Traditional Simulation Process: Cannot Meet Demand

These interactions can be described with quantum mechanics

and accurately modeled using density functional theory.

Really complex equations that require specialized computers.

scales.

Can only model couple tens of thousand atoms for short time

Large-Scale MD Simulation

Hot region

Cold region

Temperature
T D 0 T s

[Nikolov et al. 2022]

* The interatomic potential (IAP) serves as a surrogate to model
atomic environments to energies and forces and are fitted to a
reference set of training quantum calculations.

e Accuracy,
Transferability

Training

eRepresentation,
S € t Sampling, d

Complexity...

Resultant models are not

HI¥} = E|¥}

transferable and only work
for the situations where they I

ePython backend

‘Brin g_ Your

own Model”  Simulation
Engine

were trained.

o Performance

Portable Kernels



14 ‘ Innovation in Materials: Enabling High-Fidelity Simulations

i
* Therefore, the choice of training data becomes critical for
the development of these models.
* Infinite space that complicates direct sampling and needs
domain expert guidance.
Recast the problem to represent the atomic structure with a unique
tingerprint descriptor that can be sampled.
* Sample the new descriptor base using an maximization
algorithm.
* Enables to generate vast and diverse dataset that will enable
models to be transferable.

[Karabin, M. & Perez, D (2020), Bartok et al. (2010)]



15 | Innovation in Materials: Revolutionizing Computational Modeling of
Nuclear Fusion
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I
16 1 Innovation in Materials: Thin Films, Strong Implications

Coating Process: Physical Vapor Deposition

Phase-field simulations of thin-film microstructures. ‘
A

® Advanced optics which requires enhanced thin-film

and coating processes.

Microstructure is dependent on large parameter space.l




17 1 Existing Solutions: Force us to Make a Compromise

Microstructure [EEESEE——-

Experimental Exploration and Characterization:

Capital Intensive
Laboratory Required

® Physically build every possible combination

Computational Exploration and Characterization:

® Computational modelling of evolution requires to
solve numerically complex and non-linear PDEs
® Require High-Performance Computing I
Environment I
[ ]

Time—consuming.

Are not able to perform an efficient exploration of the space and
cannot provide a rapid prediction the effect of one of these

parameters will have on the resultant structure.




18 ‘ Innovation in Materials: Thinking outside the Box
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Innovation in Materials: Accelerated Simulation Framework

Accelerated

b WY/ Reconstructlon

red UCtlon 0 256 512 |
High-fidelity phase-field trajectory

Surrogate model trajectory =
Accelerated phase-field trajectory —’




Innovation in Materials: Jumping forward in Time

l’lpj Ccrr“putational Materials p——T L

M) Check for updates

ARTICLE OPEN

0,000x faster
Accelerating pt =~ 7 tnand miceactructure evolution

| eda p S th ro ug h tl me predictions via ARTICLE

learning metho ,
| '.:I Check for updates

David Montes de Oca Zapiain®, Acce 1 .
lerating phase-field-based microstructure evolution

The phase-field method is @'

associated properties foraw redi 1 1
models are inherently compt p Ctlons VIa Surrogate mOdEIS trained by machine |

OPEN

integration schemes to achie

driven sufrogate model that le aming metho ds

dependent machine-leaming

in seconds, without the need

from our machine-learned surrogate model can jpe fed as an g —

accelerate the high-fidelity phase-field simulations by leaping in time. Such machine-learned phase-field framework opens a r
promising path forward to use accelerated phase-field simulations for discovering, understanding, and predicting
plucessing-micmslrucmre—pelformnce relationships.

npj Computational Materials (2021)7:3; https://doiorg/10.1 038/541524-020-00471-8

5 0 0 0 0 S . o migrostructure, obtained din David
aumreglessivealgmithm ari vid Montes de Oca Zapiai 1
4 Imu | d tl ons D o e e apiain’, James A. Stewart” and Rémi Dingreville (5™

INTRODUCTION {although the number of simulations to be performed is kept 10 2

The phnse-ﬁeld method is a popular mesoscale mmpmaﬁoml minimum, Since each subsequent simulation’s parameter set is
method used to study the spatio-temporal _evalution of a  informed by the Bayesian optimization protocol). Autoregressive
models are only capable of predicting microstructural evolution

. microstructure and its physical properties. It has been extensively a : 4 -~
Lsed to describe a variety of important evolutionary mesoscate for the values for which they were tained, limiting the ability of

I phenomena, including grain %mw(h and coarsening', sofidifica- this class of models to preict furure values beyond the training
tion™®, thinilm depns’nian" ' dislocation dymmics“‘". vesicles ser. For all three dlasses of models, computational cost-

formation in biological membl'anes"'“ and crack propaga- effectiveness decreases as the complexity of the microstructure
L

0 ion'2%. Existing high-fidelity phase-field models are inherently evolution process increases. .

computationally expensive because they solve a system of uf'n I{'“.S work, we create ? cni:mmlmal s;l" mgate mf Ode.l capa?le
- I e coupled partial differential equations for a set of continuous field s ;mg m\cmstmquva whtion problems in »\Dns of a
variables that describe these processes. At present, the efforts © Seaanc, by “’”‘!“'T""‘J a sta_nsncdlly representative, }W'
e inimize computational costs have facused primarily on \ever- dimensional description ‘of the microstructure evalution obtained
aging _ high li rformance  computin arthi}l)enuves's'z‘ and directly from phase-field simulations with & history-dependent
agvagmedgn :r)n il schemes”g‘ n? on tegratin machine- mac_hinelgaming ap_prnad:h {see Fig. 1). We illustrate this pr_mocol
learning algorithms with micmslr’ucmre—based simuglaticns 554 by simulating the spinodal decomposition of a two-phase mixture.
g aid T h d . The results produced by our sumogate maodel were achieved in
For example, leading studies have anstructed surrogate m el fractions of a second (lowering the computational cost by four

capable of rapidly predicting microstructure evolution from orders in magnitude) and showed only a 5% |oss_in. A6
phase-field simulations using a variety of methods, including compared to the high-fidelity phase-fiala

Green's function solution®®, Bayesian optimization”™**, of 3 improvement, our surrns
combination  of dimensionality reduction and autoregressive  simulations 35
Gaussian processes’. Yet, even for these successful solutions, the microstruct)

the key challenge has been to balance the accuracy with

[ ] computational efficiency. For instance, the compumianauy

. efficient Green's function solution cannot guaraniee accurate i i

I n salutions for complex, multi-variable phase-field models. In i
contrast, Bayesian optimization techniques can solve complex, mobilities, Ma aie

coupled phase-field equations, but at a higher computational cost features of the microsty

As illustrated 5

Teomer for Inegrated Nanotechaologies Sandia Timona Uiboratones, Albuguerdue, NM 87185, USA- Zenecgetic Matens
Laborataries, Albuguerque, NM 57185, UsA. Pemall: rdingre@sandia.gov

published in partnership with the Shanghai Institute of Ceramics of the Chinese Acadery of Scences



21 ‘ Innovation in Materials: Metal Stamping and Forming

* Metal Stamping and Forming Processes deforms sheet
metals into complex parts.

* Imposed deformation coupled can cause ruptures/
cracks.

* Manufacturing trials and die trials are needed to ensure

material can be shaped into desired component.

I
* 'These trials cost millions of dollars per year |

* Manufacturing processes that can shape new materials per plant.

into desired shape.




2> 1 Innovation in Materials: Quantifying the Effect of the Internal Structure

=0 Stress-strain response
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* The metal alloys show complex polycrystalline grain structure that
heavily affects the deformation depending on the orientation of
the grains or of the loading;

* An agile manufacturing process requires an efficient way to
account for the effect these grain structures have on the I
deformation.
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-2 1 Innovation in Materials: Developing an Agile Characterization
Framework using Machine Learning

MICROSTRUCTURE

Experiments

Seconds

Two Weeks
on HPC '

OUTPUT: Plastic Anisotropy

Weeks to
Months




‘ Innovation in Materials: Using Extracted Knowledge

Earing profiles of Al5053
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Sharing Innovation: Building a Product is not enough
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‘ Sharing Innovation: Deploying a Usable Product

ip@sandia.gov

Shderads
:t:"e ;ML
Ioelan

MasOs

!
admal

Ligkaaes nuw Fils

— Fleans robs o nl ceinln in Syt

Tawtura 2 Plastle anlaotrapy

I
T, B A e R e i L] =

Zra WA TR Y T 1 v e

Actual GUI shown.

b
R

L A

DOE Software Copyright Assertion (SCR#2683)

A -!'.1':'-.".# L

3 I
mao CN
Theory: Machine Learning based anisotropy prediction

YWarlakioral Bawy esian Inderenc
Krural Netwerk Pelodel

T AN

L E
L

|

]

FFATEN R Y

&

20,000 test strsctares
mean error = .63

Outp
AR R e

Npgad | bl b
v

Montes de Oca Zapiain et al., Mater. Sci. Eng. A (2022)

Application (e.g., metal forming analysis)

\.n'w'l—hr\ll-h--'l'l \ e

—a v e
o b o £ PR




-2 | Sharing Innovation: Introducing Materials Data-Driven Design (MAD?3)




‘ Sharing Innovation: Materials Data-Driven Design

Figure 1: Schematic overview of the

MALD? technology. MICROSTRUCTURE

Experiments

. Computation

s-:h\u-zmw-q
betweas 52 and CF

Seconds

Two Weeks
on HPC '

OUTPUT: Plastic Anisotropy

54 anisotropy parameters: 18 normalized yield
stresses and 36 lateral strain increments

MAD? PROVIDES THE UNIQUE ABILITY TO INCORPORATE A MATERIAL'S
MICROSTRUCTURAL INFORMATION INTO METAL-FORMING PROCESSES BY
LEVERAGING THE POWER OF MACHINE LEARNING.
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Sandia Technology Maturation Program

TOTAL MARKET SIZE
All software-based simulations

w MARKET GROWTH OPPORTUNITY
All metal stamping manufacturing processes.
m—Q MARKET ENTRY POINT
Car Manufactures, Metal Plants
terals cata driven design



Innovation in Materials: Shoot for the Stars and Land on the Moon

30




., | Innovation in Materials and ME: Shaping the World

* ME provides you with unique skills for a diverse and rewarding career path:

* Technical Expertise
* Unique Insight

* Outside-of-the-box thinking

* Bottom-line ME can take you as far as your dreams can go and this 1s
just one example of how an ME can shape world!

* Please join the other seminar series to learn of all the different ways
GT Alumni are making the future a reality.
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