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Multiscale, multiphysics systems

Practical physical system solvers composed from subsystem modules
Governing equations (fluid, solid, multi-phase, radiation)
Mesh type, refinement (quad/hex, tri/tet, geodesic)
Time integrators, time step (implicit, explicit, IMEX)

Coupling is labor-intensive, often reliant on empirical models

Blonigan et al., 2022

Murugesen et al., 2020
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Overview

The Schwarz alternating method
Projection-based reduced-order models
2D shallow water equations – Gaussian pulse

Additive Schwarz parallelism
“Non-overlapping” finite-volume Schwarz
Hyper-reduction with domain decomposition

Conclusions and outlook
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The Schwarz alternating method1,2

Monolithic (non-linear) ODE

dq
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= f (q, t, µ) in Ω, q ∈ RN
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1Schwarz, H.A., Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, Vol. 15, 1870.
2Gander, Electron. Trans. Numer. Anal, Vol. 31, 2008. 4



Additive Schwarz

Multiplicative Schwarz is strictly serial
Additive: advance independently, communicate afterward

dqk+1
i

dt
= f

(
qk+1
i , t, µi

)
in Ωi

qk+1
i = fb

(
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i

)
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Empirically observed to slow convergence, no loss of accuracy

All results in this presentation use the additive Schwarz algorithm.
Parallelism helps balance additional cost due to Schwarz iterations.
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Non-overlapping Schwarz

Overlapping interfaces are uncommon in the physical world
Mechanical assemblies, multi-physics systems

Non-overlapping Dirichlet–Dirichlet condition has no convergence guarantees
Dirichlet–Neumann conditions resolve this issue
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Robin–Robin also converges, but rare in production codes
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A note on finite volume methods

Today’s results use cell-centered FVM with ghost cell boundary conditions
BCs are enforced approximately by fictitious ghost cell state

Can’t apply Dirichlet–Neumann or Robin–Robin without significant effort
Some literature suggests Dirichlet–Dirichlet works for hyperbolic problems3

Not truly non-overlapping, but non-physical cells suggest interesting possibilities

3Dolean et al., SIAM J Sci Comput, 2009 7



Not covered in this talk

Non-conformal meshes
Interpolation/projection of transmission condition4

Non-uniform time steps
“Controller” time-step concept5

Physics-informed neural network (PINN) coupling6

Didn’t work as well as we hoped

4Mota et al., arXiv:2311.05643, 2023
5Mota et al., Int J Numer Meth Eng, Vol. 123, 2022
6Snyder et al., CSRI Summer Proceedings, 2023 8



Data-driven methods

Accelerate workflows for many-query problems
Coupling traditional numerical methods with

Projection-based ROMs (PROMs)
Operator inference ROMs
Neural network surrogates

Schwarz lends to “plug-and-play” architectures
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Projection-based reduced-order models (PROMs)

Recall governing (non-linear) ODE

dq

dt
= f (q, t, µ) , q ∈ RN

Low-dimensional affine representation (K ≪ N)

q(t) ≈ q̃(t) = q+Φq̂(t)

q̂ ∈ RK , Φ ∈ RN×K

The proper orthogonal decomposition

Φ = argmin
A∈RN×K

∥∥∥Q−AA⊤Q
∥∥∥2
2

Q = UΣV⊤, Φ← U[:, : K]
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Least-squares Petrov–Galerkin7

No dimension reduction yet, project by test basis Ψ ∈ RN×K and rearrange

dq̂

dt
=

[
Ψ⊤Φ

]−1
Ψ⊤f (q+Φq̂)

For fully-discrete residual (e.g. BDF1)

r (q̂n) = Φ
(
q̂n − q̂n−1

)
−∆tf (q+Φq̂n) = 0

Minimize with Gauss–Newton

δq̂n = argmin
y∈RK

∥∥∥∥∂r (y)∂y
y + r (y)

∥∥∥∥2
2

Equivalent to Petrov–Galerkin projection with test basis

Ψ =
∂r (q̂)

∂q
Φ

7Carlberg et al., Int J Numer Meth Eng, Vol. 86, 2011. 11



Hyper-reduction

Non-linear residual still scales with full dimension N
Collocation: minimize residual at small subset of DOFs, Ns ≪ N

q̂n = argmin
y∈RK

∥Sr (y)∥22

Yellow: residual cells, White: stencil cells 12



Open-source software

Projection-based ROM interface provided by pressio

https://github.com/Pressio/pressio

Experiments run with pressio-demoapps

https://github.com/Pressio/pressio-demoapps

Schwarz coupling for pressio-demoapps

https://github.com/cwentland0/pressio-demoapps-schwarz

Rizzi, F. et al., “Pressio: Enabling Projection-based Model
Reduction for Large-scale Nonlinear Dynamical Systems,”

arXiv:2003.07798v3, 2021.
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2D shallow water equations: Gaussian pulse

∂h

∂t
+

∂(hu)

∂x
+

∂(hv)

∂y
= 0

∂(hu)

∂t
+

∂

∂x

(
hu2 +

1

2
gh2

)
+

∂

∂y
(huv) = −µv

∂(hv)

∂t
+

∂

∂x
(huv) +

∂

∂y

(
hv2 +

1

2
gh2

)
= µu

Uniform 300×300 Cartesian grid
First-order in space and time
Vary “Coriolis” parameter µ

µtrain ∈ [−4.0, −3.0, −2.0, −1.0, 0.0]
µtest ∈ [−3.5, −2.5, −1.5, −0.5]

T = 10.0, ∆t = 0.01
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2D SWE: Parallelism

Straightforward OpenMP parallelism, one thread per subdomain
Schwarz iterations incur significant costs (nt ≈ 3.5 iterations on average here)
Adjusting ideal scaling by Schwarz iterations shows parallelism works as intended

Adjusted =
# threads
1
Nt

∑Nt
i=1 nt,i

nt := # Schwarz iterations

15



2D SWE: PROMs

No := cell width of overlap region (not including ghost cells)
“Non-overlapping” Dirichlet–Dirichlet FVM performs well, no convergence issues

µ = -0.5, K = 80 16



2D SWE: PROMs, domain overlap

Decreasing overlap has no effect or improves solution
Minimizing residual on trial space does not guarantee matching in overlap region

Schwarz iterations decrease (very roughly) with N0.25
o , but r (q) scales with N2

o

Black µ: training set, Red µ: testing set 17



2D SWE: Hyper-reduced PROMs (HPROMs)

Naive random sampling invariably results in an unstable solution
Sparsely-sampled boundary fails to transmit strong gradients

Ns = 2.5%×N
µ = -0.5, K = 100 18



2D SWE: Hyper-reduced PROM boundary sampling

Sample boundaries at fixed interval Nb

For fixed budget Ns, boundary samples draw points away from interior

Nb = 5, boundary zoom view
19



2D SWE: Hyper-reduced PROM boundary sampling

Can often get away with < 10% boundary sampling

µ = -0.5, K = 100, Ns = 0.5%×N
20



2D SWE: Hyper-reduced PROM performance

Balancing act between capturing dynamics and boundary transmission
Noticeable cost savings relative to monolithic FOM
For fixed PROM dimension K, Schwarz delivers lower error and comparable cost

Solid: Ns = 0.5%×N , Dash: Ns = 1.0%×N Lower-right is better
21



Conclusions

Schwarz provides a flexible framework for coupling disparate models
Difficult to recover traditional parallel performance due to Schwarz iterations

“Non-overlapping” Dirichlet–Dirichlet FVM treatment performs well
Requires extension and verification for non-conformal meshes

Schwarz HPROMs require special attention to boundary treatment
Fixed-interval boundary sampling method works, but is not cost-effective

Ongoing work
“Optimal” spatial decomposition
Online multi-fidelity modeling adaptivity
Extensions to production Sandia applications
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