SAND2024-01952C

Sandia
rl1 National _
Laboratories

Exceptional service in the national interest

Schwarz-based Domain Decomposition
Solutions for Data-Driven and

Physics-Informed Models

SIAM UQ 2024

February 28, 2024




Multiscale, multiphysics systems

m Practical physical system solvers composed from subsystem modules

m Governing equations (fluid, solid, multi-phase, radiation)
m Mesh type, refinement (quad/hex, tri/tet, geodesic)
m Time integrators, time step (implicit, explicit, IMEX)

m Coupling is labor-intensive, often reliant on empirical models

Blonigan et al., 2022

Murugesen et al., 2020




Overview

m The Schwarz alternating method
m Projection-based reduced-order models

m 2D shallow water equations — Gaussian pulse

m Additive Schwarz parallelism
m “Non-overlapping” finite-volume Schwarz
m Hyper-reduction with domain decomposition

m Conclusions and outlook




The Schwarz alternating method*:?

m Monolithic (non-linear) ODE
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1Schwarz, H.A., Vierteljahrsschrift der Naturforschenden Gesellschaft in Ziirich, Vol. 15, 1870.
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Additive Schwarz

m Multiplicative Schwarz is strictly serial

m Additive: advance independently, communicate afterward
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m Empirically observed to slow convergence, no loss of accuracy

All results in this presentation use the additive Schwarz algorithm.
Parallelism helps balance additional cost due to Schwarz iterations.




Non-overlapping Schwarz

m Overlapping interfaces are uncommon in the physical world

m Mechanical assemblies, multi-physics systems

m Non-overlapping Dirichlet—Dirichlet condition has no convergence guarantees
m Dirichlet—Neumann conditions resolve this issue
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m Robin—Robin also converges, but rare in production codes




A note on finite volume methods

m Today's results use cell-centered FVM with ghost cell boundary conditions
m BCs are enforced approximately by fictitious ghost cell state

m Can't apply Dirichlet-Neumann or Robin—Robin without significant effort
m Some literature suggests Dirichlet-Dirichlet works for hyperbolic problems3
m Not truly non-overlapping, but non-physical cells suggest interesting possibilities

3Dolean et al.,, SIAM J Sci Comput, 2009




Not covered in this talk

m Non-conformal meshes
m Interpolation/projection of transmission condition*

m Non-uniform time steps
m “Controller” time-step concept®

m Physics-informed neural network (PINN) coupling®
m Didn't work as well as we hoped

]

4Mota et al., arXiv:2311.05643, 2023
5Mota et al., Int J Numer Meth Eng, Vol. 123, 2022
6Snyder et al., CSRI Summer Proceedings, 2023 8




Data-driven methods

m Accelerate workflows for many-query problems
m Coupling traditional numerical methods with

m Projection-based ROMs (PROMs)

m Operator inference ROMs

m Neural network surrogates

m Schwarz lends to “plug-and-play” architectures
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Projection-based reduced-order models (PROMs)

m Recall governing (non-linear) ODE
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m Low-dimensional affine representation (K < N)
q(t) = q(t) = q+ eq(t)
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m The proper orthogonal decomposition
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Least-squares Petrov—Galerkin’

m No dimension reduction yet, project by test basis ¥ € RV*X and rearrange
dq
dt

m For fully-discrete residual (e.g. BDF1)
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m Minimize with Gauss—Newton
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7Carlberg et al., Int J Numer Meth Eng, Vol. 86, 2011. 11




Hyper-reduction

m Non-linear residual still scales with full dimension NV
m Collocation: minimize residual at small subset of DOFs, N, < N
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Open-source software

m Projection-based ROM interface provided by pressio

https://github.com/Pressio/pressio

m Experiments run with pressio-demoapps

https://github.com/Pressio/pressio-demoapps

m Schwarz coupling for pressio-demoapps

https://github.com/cwentland0/pressio-demoapps-schwarz

Rizzi, F. et al., “Pressio: Enabling Projection-based Model
Reduction for Large-scale Nonlinear Dynamical Systems,”
arXiv:2003.07798v3, 2021.
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2D shallow water equations: Gaussian pulse
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2D SWE: Parallelism

m Straightforward OpenMP parallelism, one thread per subdomain
m Schwarz iterations incur significant costs (n; ~ 3.5 iterations on average here)
m Adjusting ideal scaling by Schwarz iterations shows parallelism works as intended
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2D SWE: PROMs

m N, := cell width of overlap region (not including ghost cells)
m “Non-overlapping” Dirichlet—Dirichlet FVM performs well, no convergence issues
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2D SWE: PROMs, domain overlap

m Decreasing overlap has no effect or improves solution
m Minimizing residual on trial space does not guarantee matching in overlap region

m Schwarz iterations decrease (very roughly) with N9-2%, but r (q) scales with N2
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2D SWE: Hyper-reduced PROMs (HPROMs)

m Naive random sampling invariably results in an unstable solution
m Sparsely-sampled boundary fails to transmit strong gradients
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2D SWE: Hyper-reduced PROM boundary sampling

m Sample boundaries at fixed interval N}
m For fixed budget N, boundary samples draw points away from interior
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2D SWE: Hyper-reduced PROM boundary sampling

m Can often get away with < 10% boundary sampling

Water Height
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2D SWE: Hyper-reduced PROM performance

m Balancing act between capturing dynamics and boundary transmission
m Noticeable cost savings relative to monolithic FOM
m For fixed PROM dimension K, Schwarz delivers lower error and comparable cost
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Conclusions

m Schwarz provides a flexible framework for coupling disparate models
m Difficult to recover traditional parallel performance due to Schwarz iterations
m “Non-overlapping” Dirichlet—Dirichlet FVM treatment performs well
m Requires extension and verification for non-conformal meshes
m Schwarz HPROMSs require special attention to boundary treatment
m Fixed-interval boundary sampling method works, but is not cost-effective
m Ongoing work
m “Optimal” spatial decomposition
m Online multi-fidelity modeling adaptivity
m Extensions to production Sandia applications

22
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