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« Land-surface model parametric uncertainty remains large g 800
o
« High model expense - Need for model surrogates for T
sample-intensive studies, =
T 400
such as ... I
» Global sensitivity analysis (forward UQ) B e
 Model calibration (inverse UQ) 2 0.
« Major challenges § -200 e

« Expensive model evaluation, small ensembles 1860 1900 1940 1980 2020 2060 2100
« High dimensional (spatio-temporal) outputs

Reduced-dimensional, inexpensive surrogate construction via
Karhunen-Loéve expansions and Neural Networks (KLNN)
Surrogate enables global sensitivity analysis and Bayesian model calibration
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E3SM Land Model (ELM): focus on carbon and energy cycle

2014 May

Satellite Phenology version
@ used for this study

Competition Processes

(close to CLM4.5)
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Model Ensemble (275 samples)

1.9x2.5 resolution, satellite phenology

2014 May
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Perturbed Parameters

Parameter Description Min Max
flnr Fraction of leaf in in RuBisCO 0 0.25
mbbopt Stomatal slope (Ball-Berry) 2 13
bbbopt Stomatal intercept (Ball-Berry) 1000 40000
roota_par Rooting depth distribution 1 10
vemaxha Activation energy for Vemax 50000 90000
vcmaxse Engropy for Vemax 640 700
jmaxha Activation energy for jmax 50000 90000
dayl_scaling Day length factor 0 25
dleaf Characteristic leaf dimension 0.01 0.1

xl Leaf/stem orientation index -0.6 0.8
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Dimensionality Reduction via Karhunen-Loeve Expansion

_ M
fhz)=f(2)+ X En(DVikmdPm(2)
\ m=1

Uncertain parameters “Certain” conditions R .

High-d
Output
in

O
Spatio-temporal model output f(4; z), where z = (x,y, t) Space-Time :
: -4

‘I Handful of
eigen-features

------

Output field has large dimensionally N = N, XN, XN, i 001 el
and

1 180-month output
1

Eigenpairs (u,,, ¢,,(2)) are found via eigen-solve

-----

1
1 500,000 values

Q:
Analysis reduces to M < N eigenfeatures &, ..., &, ! @: &by

---------------

Under the hood: this is essentially an SVD £z, . flzy)
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KL+PC = reduced dimensional spatio-temporal surrogate

The goal is to construct a surrogate with respect to uncertain parameters A, such that
f(4; z) = f;(4; z;) for all conditions z;.

Instead of building surrogate for each individual z; fori =1, ..., N,
we construct polynomial chaos (PC) surrogate for &, ..., &, where M < N.

, M

= Eigen- —_
81 oT e fAhiz) = f(2) + 2 Sm(DVHmPm(2)
21 0t @) m=1
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KL+NN = reduced dimensional spatio-temporal surrogate

The goal is to construct a surrogate with respect to uncertain parameters A, such that
f(4; z) = f;(4; z;) for all conditions z;.

Instead of building surrogate for each individual z; fori =1, ..., N,
we construct neural network (NN) surrogate for &4, ..., & where M < N.

M
2 \. Eigen- —®
H,  feaures fhz)=f(z2)+ Zlfm (D Um Pm (2)
21 W ¢ m=
/11,...,/1d ;‘El
NN ()
'
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PC vs NN comparison

Simple regression,

Polynomial Chaos ,
easy to train

More flexible,

Neural Network highly customizable

GSA and variance decomposition,

More interpretable

Multiple outputs at once,
More accurate (in theory)
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Several case studies

vegetated cells
(or regional zoom)

N, = 180 Months N: = 12 Months N, = 4 Seasons N.=1
Time (average out (average out (global
Space (full 15 years) interannual) within seasons) time-average)
FLUXNET sites
Ny = 96 F180 F12 F4 F1
(or group by PFTs)
Global 144x96
N, = 4000 G180 G12 G4 G
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DlmenS|onaI|ty reductlon via KL

Per-site dimensionality reduction Per-PFT dimensionality reduction
30
25
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Number of Eigenvalues Needed (reduced from 180) PFTs
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KL+NN a single training sample approximation

US-MOz

* —— Model sample —— KLapprx. @ —— KL+NN apprx. V\\
) \ r
G
/ y \} & v \ \

W ENERGY




>
i

L9
83
g=
@ E
5%
5
<

w<s
t
(]
w

KL+NN surrogate performance

17280 surrogates, we build

Instead of 96x180

| latent space

Imensiona
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m 96 temporal surrogates
: with each 180 outputs
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Dimensionality reduction from 4000 cells x 4 seasons = 16000 to 11-dimensional latent space

ELM Model Samples KLNN Surrogate Samples

0.00 202 4.04 6.06 808 10.10 12.12 14.14 16.16 18.18 0.00 202 4.04 6.06 808 10.10 12.12 14.14 16.16 18.18
GPP ELM Sample N20 _ GPP KLNN Sample N20 _
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30°S -

60°S -

0.00 009 018 0.27 0.36 045 054 0.63 0.72 0.81 0.00 0.09 0.18 027 036 045 054 0.63 0.72 0.81
Sensitivity of flnr Sensitivity of flnr
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Surrogate-enabled Bayesian calibration
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Reference Data

FLUXCOM: A gridded GPP benchmark
upscaled from FLUXNET network
using meteorology, remote sensing

https://www.fluxcom.org/

60°N

30°N

30°S

60°S

90°S

2000 January

150°W 120°wW 90°W 60°W 30°W 0F 30°E 60°E 90°E 120°E 150°E 180°

0.0 15 3.0 4.5 6.0 7.5 9.0 10.5

GPP: Obs. Data
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[Bayes’ formula p(4 | g) o p(g | A) p(/l) }

f4;2)

Prior p( /1) Posterior sampling is done

via Markov chain Monte Carlo
> ‘ <

Posterior p(4|g) 19

fi(4;2)

g(2)
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Bayesian Likelihood is constructed in the reduced space
Bayes’ formula p(1lg) < p(g|)p(A)
KLNN surrogate: Project observed data to the KL eigenspace:
FiD) <T@+ 3 8 ONTmdm () 9@ ~ @) + 3 1T
N (g(z) — f(A;2)?
Pointwise likelihood (naive) : Ly(A1) = p(g|A) < exp <_i§1 2 207 : >

_ M (1 — &Y ()7
Reduced likelihood : Lg(A) = p(glA) « exp (—m§=11 252
Eigenfeatures ¢&,,,'s are uncorrelated, zero-mean, unit variance,

hence iid gaussian likelihood is a much better assumption in the reduced space. @ENERGY 2
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Surrogate-enabled
calibration workflow
incorporates both
\\v S v v s v Y forward and inverse
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Spatio-temporal Surrogate
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Input Parameters
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Latent space distance is well-correlated with the physical

distance between model and data

Physical Space
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Scaled KL Features

Scaled KL Features
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25

20

15

10

POF of finr

0.00

0.05 0.10 0.15 0.20 0.25

RuBisCO leaf fraction (fLNR) is
the most constrained parameter
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US-MOz
3 —e— Fluxnet data W Model Prior mEE Model Posterior
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Time evolution ] F il il il i
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Calibration brings model prediction closer to reference data
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Nominal parameter (prior)

60°N
30°N- 30°N -
0°- 0
30°S- 30°5-

60°S - 60°S -

Winter

120°E ‘ 120°E 120°W 60°W 0° 60°E 120°E

0.00 153 3.06 459 612 7.65 918 10.71 1224 13.77 0.00 153 3.06 459 612 7.65 918 10.71 12.24 13.77 0.00 153 3.06 459 612 7.65 918 10.71 12.24 13.77
GPP Nom. GPP MAP GPP Obs.

0° - 0° -

30°S - 30°S-

60°S - 60°S -

Summer

120°W

0.00 153 3.06 4.59

0.00 153 3.06 459 612 7.65 918 10.71 1224 13.77 . 612 7.65 918 10.71 12.24 13.77 0.00 153 3.06 4.59 612 7.65 918 1071 12.24 13.77 26
GPP Nom. GPP MAP GPP Obs.
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Summary

« Karhunen-Loéve (KL) decomposition reduces the spatio-temporal output
dimensionality, taking advantage of correlations over space and time.

* Neural network (NN) surrogate in the reduced eigenspace leads to a
spatio-temporal KLNN surrogate that is a small fraction of ELM cost.

 KLNN surrogate enables sampling based global sensitivity analysis and
Bayesian calibration performed in the eigenspace.

Ongoing work:

» Potential PFT-dependent reparameterization to improve model’s ability
to match reference data.

« Calibration with embedded model discrepancy to avoid overfitting.

WENERGY 27
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KL truncation relies on variance retention

— M
fhz) = @)+ L m (DVtim®m (2)

M
Varlf @] = 3 tim$?m(@) > fm
m=1 M = argmin,, &5 > 0.99
2, Hm
M m=1
Var(f] = mzz:lﬂm

@ENERGY




¥ i gty
3 5 i ¥ ¢
" &
& o A i
S5E < - \
Energy Exascale A IJ;V R o - > -
Earth System Model :_:.: —
] Y -
e - . —

g~

KL is essentially a Singular Value Decomposition

L F i) — Fzi) ~ mﬁ N (20

M
F ki = Z Ukmzmmvim

m=1

SVD F=UXV"

Karhunen-Loeve expansion

-— is centralized (first subtract the mean)

-— often comes with the continuous form

-— has random variable interpretation for the latent features (aka left singular vectors) &,

@ENERGY =
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Polynomial Chaos intro

« Our traditional tool for uncertainty representation and propagation

« Random variables represented as polynomial expansion of standard random variables,

such as gaussian or uniform K
J E= 2 cPr(m)

k=1
« Convenient for uncertainty propagation

FE) = 3 Fuw(n)
k=0

e Moment estimation

« Global Sensitivity Analysis (a.k.a. Sobol indices or variance-based decomposition)

A ENERGY 31
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D _[PFTName | Count

Boreal evergreen needleleaf tree

Temperate evergreen needleleaf tree 11
Boreal deciduous needleleaf tree

Temperate evergreen broadleaf tree

0
Tropical evergreen broadleaf tree 5
5
1

Tropical deciduous broadleaf tree
Temperate deciduous broadleaf tree 20

0 N OO O B~ WON -

Boreal deciduous broadleaf tree

20

15

O

Broadleaf evergreen shrub

—_— )
_\o

Boreal deciduous broadleaf shrub

o
o

1
0
Temperate deciduous broadleaf shrub 3
1
4

Number of FLUXNET Sites

RN
N

C3 arctic grass

RN
w

C3 non-arctic grass 16

—_
1A

C4 grass 1

1
—_—

M'Xed 6 O-112456781011121314

PFTs
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60°N 60°N
30°N 30°N
Oo_ Oo_
30°S - 30°S -
60°S - 60°S -
120°W 60°W 0° 60°E 120°F 120°W
0.00 0.06 0.12 0.18 024 030 036  0.42 0.48 0.00 007 014 021 028 035 042 049 056 0.63
Sensitivity of mbbopt Sensitivity of mbbopt
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Bayesian Likelihood in the reduced space TBD

i -

KLNN surrogate: Project observed data to the KL eigenspace:

— M — M
fhz)~f)+ X 157’7\’1’\' (Dt dm (2) 9@ ~f@2)+ X lnm\/@¢m(2)

Pointwise likelihood (old) : Data model (old) :

i) — /1; i 2 e :i.d. Normal
120 =) xp (=3 0Ly ) = 220 + 16,

Data model (new) :

M (M — & (A))?

Ly(1) = p(g|A) « exp (—m2:1 = ) — =®NN(/1) n m;m

MVN (physics-based)

9G) = F7) + 3 emTonhn ()
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Common parameters for all sites
S
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Calibration brings model prediction closer to reference data
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Local (site-specific) fLNR posterior PDFs
Grouped by PFTs
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Energy Exascale
Earth System Model

Two calibration regimes

One global surrogate One surrogate per grid cell

Fixed global f{LNR parameter Local fLNR parameter

14

12

10

30°5+

60°S -

120°W 60°W 0° 60°E 120°F

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225
MAP fInr 38

0.00 0.05 0.10 0.15 0.20 0.25




o
©

o

\

Energy Exascale L ==

/ -

/ e,
A

Earth System Model N :

= L,

—
.
-

Localized calibration works slightly better

—&— Mean (Prior) /)\\
0.9 _ | , -
-&= Nominal (Prior) , ~o
0.8] —®— MAP (Post.) Global 7 \\.
w v P
2 -@— MAP (Post.) Local //
= _
7 0.7
Q ]
> 0.6
©
D 0.5 ;
o
0.4 ;
0.3

DJF MAM JA SON

Seasons @ ENERGY ¢




(E3SM

Energy Exascale
Earth System Model

Correlate PFT fractions globally with best fLNR values

PFT Fractions for all PFTs
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fLNR MAP

fLNR MAP
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Energy Exascale
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