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What are Microstructural Clones?

Multiple specimens in a set with nearly identical microstructures

multiple specimens with nearly identical

' Specimen sliced horizontally creating
microstructures

How to define microstructure clones? Some

ideas:
99.999% Nickel 0.25 in thick plate 1. Same grain boundary locations within ~30 pm.
Heat treated to grow grains 10-20 mm in diameter 2. Same grain orientations within ~2°.

Tensile specimens cut from locations with similar

microstructure front and back 3. Same dislocation densities within a factor of

2. y -




What can we do with Clones?

TEM

Molecular
dynamics

Dislocation
dynamics

Will a unique microstructure always behave the same?

Stochasticity & Uncertainty quantification

Perform multiple (destructive) experiments

Consistency of test setup

Different loading conditions Microstructural/geometrical defects
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How do you know where to look for high resolution exp./sim?

High resolution measurements often require you to know where to

look ahead of time
Computational modeling can help predict location, but are not always

correct
Identical microstructures can help “see the future” on where and how

a specimen will deform ‘
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Clone 2.x - Experiments

Initial microstructures (EBSD) Deformed microstructures Texture (EBSD, Clone 2.1)
(EBSD, Clone 2.1) (100) (110)
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« Slip rate: ¥*=4° <;—a)

»  Slip resistance: g* = go+ Aub, | Y  HpP

 Dislocation evolution:

5 Face Centered Cubic structure
dp® = | k1| Y PP — kap™ | |dn]

* Hardening matrix: praf _ o, 56

« 12 {111}<110> slip systems for FCC
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/" Crystal Plasticity FE simulations
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* FE mesh with 8-node hexahedron element
» Total of ~ 620k FE elements

* FE size~25um

(c.f. EBSD size ~4um, DIC size ~50um)

2.44 mm
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/ Surface strain field comparisons

Clones 2.1 Clones 2.2
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Failure locations and CP predictions

Optical CP simulations (50% deformation)
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» Surface strain predictions from CP simulations are very similar between Clones2.1 —2.4.

* Current CP models do not incorporate damage. Ly
« Different failure locations seem to be caused by difference in thicknesses.
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4 Front vs. back surfaces: CP predictions at 50% strain

DIC side (front) EBSD/Optical side (back)
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Crystal rotation / texture evolution
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/ Comparisons with experiments (50% deformation)

/ EBSD CP-FEM predictions
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/ Texture predictions
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/ Crystal rotations — per grain analysis Grain 1 Ll
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/ Crystal rotations — per grain analysis
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/" Intragranular rotation
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Evolution of Schmid factors
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Mesh sensitivity test (Clone 2.1)

Deformed texture (g4, =50%)
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Summary

¢ Microstructural clones — nearly identical multi-crystal, 2D microstructures

* Novel experimental technique to investigate the stochasticity and repeatability of
microstructures

*» Clones demonstrate repeatable deformation response and sensitivity of microstructural/
geometrical features on local stress/strain localization

¢ Coordination of microstructural clones and computational crystal plasticity to improve
models and mechanism understandings

« CP provides qualitatively accurate strain localization and texture predictions
« Heterogeneous intragranular fields are captured
* Clones highlight limitations of CP
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