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Part I, H2 generation:  
Accelerated screening of oxides for high-T clean energy applications

Ø graph neural networks / direct vacancy property predictions / high-throughput screening

Introduction:
Methodology and applications

Ø Graph neural networks for modeling & discovering hydrogen energy materials

Part II, H2  storage:  
Modeling of (super)-hydrides for hydrogen storage and beyond

Ø graph neural networks / screening + statistical sampling / metal-hydrogen phase diagrams
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Central methodology theme: Use graph neural networks (GNNs) as a surrogate 
model for expensive DFT relaxations in the limit of low data

Ø Goal: Predict DFT-relaxed energy of a defected crystal structure from an unrelaxed representation
Ø For the most accurate quantum chemical methods (beyond DFT), we will be data limited for the foreseeable future

Phase diagrams from first-principles 
calculations, Monte Carlo, etc.

Example 2: Interstitial lattice defects in an alloy

Ideal lattice & 
interstitial supercell 

DFT

Formation energy

Example 1: Vacancy defects

Vacancy 
formation energy

DFT

GNN
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Central application theme: Experimental and/or 1st principles calculation trial-and-
error discovery of new & improved hydrogen materials solutions is too costly 

Months to synthesize and fully characterize and test a material
Months to predict even just a proxy for performance for a small # of materials  

Application #1: (High entropy) metal oxides for solar 
thermochemical (STCH) H2 generation
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Application #2: Metal (super)-hydrides 
from (high entropy) alloys

Hydrogen/Metal 

Pr
es

su
re

Pressure-Composition-Temperature
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Part I:  
Accelerated screening of oxides for high temperature, clean 
energy applications[1]

[1] Witman, Goyal, Ogitsu, McDaniel, Lany. Nature Comp. Sci. 2023, (3) 8

Key concepts:
Ø Graph neural networks to directly predict relaxed vacancy properties from the host structure
Ø High-throughput screening of vacancy formation enthalpies
Ø New oxides for water-splitting, fuel cells, CO2 conversion, and thermochemical energy storage
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Discovering oxides for clean energy, and specifically 
solar thermochemical water splitting (STCH) materials

1. Application: motivation for H2 production via 
solar thermochemical water-splitting (STCH) 

2. Challenge: expense of experiments and 
quantum mechanical based methods

3. Solution: surrogate modeling with defect 
graph neural networks

4. Screening & validation: (re)discovery of 
water-splitting metal oxides
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Application Challenge Solution Screening & Validation

Application: why focus on (green) hydrogen production without renewable electrons?

(1) Why H2? 

~45% fuels (other)

2022 US Energy demand:
~35% electricity 
~20% fuels (cars) ~10% fuels (H2, biofuels, …)

https://www.eia.gov/energyexplained/us-energy-facts/

(2) The mismatch problem

2022 Renewable additions:
~90% electricity 

“renewables … are growing quickly enough to meet almost all 
[growing electricity demand], suggesting we are close to a tipping 
point for power sector emissions”

As of early 2023, newly added renewable 
electricity capacity is still just shy of meeting 

increasing electricity demand alone…  

(3) Why produce H2 without electrolysis? 

Ø STCH: A potential pathway to green H2 relying only 
on renewable heat, not renewable electrons

(4) High-temperature, concentrating solar power (CSP) is proposed for a variety of decarbonization technologies

o Thermal batteries

o Thermochemical energy storage

o CO2 conversion

o H2 production via solar thermochemical water-splitting (STCH)

2010 LCOE : $0.38/kWh → 2022 LCOE: $0.12/kWh

https://www.eia.gov/energyexplained/us-energy-facts/
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Application Challenge Solution Screening & Validation

CSP in the cinema: In the dystopian sci-fi classic Blade Runner 2049, 
the world apparently went all in on CSP but failed  

Mirrors

CSP tower Flying car
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Application Challenge Solution Screening & Validation

Challenge: Experiments and calculations to find the best 
metal-oxides for STCH are difficult and time-consuming

Calculated oxide space:
14 cations

~200 compounds
~1500 vacancy relaxations

Screening oxide space 
(Materials Project):

~30+ cations
~10,000s+ compounds

~1Ms+ vacancy relaxations

100s+ years’ work…

~1 years’ work

(1) STCH mechanism & experiments

Experimentally measure H2 & O2 production:

Time
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Months to synthesize and fully 
characterize and test a single material

STCH efficacy first and foremost depends on 
oxygen vacancy thermodynamics

E.g., Ba4CeMn3O12
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Application Challenge Solution Screening & Validation

Solution: A generalizable, defect graph neural network (dGNN) model predicts 
vacancy formation energies many orders of magnitude faster than DFT

Pros:
Ø Generalizable (no 

manual feature 
engineering)

Ø Chemistry & 
structure agnostic

Ø Improvable w/more 
data

Ø Orders of magnitude 
faster than DFT 
(milliseconds vs. 
days)

Cons:
Ø Highly data reliant
Ø Not interpretable
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H2 storage

Automated feature extraction with GNNs [1] 

Automated feature extraction of graph neural networks (GNNs) enables 
efficient, generalized modeling of vacancy formation enthalpy

Interpret crystal as a graph (nodes = atoms, edges = “bonds”)

Convolutions over 
neighbors

Pool all atom features to 
create crystal feature vector

[1] Xie and Grossman. P.R.L. 120 (14), 2018
[2] Witman, M. et al. Nature Comp. Sci. 2023, (3) 8

Deriving a “defect GNN” approach[2]

Ø Property prediction (node pooling):

O MnØ Example graph:

Accuracy boosting, site-specific 
inputs (i.e. oxidation state)
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Application Challenge Solution Screening & Validation

Screening & Validation: Improved performance of dGNN with architecture 
improvements and additional/more diverse training data

Ø Accurate and continually improving oxygen 
and cation vacancy predictions

(1) dGNN validation (2) Materials screening, down-selection, and experimental validation

Ø Rediscovers known 
water-splitters (e.g., 
Ba4CeMn3O12, …)

Ø Newly predicted, earth-
abundant BaFe2O4 and 
BaFe2-xAlxO4 are 
experimentally validated

Ø Many additional new 
materials to be tested 
(e.g., Sr3PrMn2O8, …)
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Ø Accelerated materials discovery made capable by leveraging and adapting state-of-the-art 
machine learning techniques (GNNs) for defect predictions 

DFT screening = 100s of years       →       dGNN screening = instantaneous 

Ø (Re)Discovery of water-splitting oxides made possible (experimental papers coming soon)

Ø This approach is applicable to wide range of materials/applications (hydrides, nitrides, 
transition metal dichalcogenides, etc.), so long as we can generate the training data…
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Part II:  
Modeling of (super)-hydrides for hydrogen storage 
and beyond[1-3] 

Key concepts:
Ø Graph neural networks on ideal lattices
Ø High-throughput screening of random alloy/interstitial configurations
Ø Predictions of thermodynamic properties from first-principles
Ø Direct calculation of metal-hydrogen phase diagrams

[1] Witman, M. et al.  JPCL, ﻿2024 (15) 5
[2] Way, L. et al. In prep
[3] Guan, P. et al. In prep
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(2) Featurization for compositional ML model

Magpie features1 -> (mean, stddev., etc)  on elemental 
properties and their at.%

[1] Ward, L et al. Comp. Mat. Sci. 2018, 152, 60-69
[2] Witman, M. et al. J. Phys. Chem. Lett., 11 (1), 2020
[3] Witman, M. et al. Chem. Mater., 30 (11), 2021
[4] Witman, M. et al. J. Mater. Chem. A., 11 (29), 2023
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H wt.%

PCT curvesH2 Metal Hydride

(3) Gradient boosting regression (GBR) 
model validation and explainability[2-4]
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Graph neural networks (GNNs) on ideal lattice materials provide an attractive 
platform for high-throughput configurational screening in high entropy systems

Model inputs cannot rely on DFT-relaxed configuration

Negligible loss in performance using ideal representation[2]

10% test set on 284 
cfgs of AlLiMgSnZn

GNNs 101: Property prediction from crystal structure input[1]

Graph 
(V,E)

CIF File

Conv+NN NN
Graph 
(V’,E’)

Pool

Ø Crystal structure is the direct input
Ø Alleviates the need for manual feature engineering

[1] Xie and Grossman. P.R.L. 120 (14), 2018
[2] Witman, M. et al.  J. Phys. Chem. Lett., ﻿2024 (15) 5
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~ 1 meV test MAE for Pd29{Rh,Ag}3Hx Accurate screening outside train distribution

Pd29Rh3H16

Models are data-efficient: similar 
test MAE between 200 vs 2000 
train configurations

No outlier test set residuals and small MAE despite small amount of training data

Ideal FCC hydride representation
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High-throughput configurational sampling with GNN model identifies 
lower energy configurations than the brute-force DFT
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Calculation of PCT curves (metal-hydrogen phase 
diagram from first principles calculations)

Mean field theory and Boltzmann 
weighted PCT calculation

Comparison of computed vs experimental PCT

Ø Correctly rank plateau pressure, 
plateau widths, & H/M saturation 
between alloy systems

Ø Compute phase envelope
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Next steps: Predicting hydrogen phase equilibria in more 
compositionally complex (super)hydrides

Ø DFT corrections needed 
Ø Useful for discovering low stability hydrides 

(high-pressure compression materials) 

(TiZr)(FeMnCrNi)

[1] Way, L. et al. In prep
[2] Guan, P. et al. In prep

Multi-interstitial (super)hydrides: Lu(N,H)3-x [2]

1. DFT relaxations of FCC 
Lu(N,H)3-x (~1,000 calc’s)

2. Validate energy and volume configurational dependence
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Ø GNNs make screening of configurational energy landscape in compositionally complex materials tractable 
DFT screening = 100s of years       →       dGNN screening = instantaneous 

Ø When coupled to first-principles calculations or simulations, GNNs can power predictions of phase 
diagrams needed to more wholistically evaluate hydrogen storage performance

Ø This approach will be particularly useful for predicting/modeling phase equilibria of (super)hydrides under 
extreme environments (hydrogen pressures) where experimental data is scarce and difficult to obtain
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Thank you for your attention! 

Questions/comments/collaborations?
mwitman@sandia.gov


