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Talk Outline

Introduction:

Methodology and applications
» Graph neural networks for modeling & discovering hydrogen energy materials

Part |, H, generation:

Accelerated screening of oxides for high-T clean energy applications
» graph neural networks / direct vacancy property predictions / high-throughput screening

Part Il, H, storage:
Modeling of (super)-hydrides for hydrogen storage and beyond

» graph neural networks / screening + statistical sampling / metal-hydrogen phase diagrams




I Central methodology theme: Use graph neural networks (GNNs) as a surrogate
4 model for expensive DFT relaxations in the limit of low data

» Goal: Predict DFT-relaxed energy of a defected crystal structure from an unrelaxed representation
» For the most accurate quantum chemical methods (beyond DFT), we will be data limited for the foreseeable future

Example 1: Vacancy defects Example 2: Interstitial lattice defects in an alloy

Relaxed I : - I
elaxe crys;‘a o Ideal lattice &
structure, £ S S interstitial supercell

O
DFT
DFT
\J \-.../ C C
[ o e o o
Relax vacancy O—O GNN O (.i‘ - Relaxed
supercell, E, O ° O O = supercell, E4
o o) ® o o ®
.r“'\ r\ C l C
Vacancy 1 l _
AHy =E; — Eq +ref Ef=E; — ref Formation energy

formation energy

Phase diagrams from first-principles
calculations, Monte Carlo, etc.




I Central application theme: Experimental and/or 1st principles calculation trial-and-
error discovery of new & improved hydrogen materials solutions is too costly

Application #1: (High entropy) metal oxides for solar
thermochemical (STCH) H, generation

w
A 5 .
MO, -MO,_; + 502 (reduction T) M + %Hz < MH,
MO, _s + 6H,0 - MO, + 6H, (oxidation T)
Pressure-Composition-Temperature
" Tp = 1350 °C, Ty = 1000 *C H,
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Time Hydrogen/Metal
Experiments: Measure H, / O, production rates Experiments: Measure PCT curves (AH, AS, and capacity)
1%t principles: Compute AH of oxygen vacancy formation) 1t principles: Low-sample estimation of AH

Months to synthesize and fully characterize and test a material
Months to predict even just a proxy for performance for a small # of materials
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Accelerated screening of oxides for high temperature, clean
energy applicationsl!]

Key concepts:

» Graph neural networks to directly predict relaxed vacancy properties from the host structure
» High-throughput screening of vacancy formation enthalpies

> New oxides for water-splitting, fuel cells, CO, conversion, and thermochemical energy storage

[1] Witman, Goyal, Ogitsu, McDaniel, Lany. Nature Comp. Sci. 2023, (3) 8




I Discovering oxides for clean energy, and specifically
7 solar thermochemical water splitting (STCH) materials

: motivation for H, production via
solar thermochemical water-splitting (STCH)

2. Challenge: expense of experiments and
guantum mechanical based methods

3. Solution: surrogate modeling with defect
graph neural networks

4. Screening & validation: (re)discovery of
water-splitting metal oxides
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I : why focus on (green) hydrogen production without renewable electrons?

(1) Why H,?

r

2022 US Energy demand:
~35% electricity
~20% fuels (cars)

~45% fuels (other)

‘

=

(2) The mismatch problem

e

2022 Renewable additions:
~90% electricity

~

~10% fuels (H,, biofuels, ...)

L

J

https://www.eia.gov/energyexplained/us-energy-facts/

(3) Why produce H, without electrolysis?

=

.

“renewables ... are growing quickly enough to meet almost all
[growing electricity demand], suggesting we are close to a tipping
point for power sector emissions”

As of early 2023, newly added renewable
electricity capacity is still just shy of meeting
increasing electricity demand alone...

(4) High-temperature, concentrating solar power (CSP) is proposed for a variety of decarbonization technologies

| 2010 LCOE : $0.38/kWh -> 2022 LCOE: $0.12/kWh

o Thermal batteries

o CO, conversion

o Thermochemical energy storage

o H, production via solar thermochemical water-splitting (STCH)

» STCH: A potential pathway to green H, relying only
on renewable heat, not renewable electrons



https://www.eia.gov/energyexplained/us-energy-facts/

Screening & Validation

Runner 2049,

Solution

fi classic Blade
Flying car

Challenge
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Challenge: Experiments and calculations to find the best
10 metal-oxides for STCH are difficult and time-consuming

(1) STCH mechanism & experiments

4 A 5 ) (2) Density functional theory (DFT)-based calculations of oxygen
MOy — MOy_; + - 0 (reduce ~1400C) vacancy formation enthalpy (AHy,)
MO,_; + 6H,0 - MO, + 6H, (oxidize ~1000 C)| )
I .
) : Monoclini Tet | H | Calculated oxide space:
STCH efficacy first and foremost depends on enocinie elragona exagona 14 cations
oxygen vacancy thermodynamics ~200 compounds
~1500 vacancy relaxations
Experimentally measure H, & O, production: 1
P IR —n ~1 years’ work
o)
O ars
Cé ey B pmaig B ket o ‘ . Screenin id
5 Cul search creeni .g oXi e.space
5 | | L ge space B |C |N |0 (Materials Project):
Traini . .
_§ | r1FT iy |14t pmag | Na | Me _ e _ AlIS P IS ~30+ cations
E |'-k I"-k I'.x ['\___ '-.,_H_' K Ca |[Sc |Ti |V Cr [Mn|Fe [Co |[Ni |Cu |Zn |Ga |Ge |As |Se ~10,0005+ compounds
c Ba CeMn.O el - e .. Rb |Sr |Y |Zr |[Nb [Mo|Tc [Ru [Rh |Pd |Ag |Cd |In [Sn [Sb |Te ~1MS+ Vacancy relaxations
-8., Ba,LeivingU,, ) Cs |Ba |[La |Hf |Ta (W |Re |Os |Ir |Pt [Au |Hg |TI |Pb |[Bi |Po
Time —— 4
r a C
Months to Synthesize and fu||y Ce [Pr |Nd |Pm |Sm |[Eu [Gd |Tb |Dy |Ho |Er [Tm |Yb 100s+ years’ work...
A
characterize and test a single material \_ )
g W,




I Solution: A generalizable, defect graph neural network (dGNN) model predicts
11 vacancy formation energies many orders of magnitude faster than DFT

Supercell vacancy defect DFT relaxations
(1 per symmetry site)

Pros:

» Generalizable (no
manual feature
engineering)

» Chemistry &
structure agnostic

/| » Improvable w/more

»
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~ data
w AHy o » Orders of magnitude
_ ol S faster than DFT
- % R 4 AH, o, (milliseconds vs.
2 . g days)
o . . @)
= gl ..# AHgmn1
Encoding Vo1 =[0,0,1,..] g vor =[0,.4,.5, .1 * .7 g
Vo, =[0,0,1,..] gf voe=00.3,4,.0 < B[ AH Cons:
Vmnt =10, 1,0, ...] vl vee =L1,.6,.2, ] #° el d,Sr1 » Highly data reliant
vs =[1,0,0,..] ~| Ve =[7,.2,.1, ] =t > Not interpretable
S =[1,0,0, ...] =1.9, 4, 2, ..] y

Defect graph neural network surrogate model




I Automated feature extraction of graph neural networks (GNNs) enables
efficient, generalized modeling of vacancy formation enthalpy

Automated feature extraction with GNNs [ Deriving a “defect GNN” approach!?!

(. )

Interpret crystal as a graph (nodes = atoms, edges = “bonds”)

Predict using only host structure, X}, and defect atom index, i’
DFT: ﬂHd_ = EDP'I'(Xd) - EDP'I'(Xh) + ref
ML AHy = fonn(Xp, i3 6)

€12
» Example graph: FL° @ v

> Encode the graph (step t = 0): | Accuracy boosting, site-specific
crystal vi=?={ro xo 51} inputs (i.e. oxidation state)

O
>E .> O outou » Convolutions (t =1...T)

X

. e (7 Lo (w8 e (4w 450
RfJonv L, hidden Pocjingx L, hidden '
cenvolutions over Pool all atom features to » Property prediction (node pooling):
neighbors create crystal feature vector Xiefoct = J(v?; ® v, - W+ b) » Node pooling at i’

\_ )| AR, = xgete- W +b > Can add host’s global
properties, v, = {band gap, ...} ‘

[1] Xie and Grossman. PR.L. 120 (14), 2018 \_
[2] Witman, M. et al. Nature Comp. Sci. 2023, (3) 8




I Screening & Validation: Improved performance of dGNN with architecture
13 improvements and additional/more diverse training data

(1) dGNN validation (2) Materials screening, down-selection, and experimental validation
4 )
4 » Screen Materials Project oxide space for: )
> Target defect stability: AHy, € [2.3, 4.0] eV
» Target host oxide stability
>
= Y
= # Defects
5 g » Rediscovers known
T mp-1247717 water-splitters (e.g.,
e Ba,CeMn,0,,, ...)
<§ 102
» Newly predicted, earth-

» abundant BaFe,0, and
10! BaFe, Al O, are
experimentally validated

I
0 5 10 15
AHy, (DFT) [eV]

» Accurate and continually improving oxygen
and cation vacancy predictions

k J \ AHp [eV;’atom] (e'g'l Sr3PrMn208, )

» Many additional new
materials to be tested

. . . 10°

>
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14 I Part |: Key Takeaways :

» Accelerated materials discovery made capable by leveraging and adapting state-of-the-art
machine learning technigues (GNNs) for defect predictions
DFT screening = 100s of years @ =  dGNN screening = instantaneous ©

» (Re)Discovery of water-splitting oxides made possible (experimental papers coming soon)

» This approach is applicable to wide range of materials/applications (hydrides, nitrides,
transition metal dichalcogenides, etc.), so long as we can generate the training data...
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Modeling of (super)-hydrides for hydrogen storage
and beyond!'-3]

Key concepts:

» Graph neural networks on ideal lattices

» High-throughput screening of random alloy/interstitial configurations
» Predictions of thermodynamic properties from first-principles

> Direct calculation of metal-hydrogen phase diagrams

(1l Witman, M. et al. JPCL, 2024 (15) 5
(2 Way, L. et al. In prep
(31 Guan, P. et al. In prep




16 I Explainable machine learning models predict metal hydride thermodynamics

(1) In(P2,/P,) target property (3) Gradient boosting regression (GBR)
. ~ model validation and explainabilityl2-4]
H, Metal Hydride PCT curves e N
D L _
% u-u_'_'gj "% a'e's: - . GBR model predicts
00 DTttt dhethyetiet % s E_i . In(Pg,/P,) W/MAE ~ 1.5
S| . e
(7)) w w4 :
¢ H wt.% E —10 -
HydPARK database provides (now ~700 examples): {E:
» Alloy composition, AH, AS, and ln(P,f_fE7
\_ ~) —20 0 High
True In(Pgy/Po) Vpa o
(2) Featurization for compositional ML model X g
re L
G/Iagpie features! -> (mean, stddev., etc) on eIementaﬁ AH, %
] properties and their at.% SG# -
TiFeg g2Nbg o5 — ; ~ linear correlation with v,,;: , , N w
=[5 & = 14 _
x = {Vpa ,Teov, X, -} ER In(PS/P,) ~ —m ¥pq + b s 0 5
k value )
Vpa = X fivi
Vv; = ground state vol. per atom (1 Ward, L et al. Comp. Mat. Sci. 2018, 152, 60-69
o s . (21 Witman, M. et al. J. Phys. Chem. Lett., 11 (1), 2020
\ fi - COITIpOSItIOﬂ frac. of element i ) 31 Witman, M. et al. Chem. Mater., 30 (11), 2021
(4 Witman, M. et al. J. Mater. Chem. A., 11 (29), 2023




I Graph neural networks (GNNs) on ideal lattice materials provide an attractive

platform for high-throughput configurational screening in high entropy systems

GNNs 101: Property prediction from crystal structure inputlt!

( 0009 Conv+NN Pool NN A
ggg Graph Graph . VE
P o{ (V,E) (VI’EI) L‘t‘}'sta] _jF

CIF File\ ‘

» Crystal structure is the direct input I

» Alleviates the need for manual feature engineering

\ y
Model inputs cannot rely on DFT-relaxed configuration

( N
» A model that predicts E} from Xppr not useful because

you would already have Ef per :
Eq = fonnXppr; )

» Derive model inputs (crystal graph) from ideal lattice :
Er = fonyXpce; 0)

Xpcc is trivial-to-generate, so model can be run
on millions of random HEA configurations

Negligible loss in performance using ideal representationl?!

( Xece -[ :O:bz: c=2a, \

a:ﬁ:y:QO

a=846 a=9142
Xper 1 b =854 p=90.81
c=8.60 y=90.38

O Xoprr (MAE=3.1)
O  Xrcc (MAE=3.6)

Ef [meV/atom]

,89»@'6@

—60 —50

10% test set on 284
cfgs of AlLiMgSnZn

—40

—70

—70

Efprr [meV/atom]

[1] Xie and Grossman. PR.L. 120 (14), 2018
[2] Witman, M. et al. J. Phys. Chem. Lett., 2024 (15) 5



18 I Approach is equally applicable to metal hydrides (random alloy + interstitial occupation)
~ 1 meV test MAE for Pd,,{Rh,Ag};H,

(, : )
(a) 90 - (b) Train *#
Ideal FCC hydride representation _40 ~18 4 K Test el
é ) 60 - PdH,. ¥ Screen * e
i | B 25 I I ; ] R ,"/0
= y Pdo.o1 Rho.osHx @ =4
’ "‘:E- 0 - 091 RNoag ; _ 99 - *._ A&;’ v ™ \'l‘
2 _25 £ ¢ ﬁ
£ E % -
50 - w 24 - & % ©
wul iy S I
w 0 - Eb» =
-261 .7 *
—25 - “ule,
—50 - Pdg a1 Agg goH —928 - *
T T T T T
Xrcc+int for PdygRhsHse ) 50 0 26  -24 -22 —20 18
\_ Ef,pFr [meV /atom] y Ef.pFr [meV/atom]

No outlier test set residuals and small MAE despite small amount of training data

[ h
(c) C 1% [14% [J8% [ 80%
2 o . uE | Models are data-efficient: similar
ki il =2 test MAE between 200 vs 2000
w100l oo : Jo | FE, .- —O| | train configurations
—10 -5 0 5 10 102 103
< Efprr — Ef [me'\.r’fatom] # Train Cfgs )




I High-throughput configurational sampling with GNN model identifies
9 . :
lower energy configurations than the brute-force DFT

(a) PdH, (b) Pdg.01Rhg.0oHx (c) Pdo.o1Ago.00Hx
O -
5 -
>’
()
£ -10 -
=
o
a
™) —15
W
! = (E)10%
W j °
— (E)mL
25 - B min,10%
- min,100% _
== EminmL N
10°
1 I 1 1 1 1 1 1 1 I I 1 1 1 1
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
x [H per M] x [H per M] x [H per M]

> ~3,000 DFT cfgs per alloy system needed for E (x) convergence (10% of not sufficient)
» ML can screen O(Million) of cfgs, and finds lower energy than anything in training (especially PdRh)




I Calculation of PCT curves (metal-hydrogen phase
diagram from first principles calculations)

Comparison of computed vs experimental PCT

Mean field theory and Boltzmann 7 \
weighted PCT calculation -0~ Pd(exp) ~(- Pdg.gRho.1(exp) = Pdo.oAgo.1(exp)

( \ —— Pd(ML-MFT) = Pdg.g1Rho0o(ML-MFT)  —— Pdy.01Ag0.00(ML-MFT)
Thermodynamic formalism/assumptions: 1 (d) Pd-X-H vs exp ©300K 1 (e) 260, 300, and 340 K
S(x) = k[(1 —x)In(1 — x) + xIn(x)] 10 10
G(x)= E(x) — TS(x) - 100
Energy calculation: B . .

_ = 10 10

MFT: E(x) = E(x) ®

: _ ZiEe BT < 10-2 102
Boltzmann: E(x) = 5 e T g?
PCT: 1073 103
» fit G(x) to polynomial
> Differentiate w.rt x = u 10~* 107 ' ' ' '
> 7= /KT . . . . . 00 02 04 06 08

\ <P [ Po€ Y, x [H/M] x [H/M]
» Correctly rank plateau pressure,

plateau widths, & H/M saturation » Compute phase envelope
between alloy systems
L J
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Predicted In(Pg,/P,) vs. experiment for
compositionally complex AB2 alloys!l]

Next steps: Predicting hydrogen phase equilibria in more
compositionally complex (super)hydrides

Multi-interstitial (super)hydrides: Lu(N,H),_, 12!

[

4 )
@ .
10 1 (TiZr)(FeMnCrNi) M ® 1. DFT relaxations of FCC
3 \ M Z' Lu(N,H),_, (~1,000 calc’s)
x . . ///’ o
I 5- o e
& 3 Ty
:Cul ° /6, 2. Validate energy and volume configurational dependence
2 e XN /XLy
5 0 A s 0.0 0.5 1.0
’_LCE, . ,/, —j . #  P=0HI1ELL10X30G
o /, H-l:- :
o 3 L ® x=0 (MAE=5.0) A Sl F(T)
Sy i © x=60 (MAE=1.5) 14 A
X' A Spin, x=30 (MAE=1.1) g
-5 0 5 10 2 ..

In(Peq)expt (bar) T - ' tea,,
> DFT Correctlons needed 10 20 30 MLMWHMMO?;ETSH}I%(? 00035 BO040 00045 QB
> . . o . ) :

Us.eful for discovering Iow stablllty-hydrldes 3. (in, f1) phase diagrams from MC in progress
(high-pressure compression materials) \ /
\ J

(1l Way, L. et al. In prep
(21 Guan, P. et al. In prep




22 I Part |I: Key Takeaways i)

» GNNs make screening of configurational energy landscape in compositionally complex materials tractable
DFT screening = 100s of years ® = dGNN screening = instantaneous ©

» When coupled to first-principles calculations or simulations, GNNs can power predictions of phase
diagrams needed to more wholistically evaluate hydrogen storage performance

» This approach will be particularly useful for predicting/modeling phase equilibria of (super)hydrides under
extreme environments (hydrogen pressures) where experimental data is scarce and difficult to obtain
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Thank you for your attention!

Questions/comments/collaborations?
mwitman@sandia.gov




