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Tin displays complex behavior

2H. Lim et al., SAND Report (2022) - SAND2022-2368

Temperature

Strain-rate

• Used in plating, soldering, and alloying 

• Low melting temperature (~500 K) and 
recrystallization temperature (~300 K)

• Leads to complex microstructural 
evolution and large distributions in 
mechanical response
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H. Lim et al., SAND Report (2022) - SAND2022-2368
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• Fixed form

• Extrapolation is difficult

• Multiple parameters to fit

• Assumption-based

Limitations

Johnson-Cook (JC): 5 parameters

Zerilli-Armstrong (ZA): 6 parameters

Mechanical Threshold Stress (MTS): 20 parameters

Preston-Tonks-Wallace (PTW): 12 parameters



Can genetic programming be an alternative method?
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Input

Feature Engineering

Experimental 
Stress-strain curves

Initial set of naive 
random formulations

Evaluate fitness 
of formulations 

(RMSE)

Select top K 
formulations 

(Tournament 
Selection)

Generate new set of 
formulations by performing 

genetic operations on 
fittest formulations

Crossover 
Mutation

Hoist 
Mutation

Point 
Mutation

Subtree 
Mutation

J.R. Koza, Statistics and Computing (1994)
Y. Wang et al., MRS Comm. (2019)

D. Montes de Oca Zapiain et al., 
Comp. Mat. Sci. (2023)

Best Model
(example)

Output

Hyperparameters

Monte Carlo sampling

Population size
Tournament size

Parsimony coefficient

Best model had:
• Lowest RMSE
• Smallest change in 

RMSE between the 
training and test sets



What did genetic programming predict to be the best model?

6

RMSE ~ 14 MPa

Genetic Programming

D. Montes de Oca Zapiain et al., Comp. Mat. Sci. (2023)



Testing the GP model with the Taylor impact test
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H = 38.18 mm

D = 7.58 mm

v0 = 96 m/s

Genetic Programming

Tin 
projectile

Steel anvil



Why such a soft response from the GP model?
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Incipient plasticity

Great performance 
compared with experiment

Regime of max 
strain-rates during 

Taylor impact

Predicts softening at high 
strain-rates, which is NOT 

physical



Improving on GP model development
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Input

Feature Engineering

Experimental 
Stress-strain curves

Initial set of naive 
random formulations

Select top K 
formulations 

(Tournament 
Selection)

Generate new set of 
formulations by performing 

genetic operations on 
fittest formulations

Crossover 
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Hoist 
Mutation

Point 
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Subtree 
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J.R. Koza, Statistics and Computing (1994)
Y. Wang et al., MRS Comm. (2019)

Best Model
(example)

Output

Hyperparameters

Bayesian optimization

Population size
Tournament size

Parsimony coefficient



New and improved GP model
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RMSE ~ 20 MPa

Genetic Programming

Regime of max 
strain-rates during 

Taylor impact

Does not predict softening 
at high strain-rates

Increase in RMSE



Comparison with previous GP model
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New GP modelPrevious GP model



Comparison with traditional models and experiment
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Experiment
(Los Alamos) Johnson-Cook Zerilli-Armstrong Preston-Tonks-Wallace Genetic Programming

Percent Error:



Conclusions
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• Genetic programming (GP) is a novel, useful, and easy 
way to generate strength models for complex materials 
at a wide range of temperatures and strain-rates

• Along with experimental data, GP models need physical 
constraints to predict realistic material behavior

• Future work:
• Introduce new inputs to GP model from experimental 

Taylor impact tests (radii, heights)
• Create a feedback loop that optimizes formulated models by 

evaluating their hydrocode simulation results

Experimental 
stress-strain curves

Experimental 
impact shape

ALEGRA

Genetic 
Programming

Sandia’s 
Optimization & UQ 

software



Thank You!
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Supplementary
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Can genetic programming be an alternative method?
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Input

Feature Engineering

Arithmetic 
Operations 
Explored:

Experimental 
Stress-strain curves

Initial set of random 
formulations

Evaluate fitness of 
formulations (RMSE)

Select top K 
formulations 

(Tournament 
Selection)

Generate new set of formulations 
by performing genetic operations 

on fittest formulations

Crossover Mutation

Hoist Mutation Point Mutation

Subtree Mutation

Continues for 
N generations

J.R. Koza, Statistics and Computing (1994)
Y. Wang et al., MRS Comm. (2019)

D. Montes de Oca Zapiain et al., Comp. Mat. Sci. (2023)



Selecting hyper-parameters using Monte Carlo sampling
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Continues for 
40 generations

Genetic ProgrammingPopulation size
Number of 

formulations generated

Parsimony coefficient
Penalty to overly 

complex formulations

Tournament size
Randomly samples 

subsets of population

Population 50~50000

Tournament Size 10~1000

Parsimony Coefficient 0.001~0.01

Monte Carlo Sampling (200 samples) • Best model chosen from hyper-parameters that yielded 
the lowest RMSE value and had the smallest difference in 
performance between the training and test sets

Best Model
(example)



Comparison with traditional models
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RMSE ~ 14 MPa

Genetic Programming

Johnson-Cook

RMSE
~19 MPa

Zerilli-Armstrong

RMSE
~24 MPa



Genetic Programming RMSE Comparison – Training vs. Test
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Training set Testing set

RMSE ~ 13.32 MPa RMSE ~ 13.96 MPa

D. Montes de Oca Zapiain et al., Comp. Mat. Sci. (2023)



Johnson-Cook RMSE Comparison – Training vs. Test
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Training set Testing set

RMSE ~ 18.77 MPa RMSE ~ 19.06 MPa

D. Montes de Oca Zapiain et al., Comp. Mat. Sci. (2023)



Zerilli-Armstrong RMSE Comparison – Training vs. Test
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Training set Testing set

RMSE ~ 24.16 MPa RMSE ~ 24.03 MPa

D. Montes de Oca Zapiain et al., Comp. Mat. Sci. (2023)



Stress-strain curves may not be enough…
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Genetic Programming

Experimental stress-strain curves

Experimental 
impact shape

Evaluate model using 
ALEGRA simulation 

results

Quantities of 
interest

RMSE



Leveraging the analytical expression
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Experimental DataGenetic Programming



Traditional Strength Model Development: Zerilli-Armstrong and Johnson Cook

24RMSE=24.16 MPa

C0 (MPa) C1 (MPa) C3 (1/K) C4 (1/K) C5 n

204.98 577.51 0.008 0.0004 −159.08 −0.10

RMSE=18.77 MPa

A (MPa) B (MPa) n C m
−10653.59 15044.97 0.05 0.09 0.05

Training DataTraining Data

 Cook et al., (1983) Zerilli et al., (1987) D. Montes de Oca Zapiain et al., Comp. Mat. Sci. (2023)



Data-driven Strength Model  Development: Best Model

25RMSE=13.32 MPa

Parsimony Coefficient=0.003Population=34738 Tournament Size=468

Training Data

where

D. Montes de Oca Zapiain et al., Comp. Mat. Sci. (2023)
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Performance of  Different Models: Evaluation on test set

RMSE=13.96 MPa

RMSE=19.06 MPa

RMSE=24.03 MPa

D. Montes de Oca Zapiain et al., Comp. Mat. Sci. (2023)



Performance of  Different Models: Traditional vs. GP

27D. Montes de Oca Zapiain et al., Comp. Mat. Sci. (2023)


