

Developing data-driven strength models incorporating temperature and strain-rate dependencies

Nicole K. Aragon, David Montes de Oca Zapiain,
Corbett C. Battaile, Hojun Lim

Sandia National Laboratories

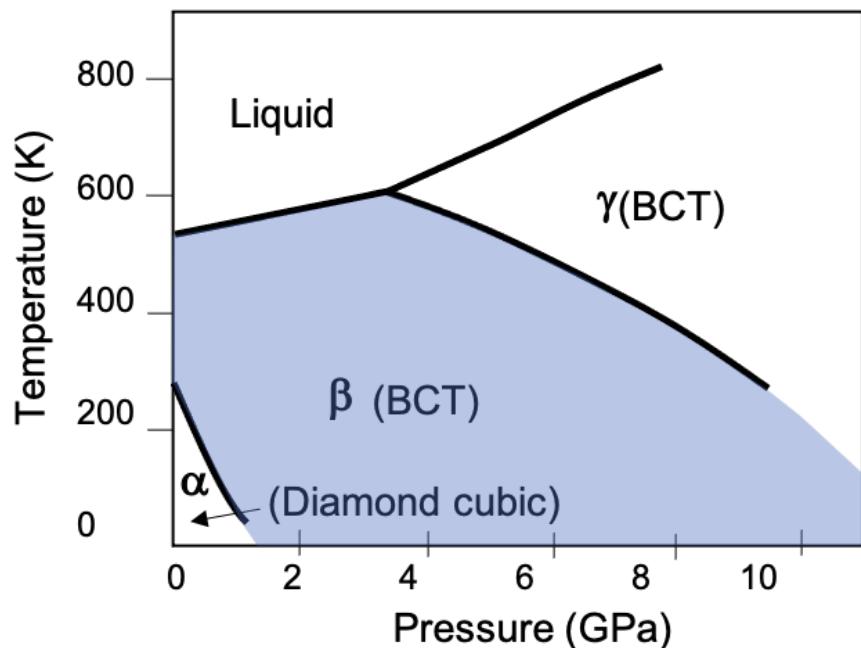
The Minerals, Metals & Materials Society Annual Meeting
Thursday, March 7th, 2024

SAND2024-XXXXXC

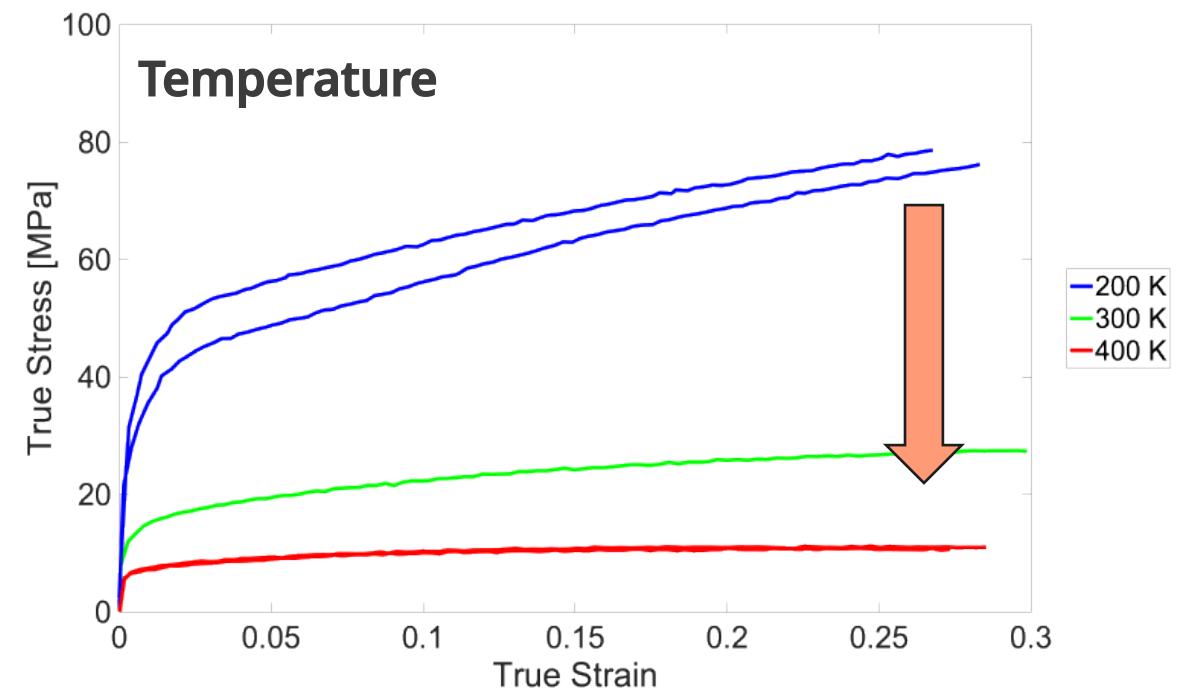
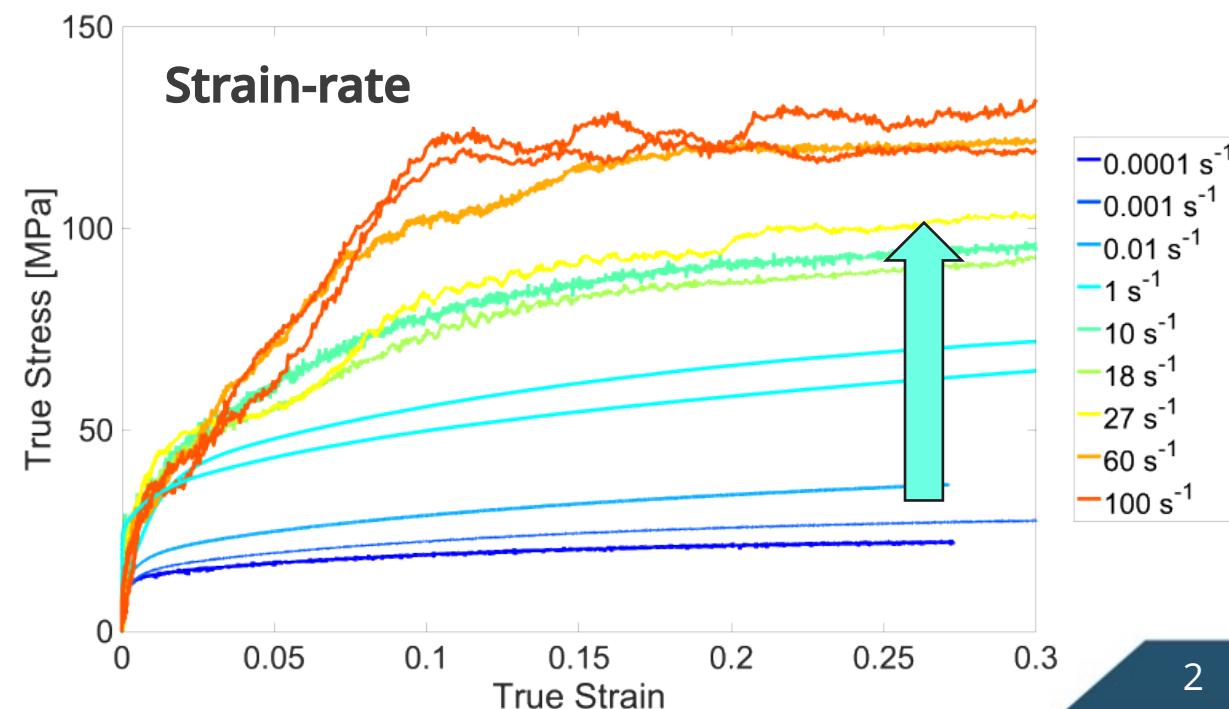
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Tin displays complex behavior

- Used in plating, soldering, and alloying
- Low melting temperature (~500 K) and recrystallization temperature (~300 K)
 - Leads to complex microstructural evolution and large distributions in mechanical response

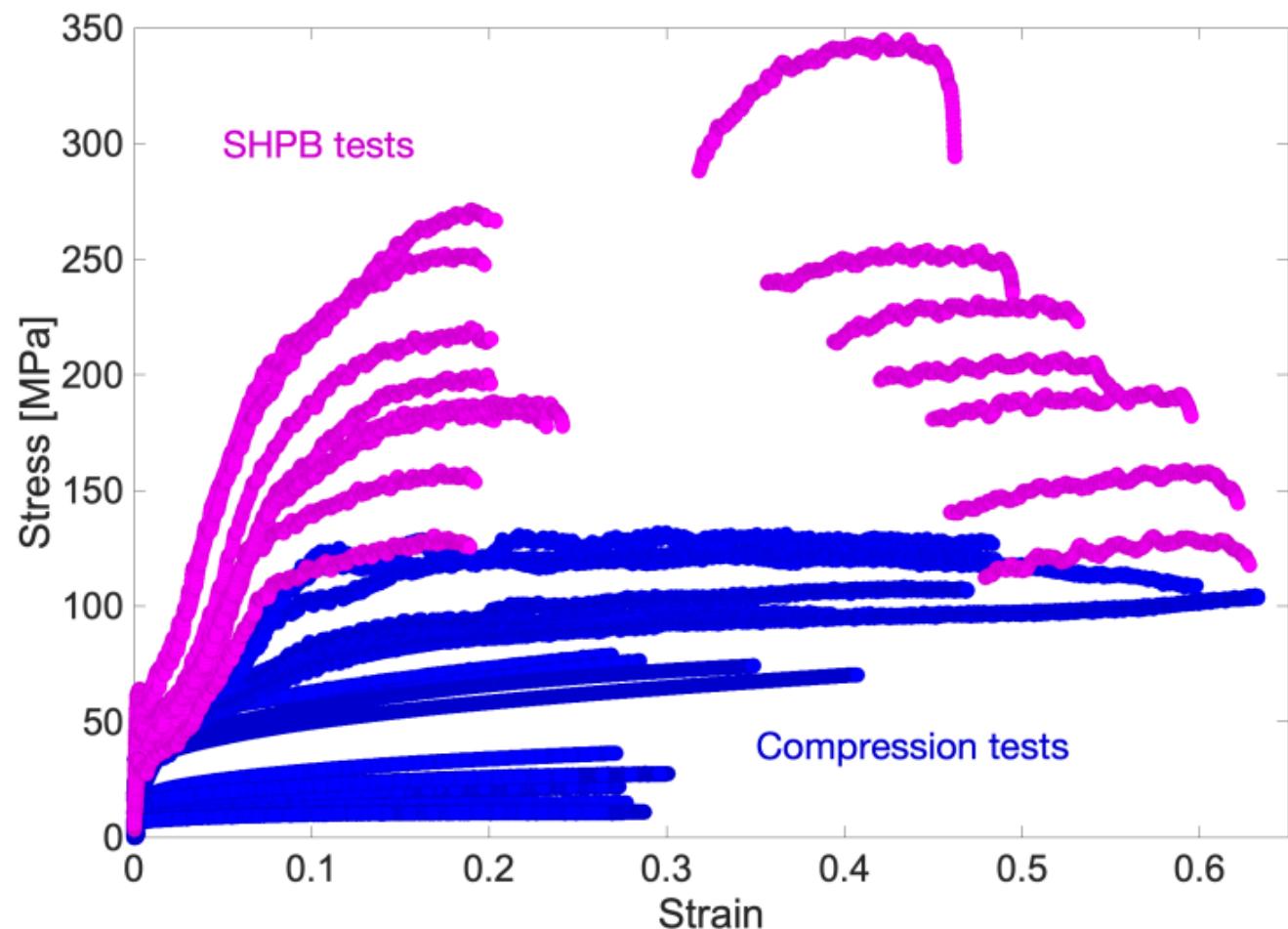


H. Lim et al., SAND Report (2022) - SAND2022-2368



Experimental characterization of β -Tin

- Compression tests
 - Experimentalists: Jay Carroll & Zachary Casias
 - Temperature: $200 \sim 400 K$
 - Strain-rate: $0.0001 \sim 100 s^{-1}$
- Split-Hopkinson Pressure Bar (SHPB) tests
 - Experimentalist: Saryu Fensin (Los Alamos)
 - Temperature: $190 \sim 375 K$
 - Strain-rate: $3175 \sim 3900 s^{-1}$



Traditional strength models - $\sigma = f(\varepsilon, \dot{\varepsilon}, T)$

Johnson-Cook (JC): **5 parameters**

$$\sigma = (A + B\varepsilon^n)(1 + C\ln\dot{\varepsilon})(1 - T^{*m})$$

Zerilli-Armstrong (ZA): **6 parameters**

$$\sigma = C_0 + C_1 \exp(-C_3 T + C_4 T \ln\dot{\varepsilon}) + C_5 \varepsilon^n'$$

Mechanical Threshold Stress (MTS): **20 parameters**

$$\sigma = \hat{\sigma}_a + \frac{\mu}{\mu_0} [S(\dot{\varepsilon}, T)\hat{\sigma} + S_i(\dot{\varepsilon}, T)\hat{\sigma}_i + S_s(\dot{\varepsilon}, T)\hat{\sigma}_s]$$

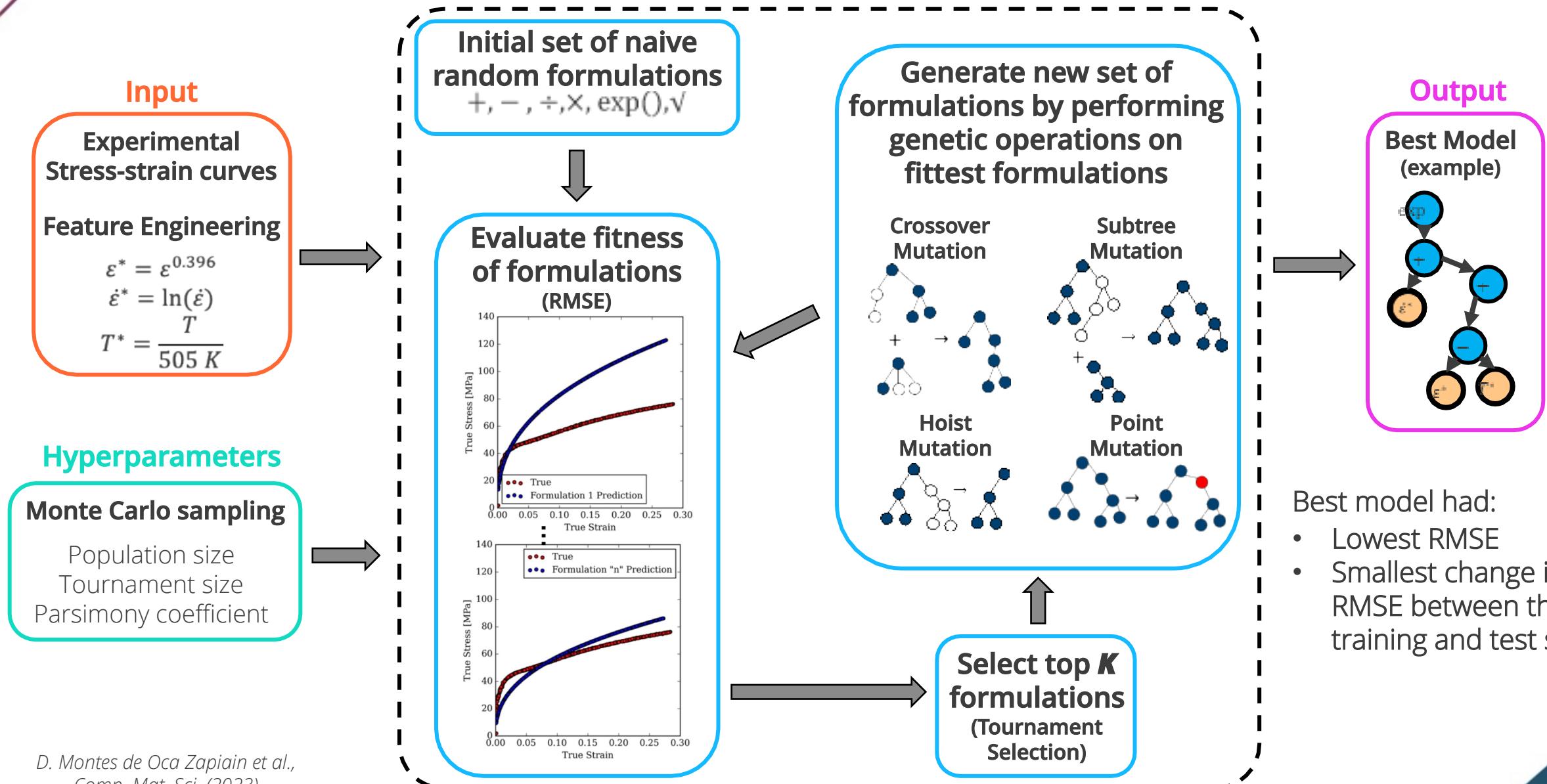
Preston-Tonks-Wallace (PTW): **12 parameters**

$$\sigma = 2\mu \left[\hat{\sigma}_s + \frac{1}{p} \left(s_0 - \hat{\sigma}_y \right) \ln \left[1 - \left(1 - \exp \left(-p \frac{\hat{\sigma}_s - \hat{\sigma}_y}{s_0 - \hat{\sigma}_y} \right) \right) \exp \left(- \frac{p\theta\psi}{\left(s_0 - \hat{\sigma}_y \right) \left[\exp \left[p \left(\frac{\hat{\sigma}_s - \hat{\sigma}_y}{s_0 - \hat{\sigma}_y} \right) \right] - 1 \right]} \right) \right] \right]$$

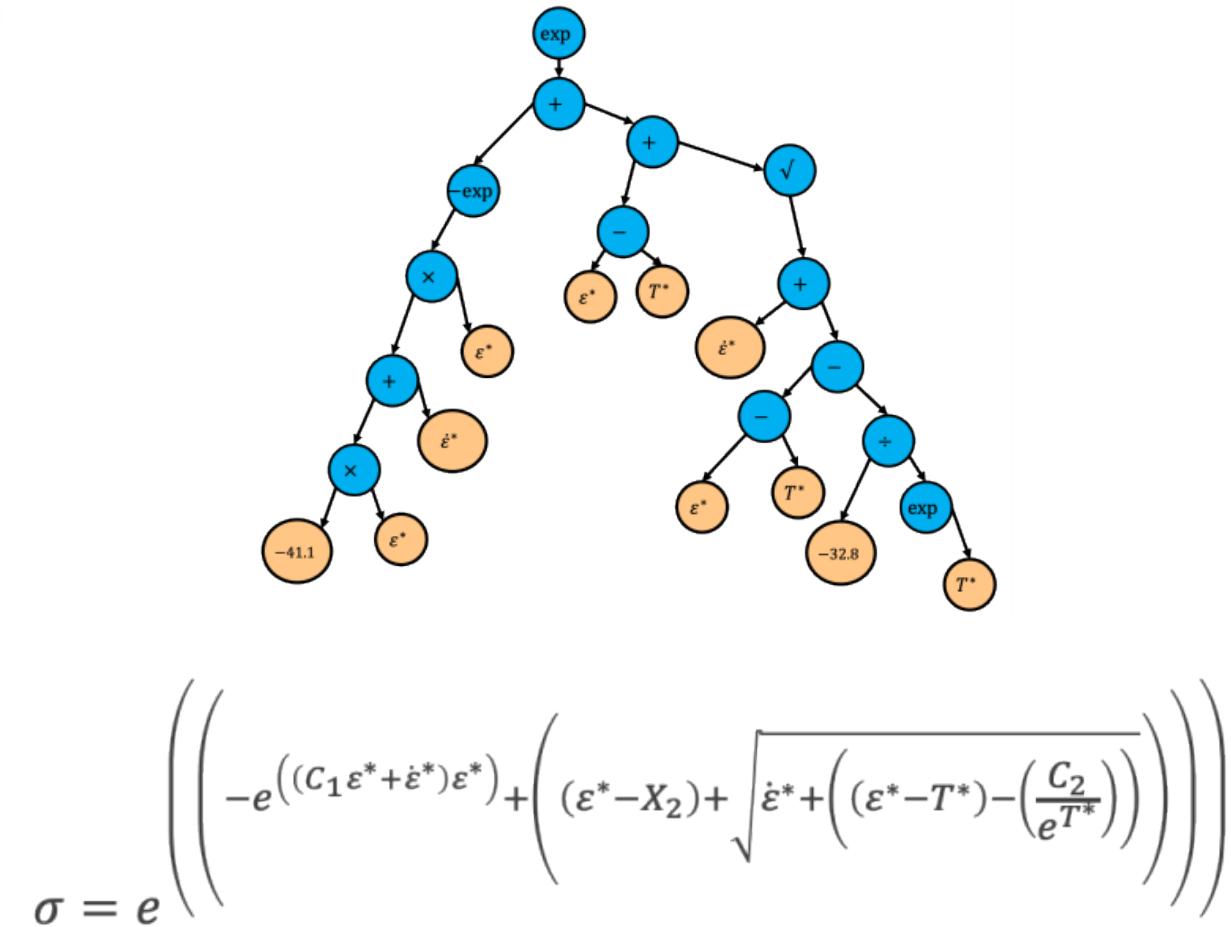
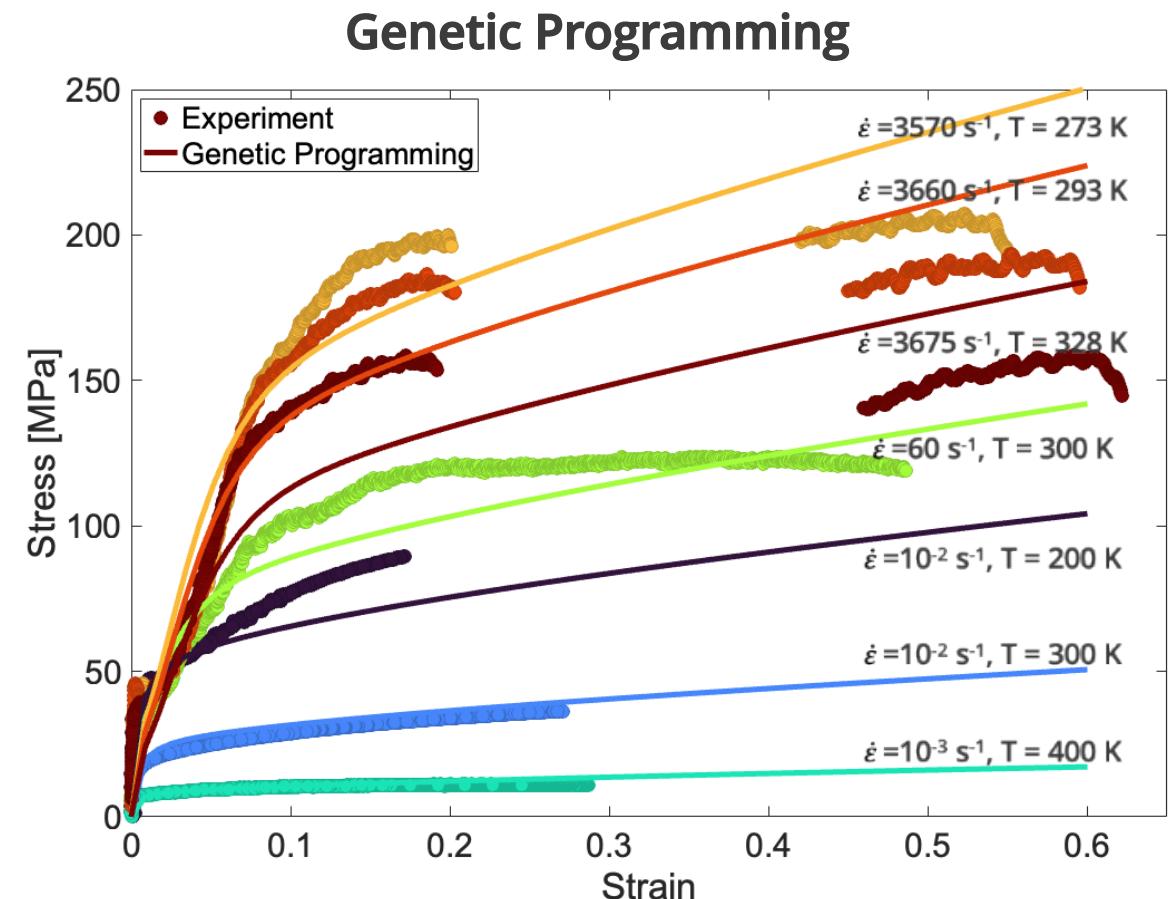
Limitations

- Fixed form
- Extrapolation is difficult
- Multiple parameters to fit
- Assumption-based

Can genetic programming be an alternative method?

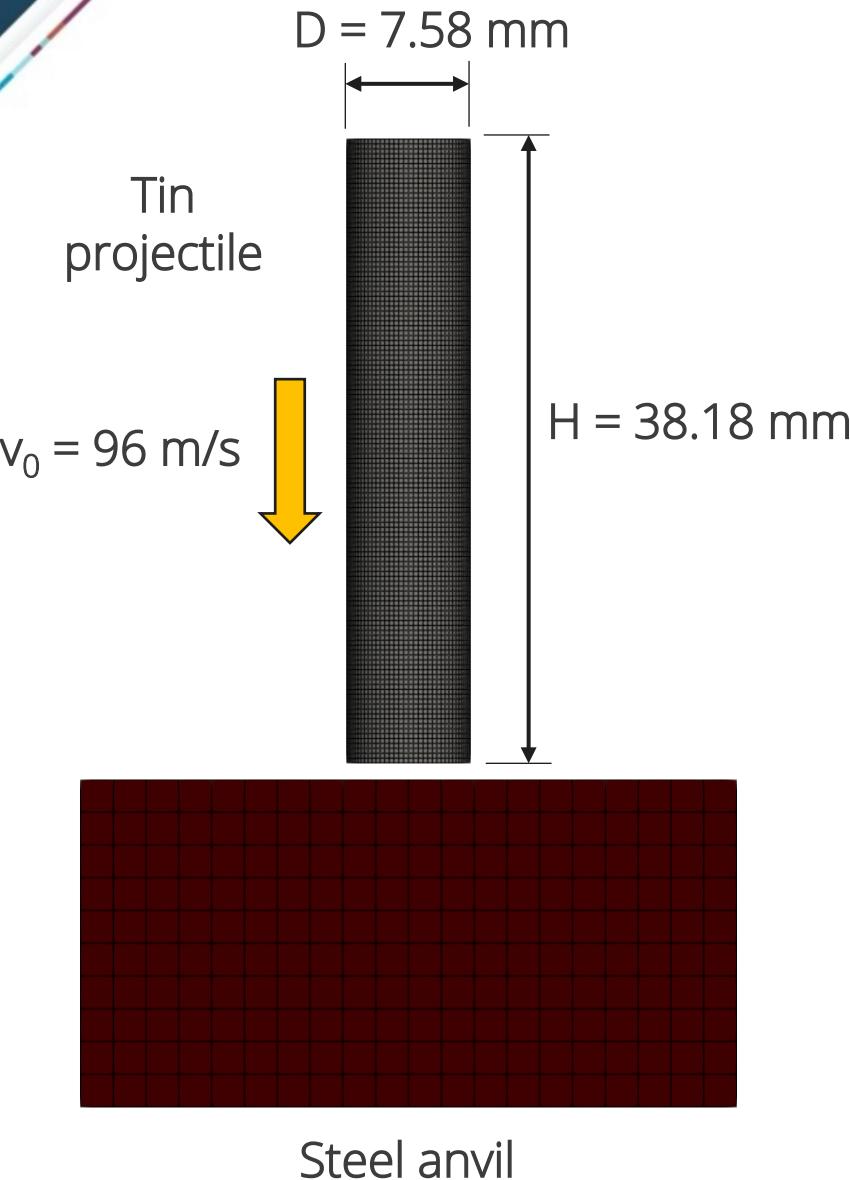


What did genetic programming predict to be the best model?



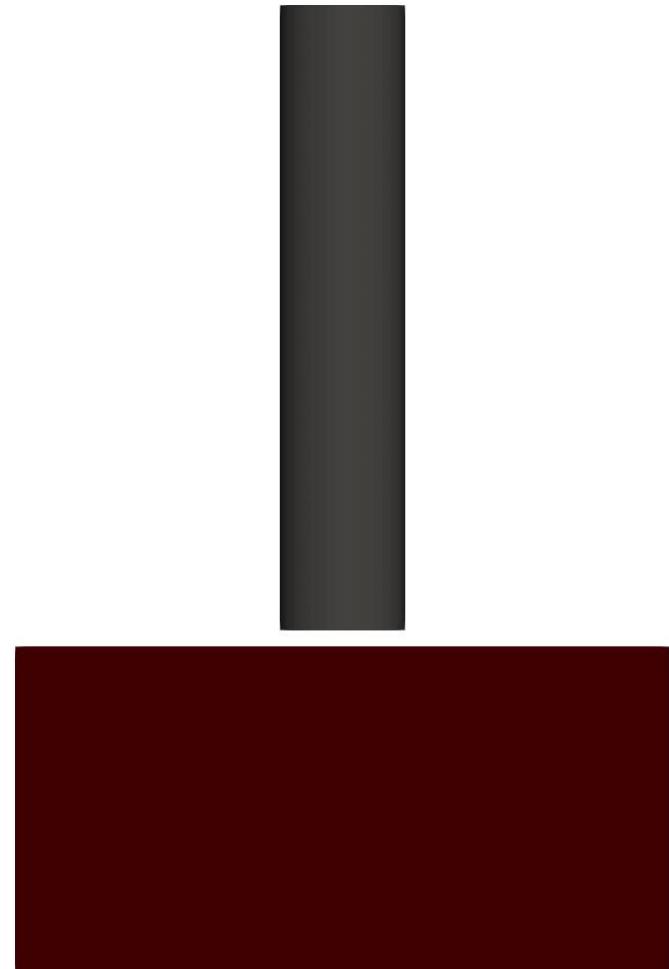
RMSE ~ 14 MPa

Testing the GP model with the Taylor impact test

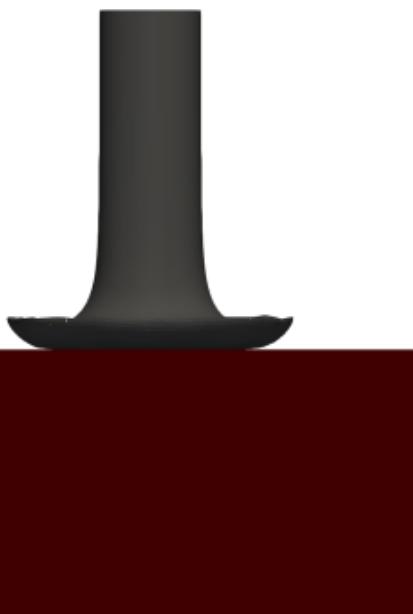
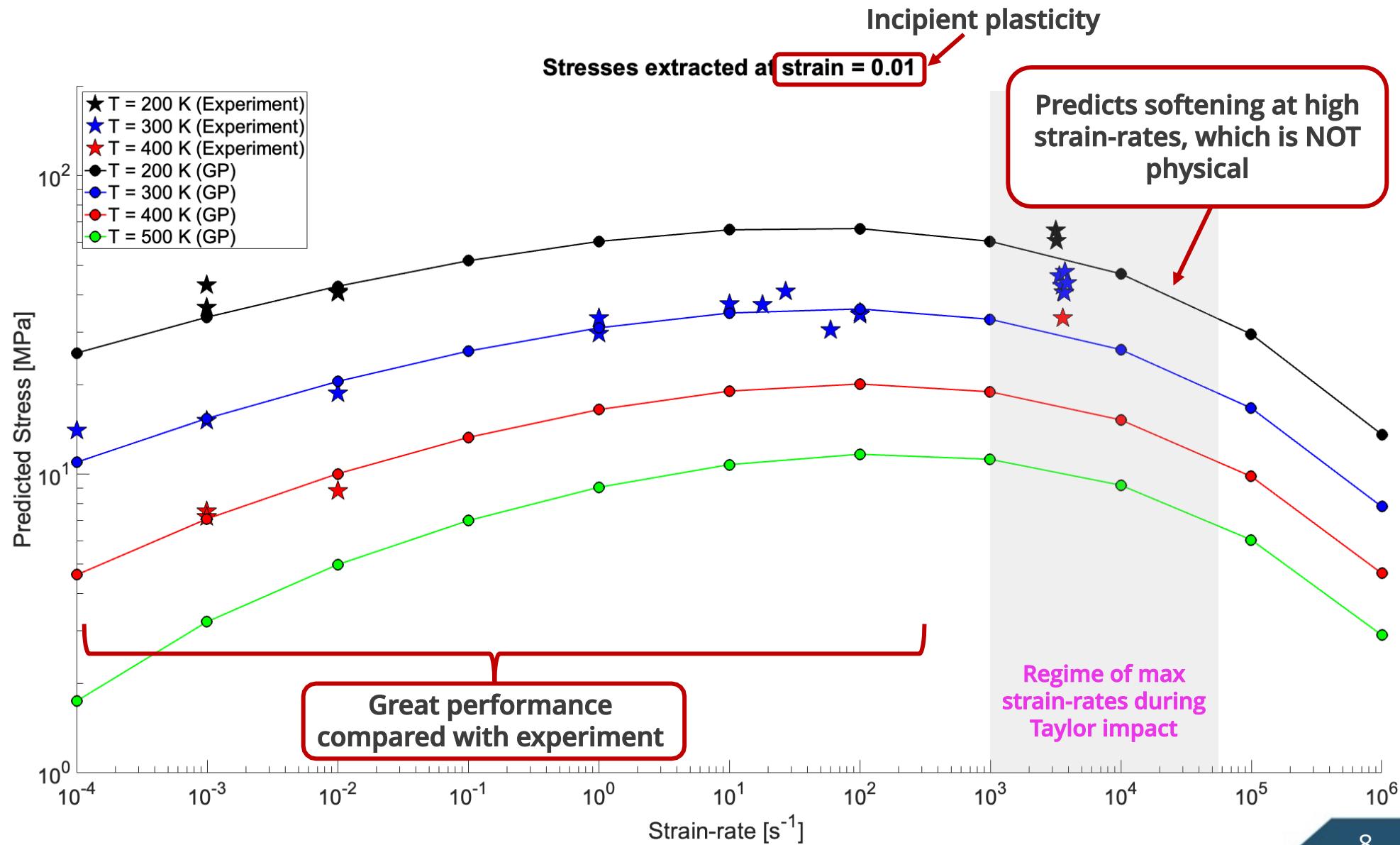


- Simple technique to study dynamic behaviors
 - Strain-rates: $10^{-4} \sim 10^4 \text{ s}^{-1}$
- Implemented within Sandia's multiphysics shock-hydrodynamics code (*ALEGRA*)
- Material definition:
 - Equation of State: Sesame 2101
 - Yield Model:
 - Johnson-Cook
 - Zerilli-Armstrong
 - Preston-Tonks-Wallace
 - Genetic Programming

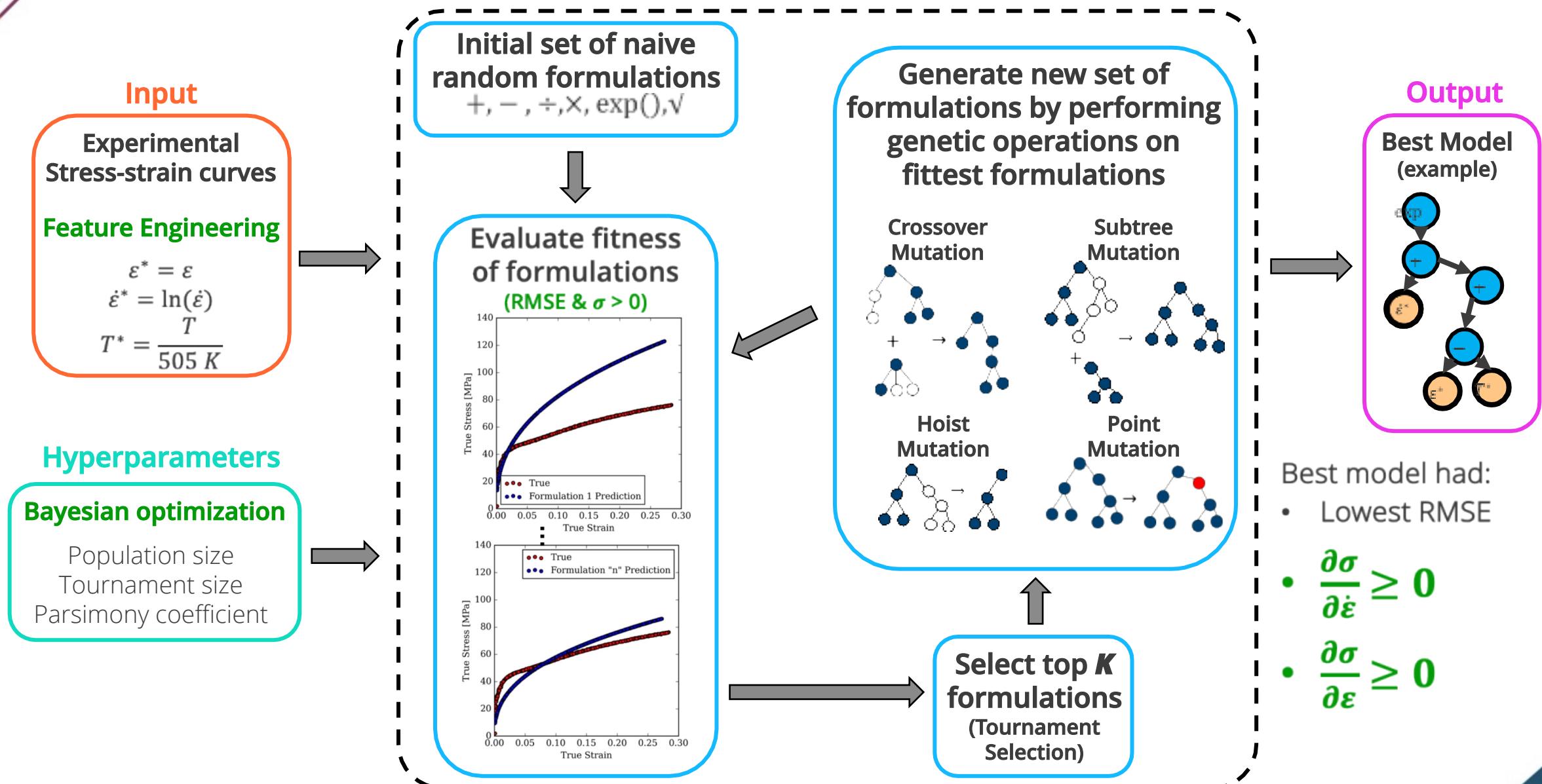
Genetic Programming



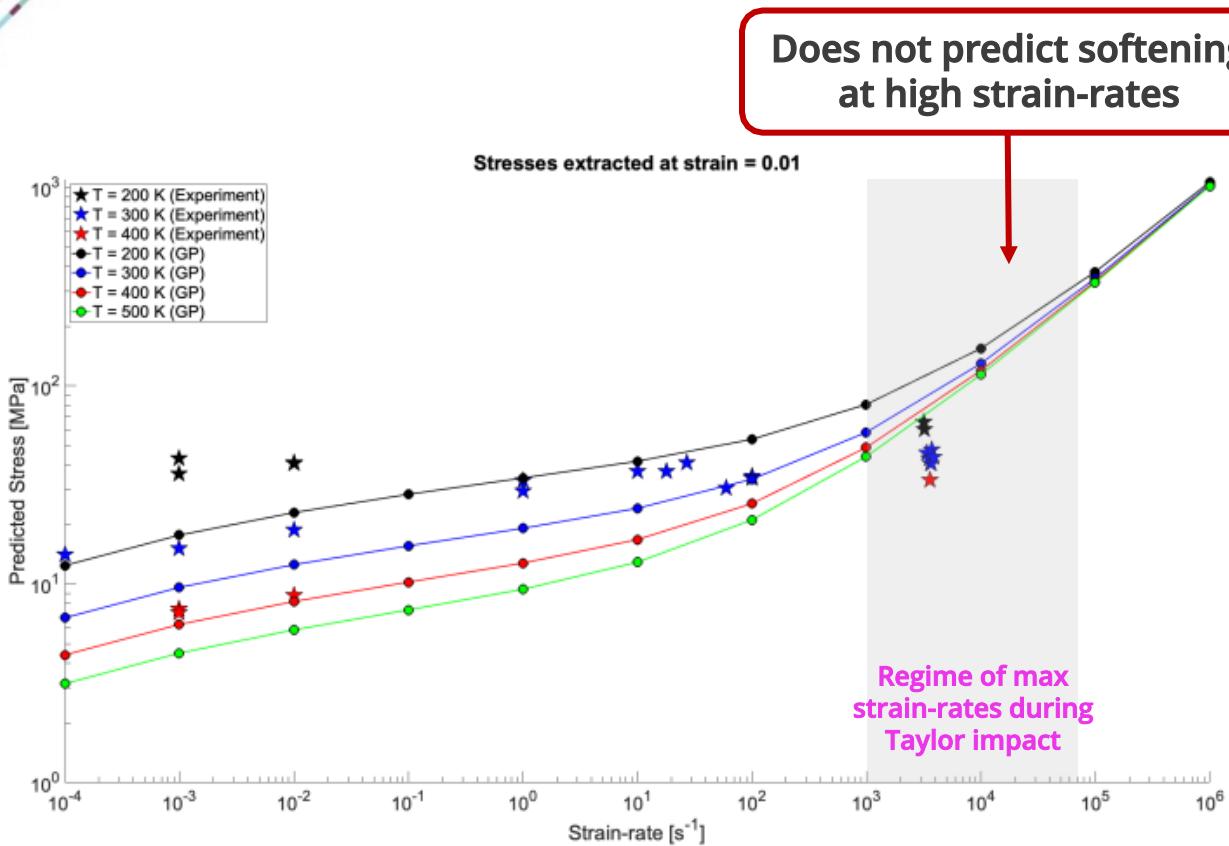
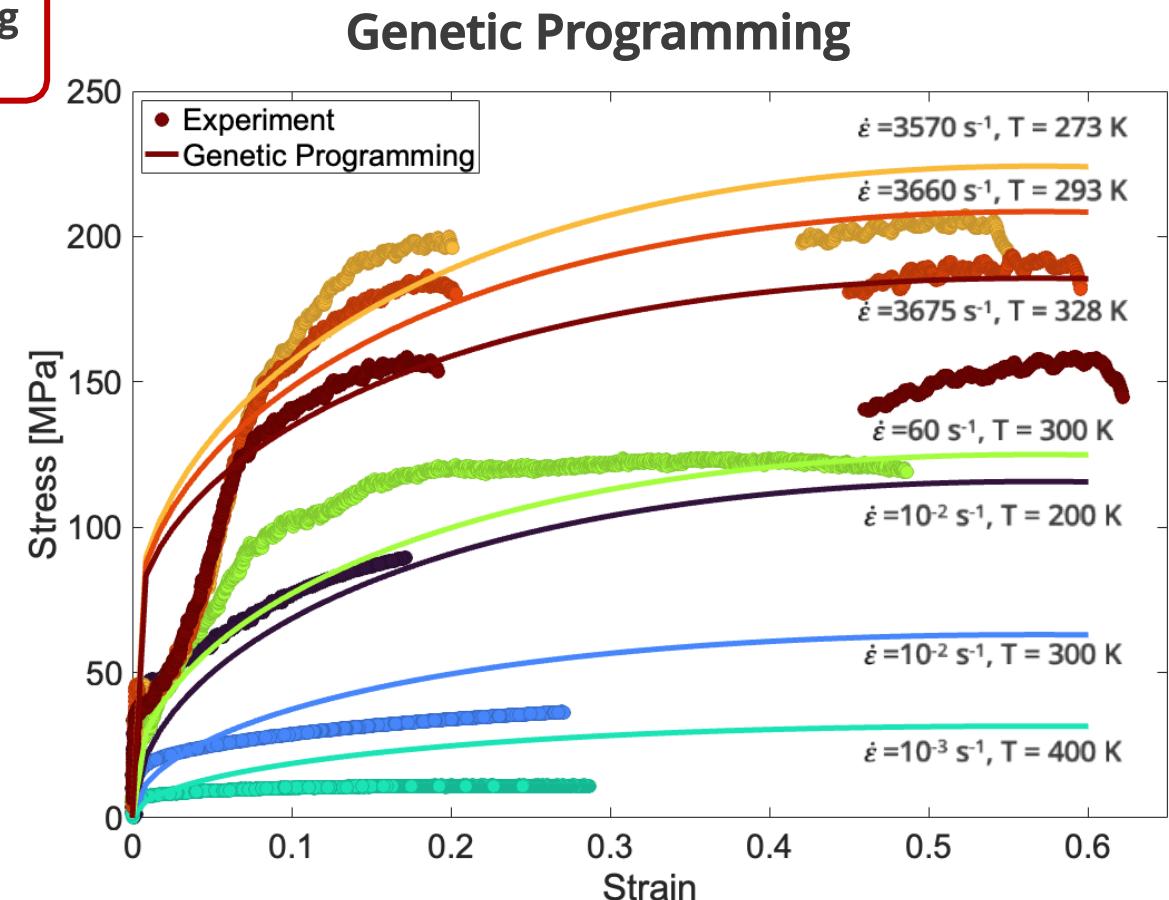
Why such a soft response from the GP model?



Improving on GP model development



New and improved GP model



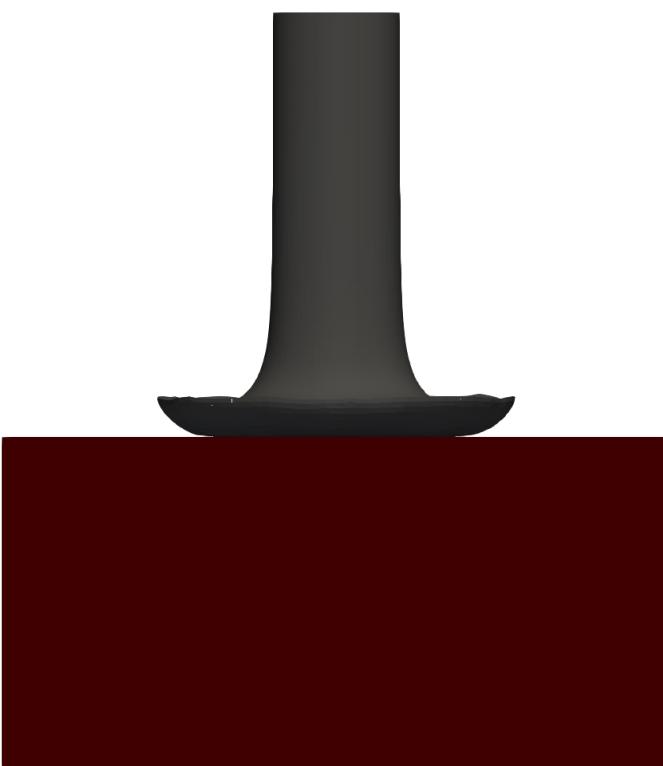
$$\sigma = \sqrt{e^{\dot{\epsilon}^*}} - \frac{(C_1 - 3\dot{\epsilon}^*)(C_4 - C_3\epsilon)}{C_2 T^* \sqrt{\frac{T^*}{\epsilon}}}$$

Increase in RMSE

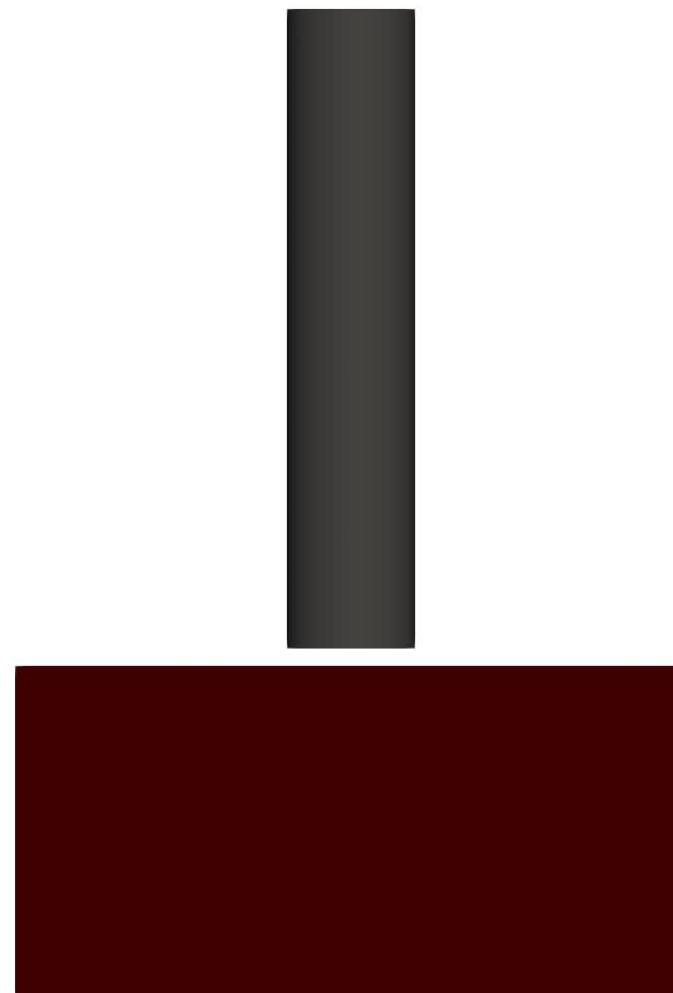
RMSE $\sim 20 \text{ MPa}$

Comparison with previous GP model

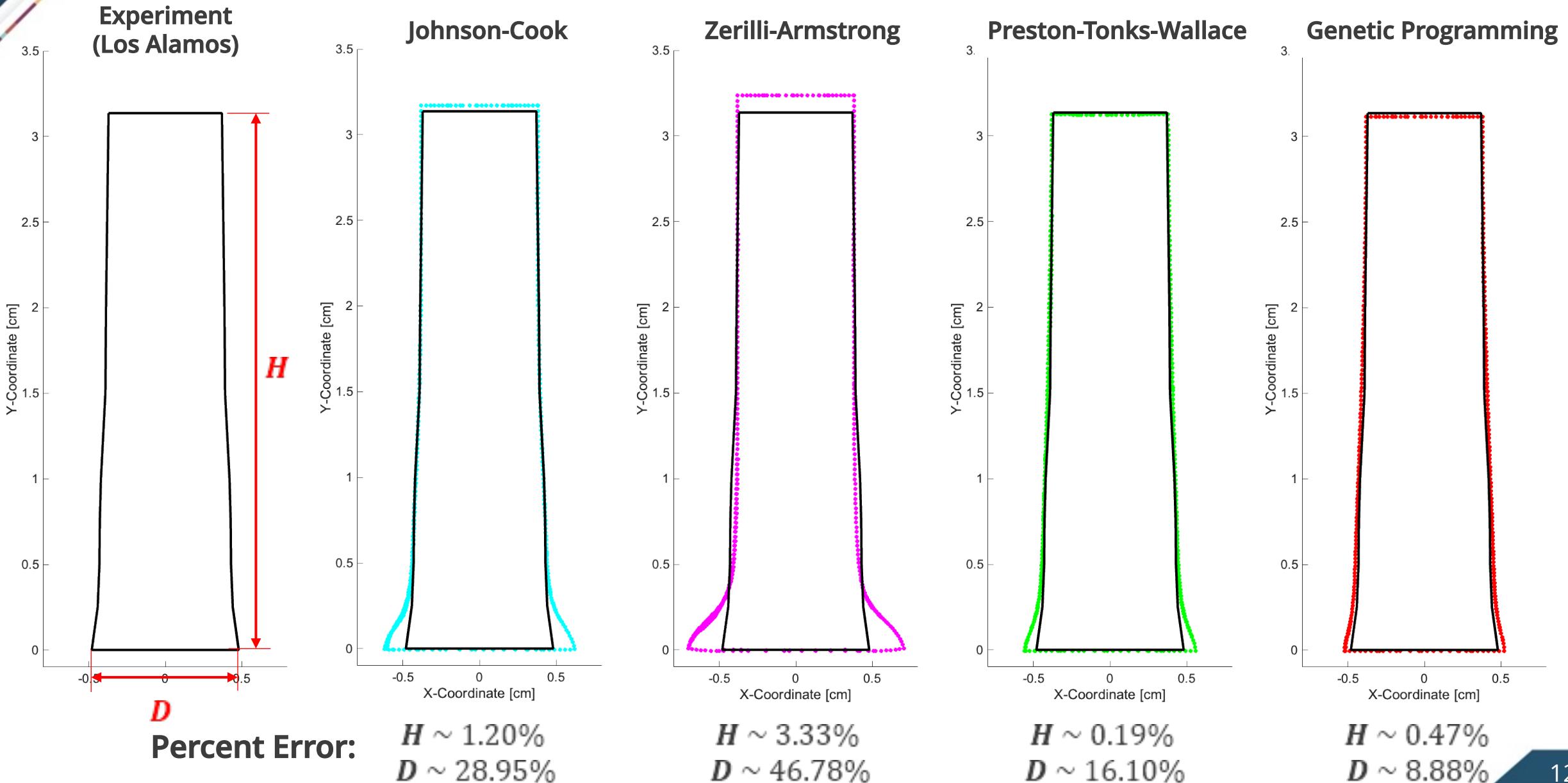
Previous GP model



New GP model

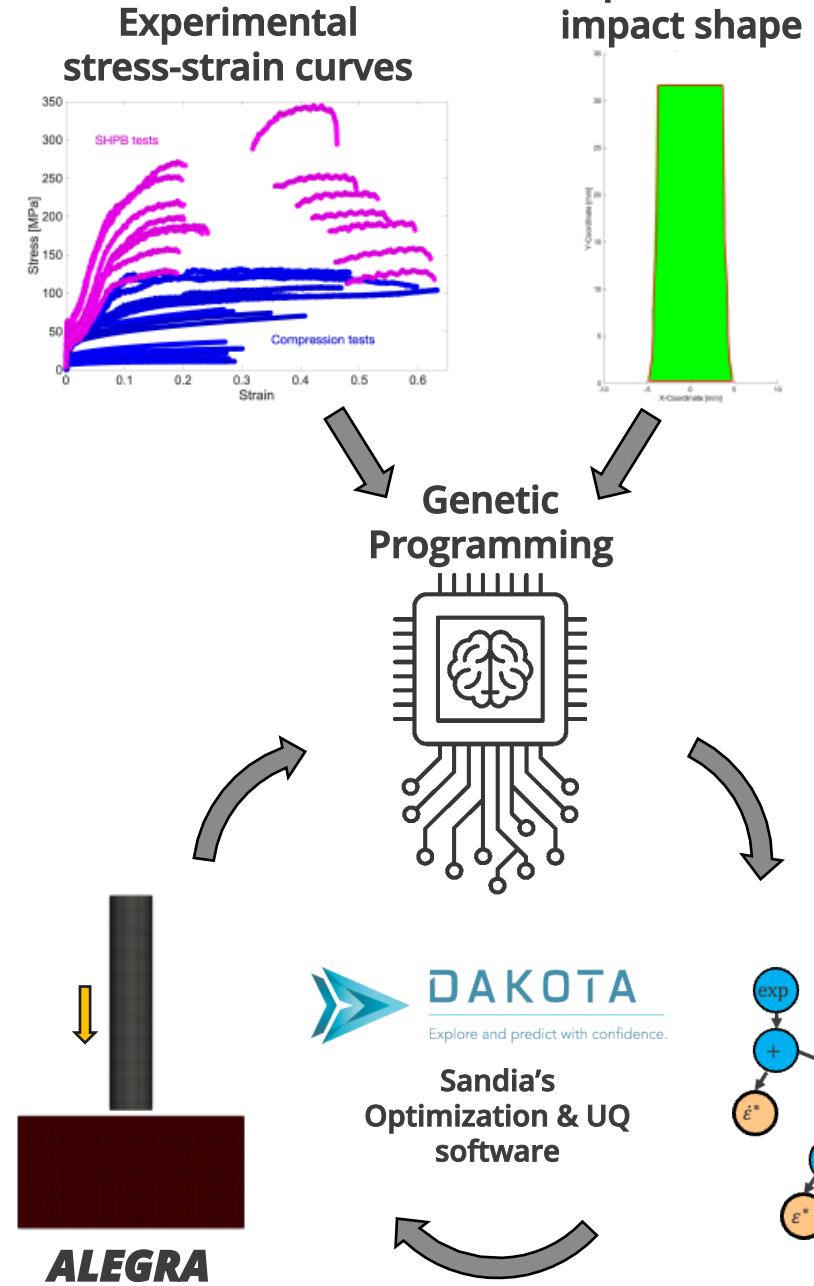


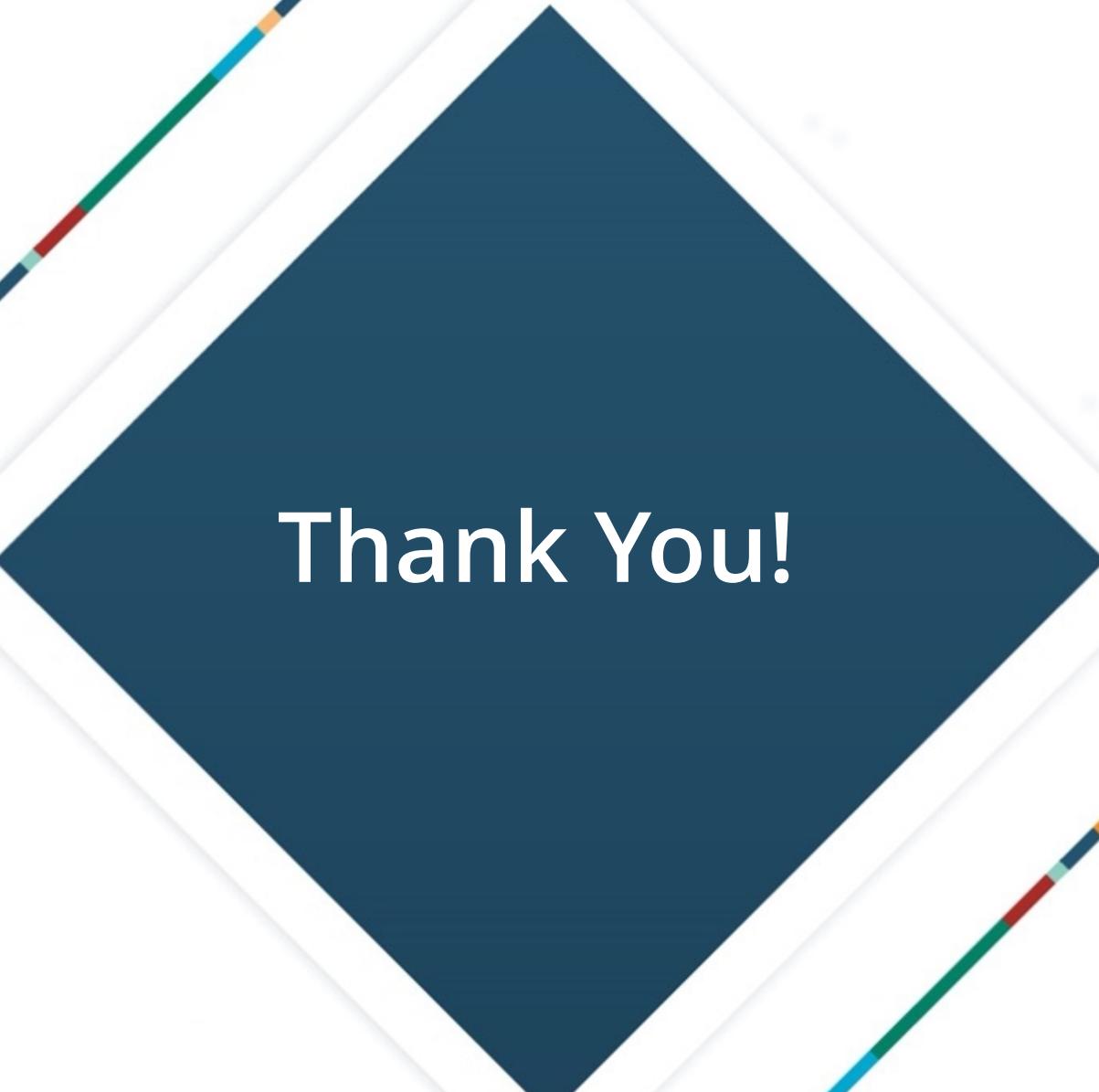
Comparison with traditional models and experiment



Conclusions

- Genetic programming (GP) is a novel, useful, and easy way to generate strength models for complex materials at a wide range of temperatures and strain-rates
- Along with experimental data, GP models need physical constraints to predict realistic material behavior
- Future work:
 - Introduce new inputs to GP model from experimental Taylor impact tests (radii, heights)
 - Create a feedback loop that optimizes formulated models by evaluating their hydrocode simulation results





Thank You!

Supplementary

Can genetic programming be an alternative method?

Input

Experimental
Stress-strain curves

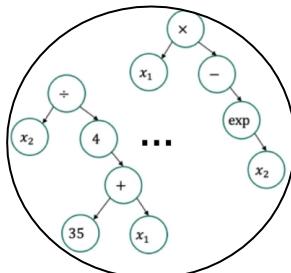
Feature Engineering

$$\dot{\varepsilon}^* = \ln(\dot{\varepsilon})$$

$$\varepsilon^* = \varepsilon^{0.396}$$

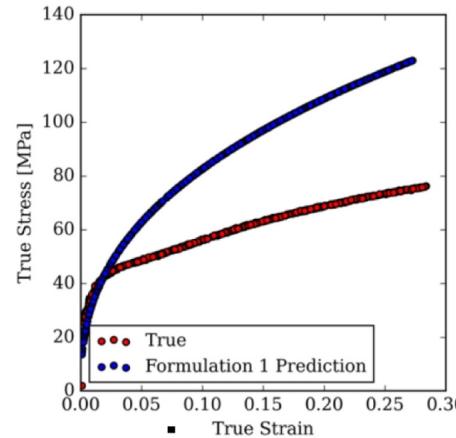
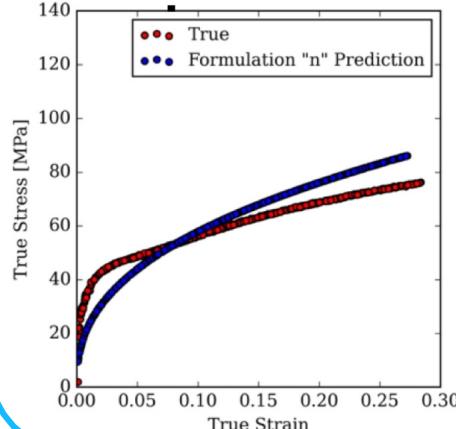
$$T^* = \frac{T}{505 \text{ K}}$$

Initial set of random
formulations



Arithmetic
Operations
Explored:
 $+, -, \div, \times, \exp, 0, \sqrt{\cdot}$

Evaluate fitness of
formulations (RMSE)

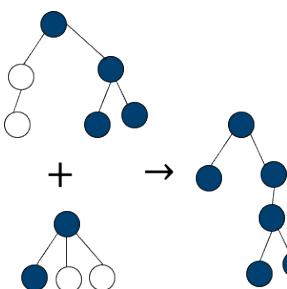


Select top **K**
formulations
(Tournament
Selection)

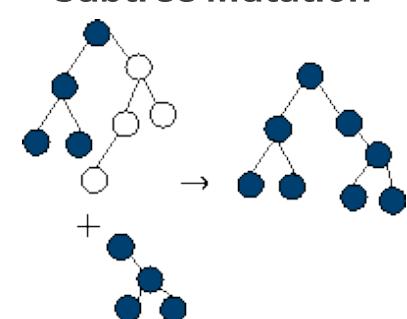
Continues for
N generations

Generate new set of formulations
by performing genetic operations
on fittest formulations

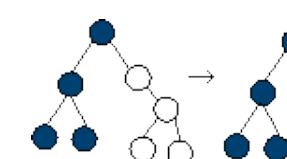
Crossover Mutation



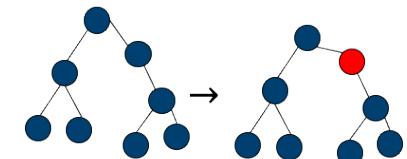
Subtree Mutation



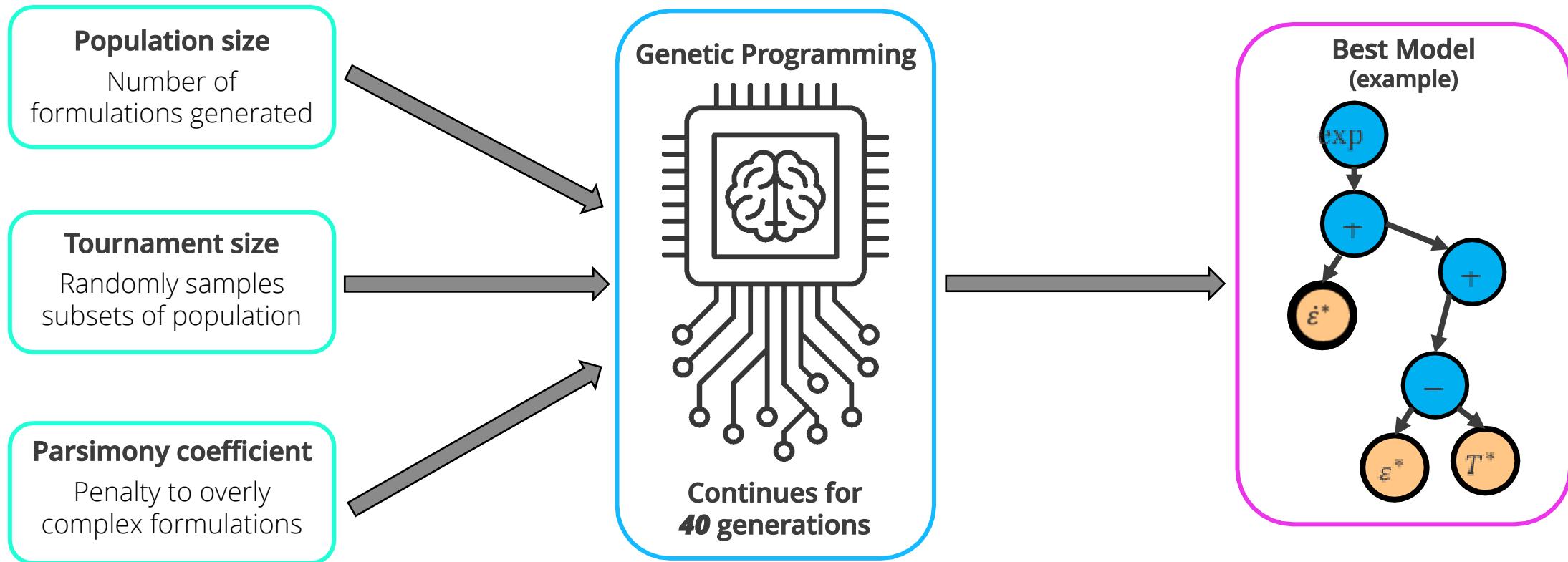
Hoist Mutation



Point Mutation



Selecting hyper-parameters using Monte Carlo sampling

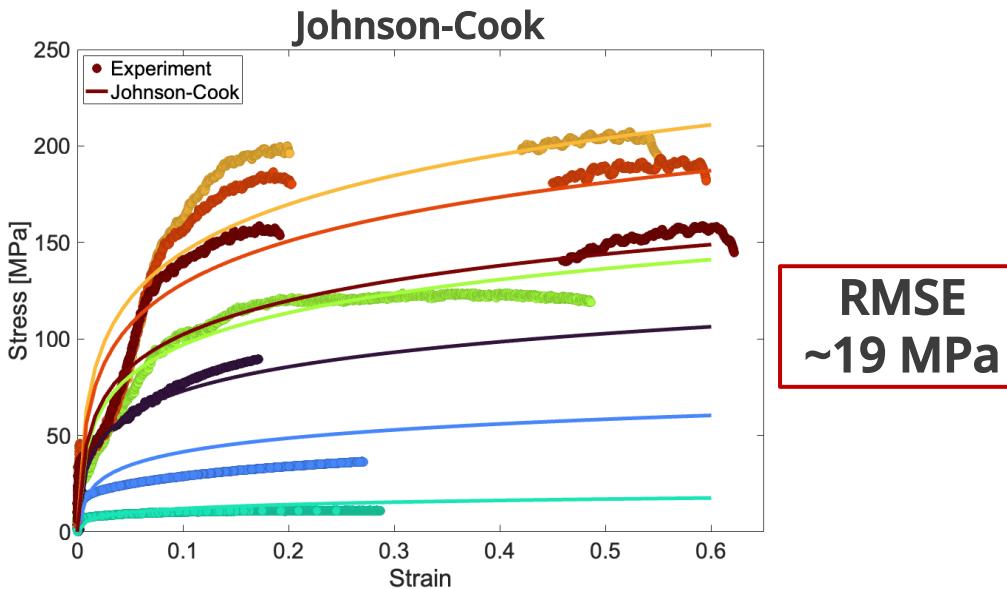
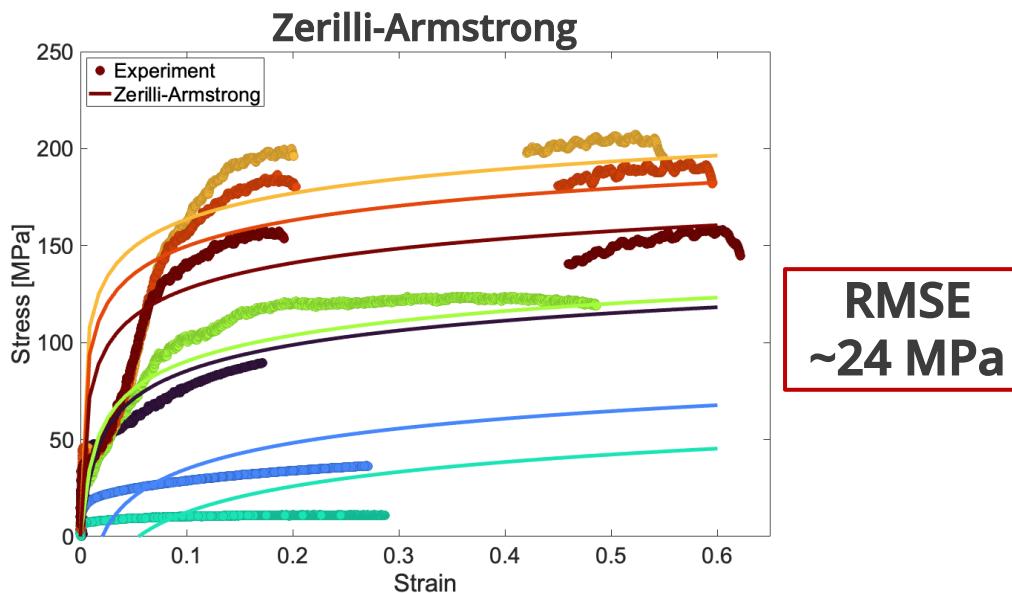
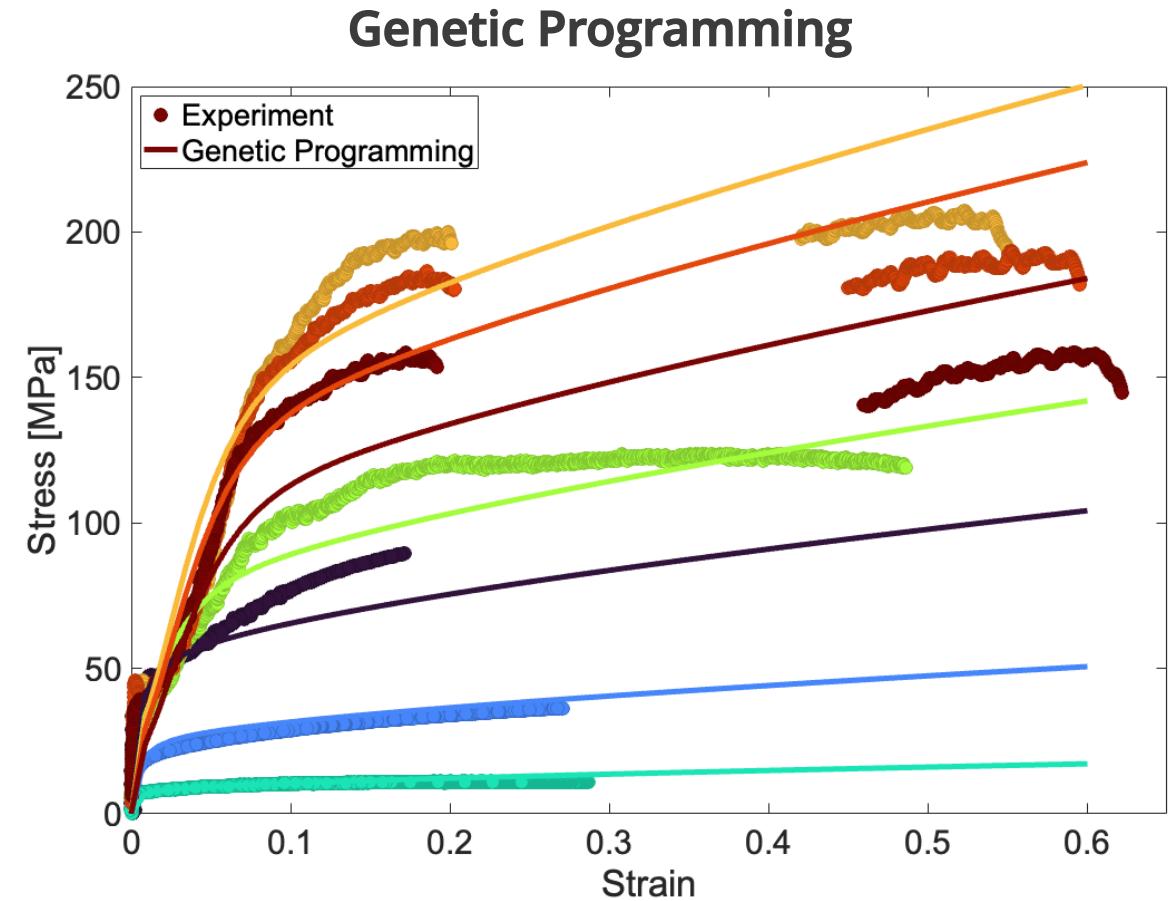


Monte Carlo Sampling (200 samples)

Population	50~50000
Tournament Size	10~1000
Parsimony Coefficient	0.001~0.01

- Best model chosen from hyper-parameters that yielded the lowest RMSE value and had the smallest difference in performance between the training and test sets

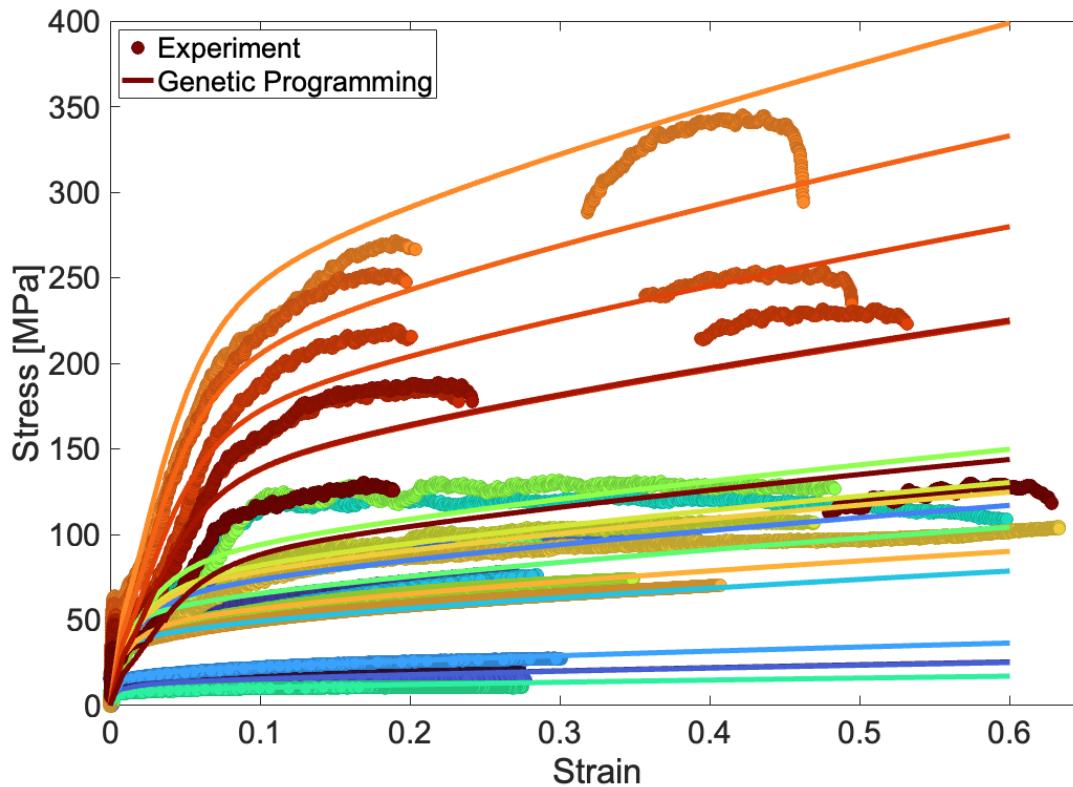
Comparison with traditional models



RMSE ~ 14 MPa

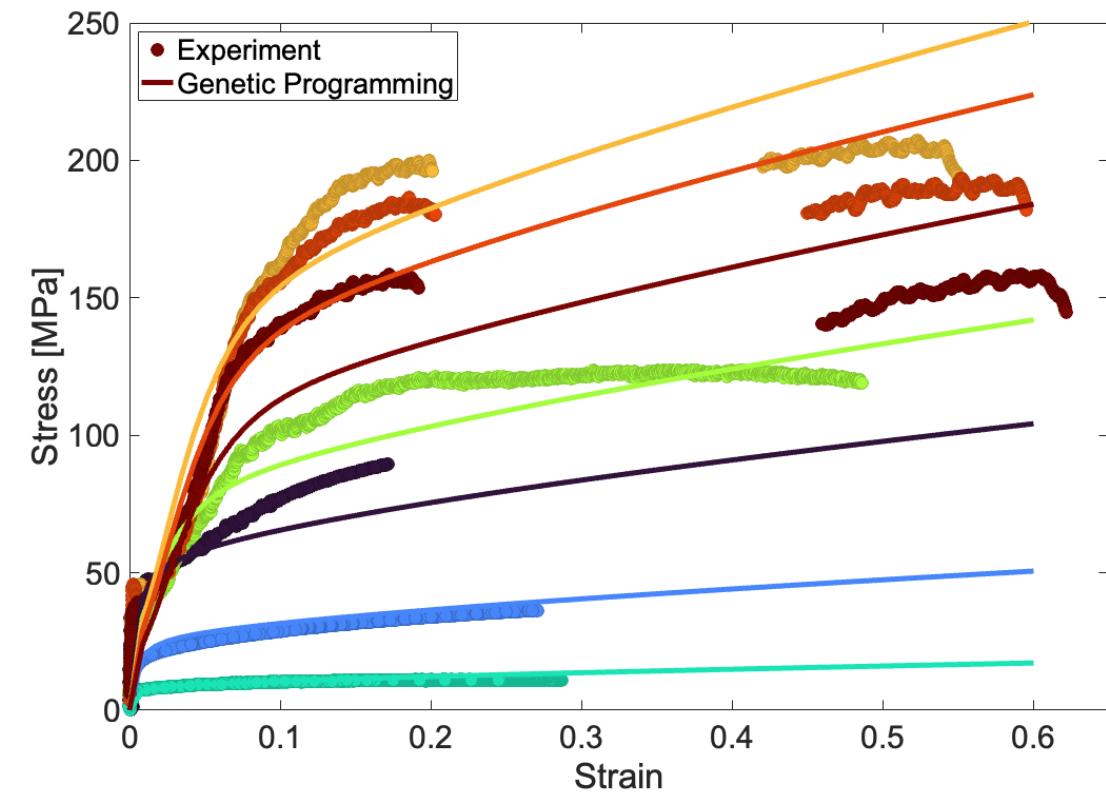
Genetic Programming RMSE Comparison – Training vs. Test

Training set



RMSE ~ 13.32 MPa

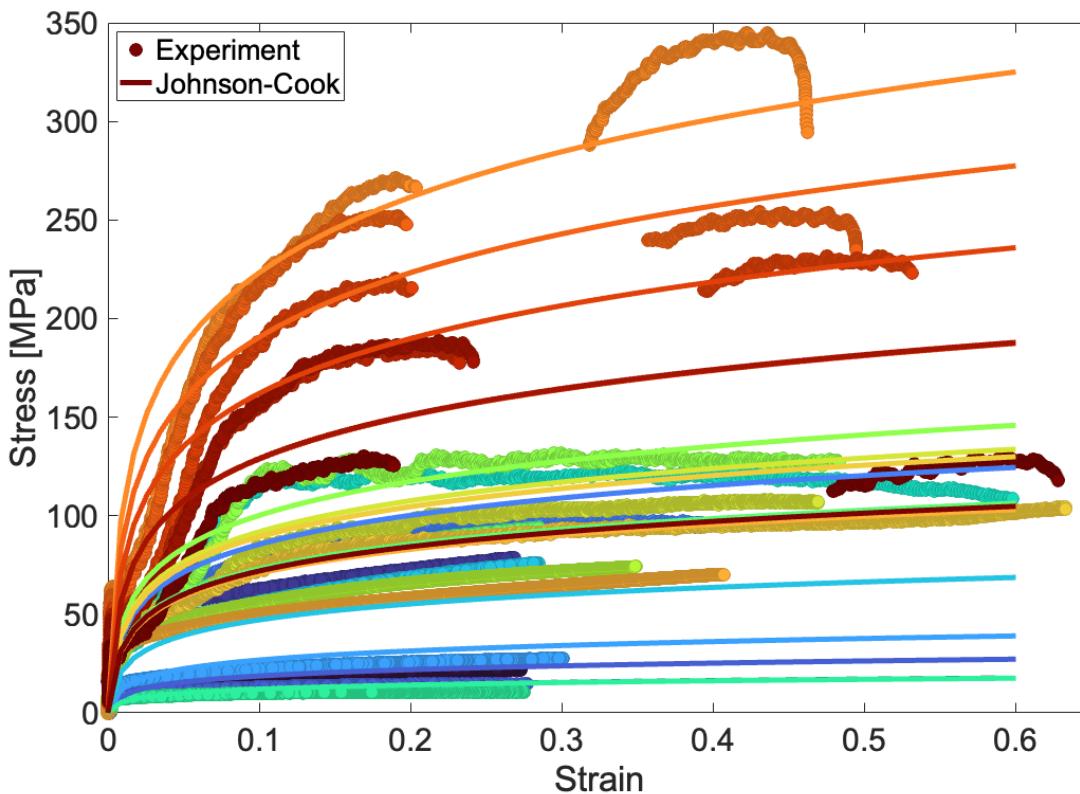
Testing set



RMSE ~ 13.96 MPa

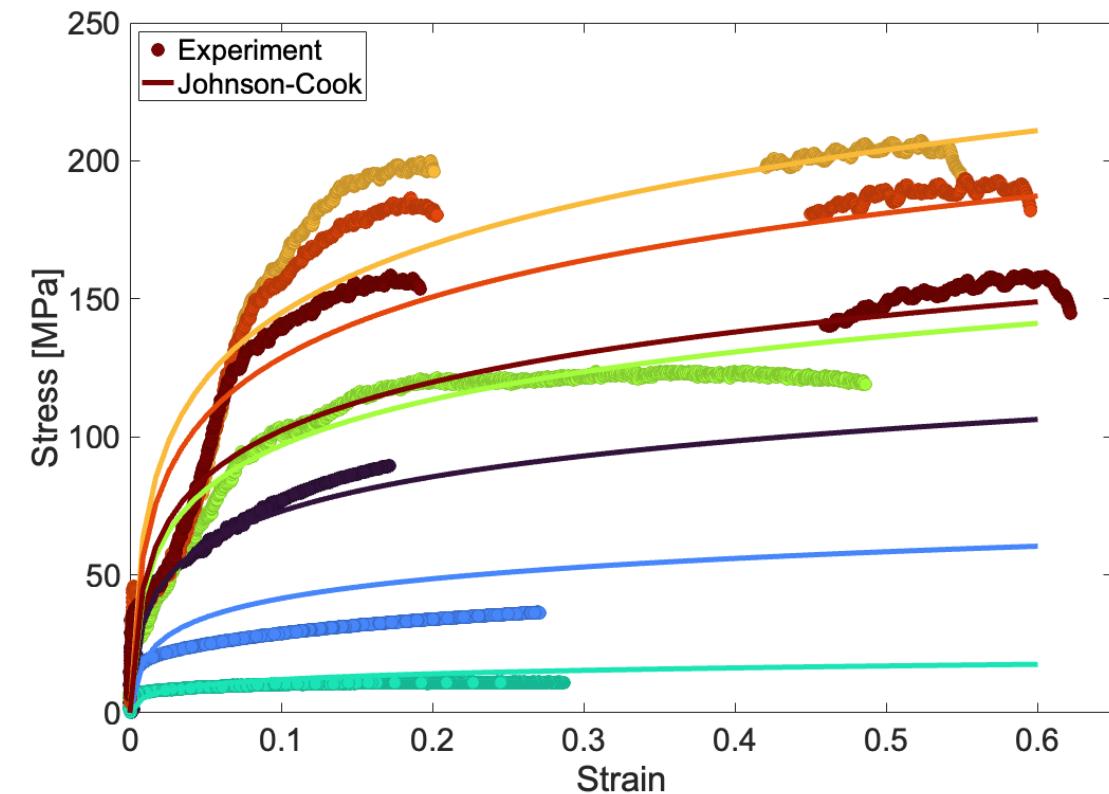
Johnson-Cook RMSE Comparison – Training vs. Test

Training set



RMSE ~ 18.77 MPa

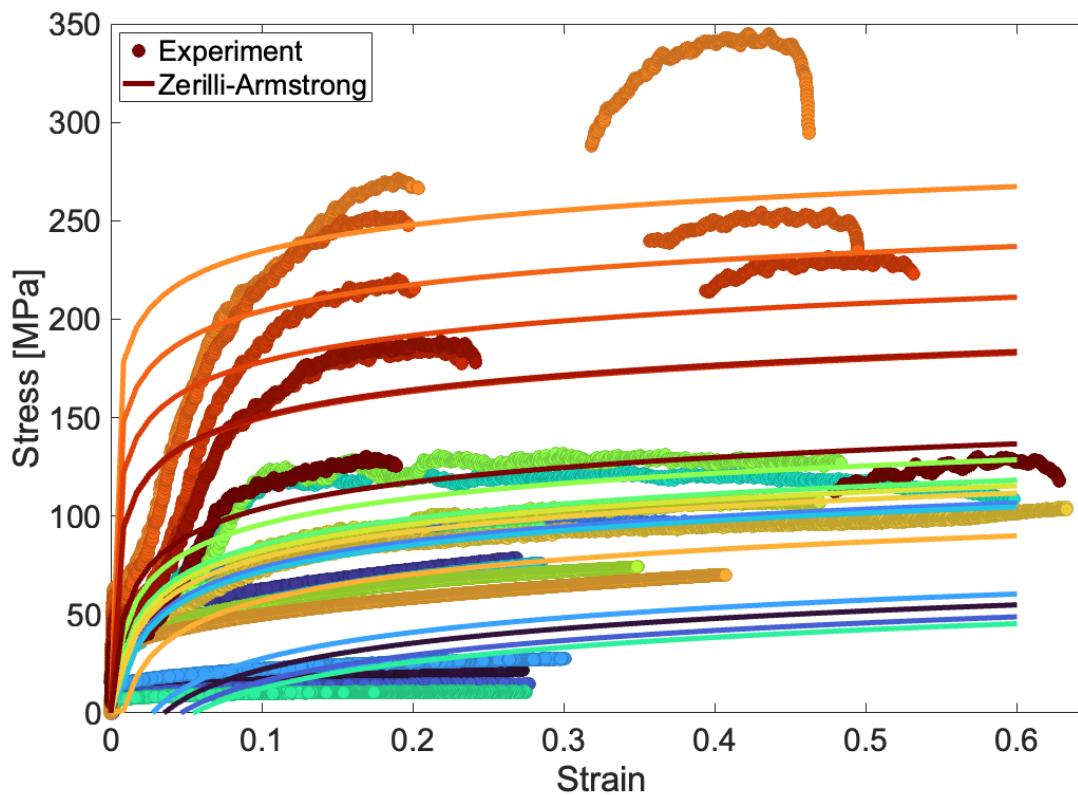
Testing set



RMSE ~ 19.06 MPa

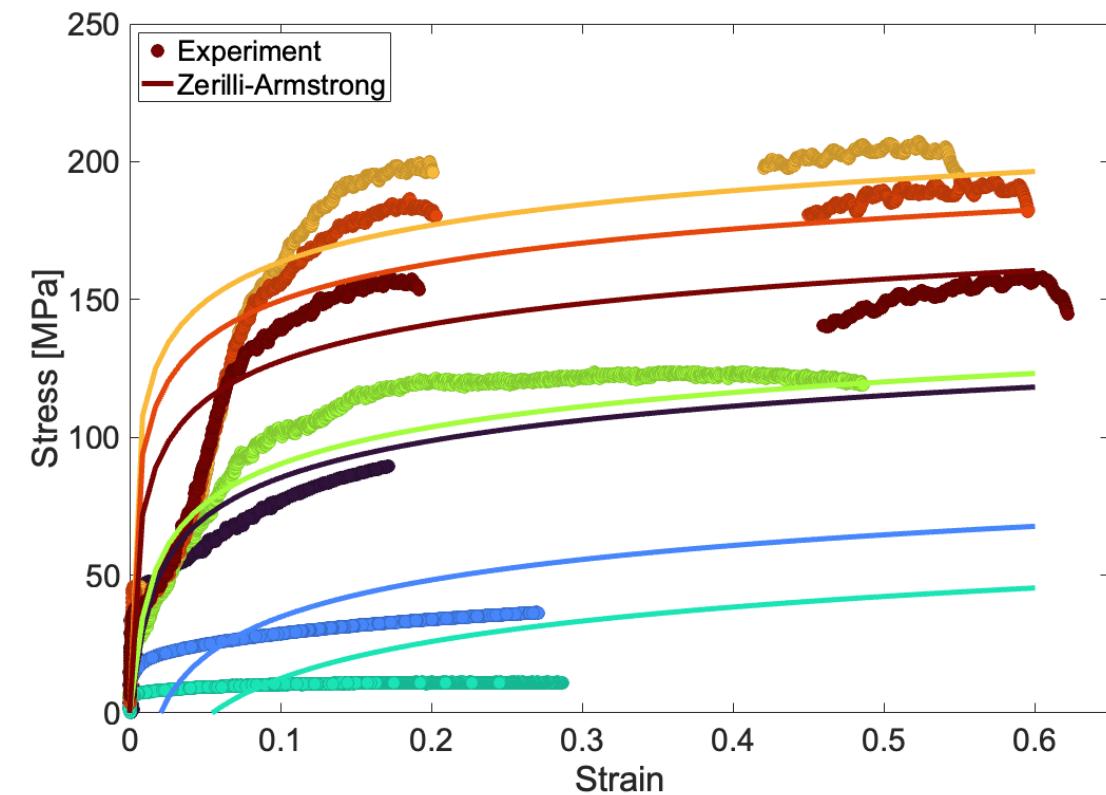
Zerilli-Armstrong RMSE Comparison – Training vs. Test

Training set



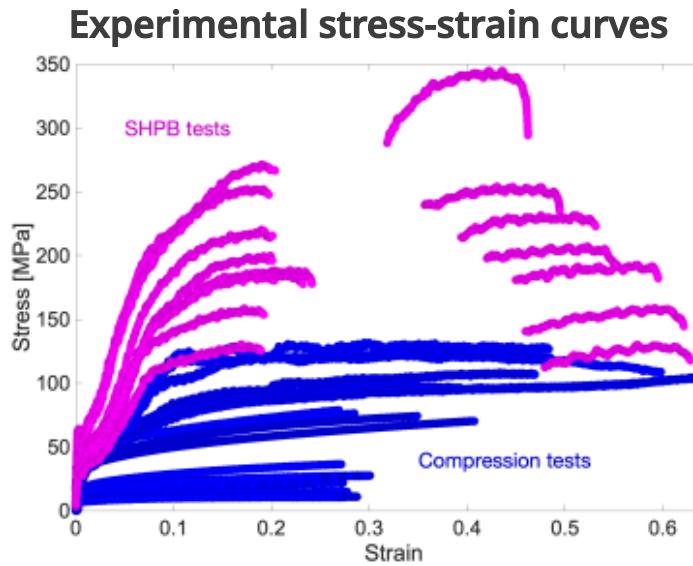
RMSE ~ 24.16 MPa

Testing set

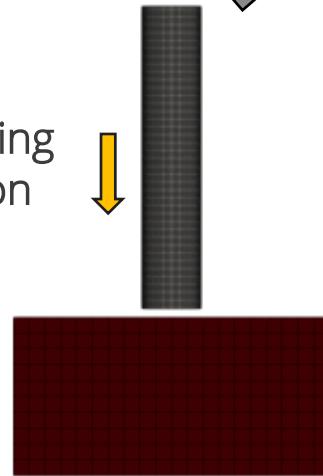
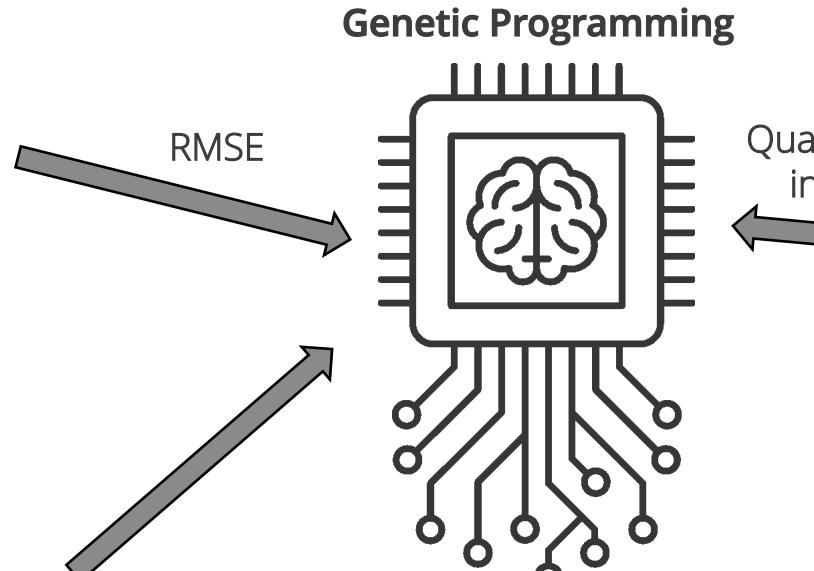
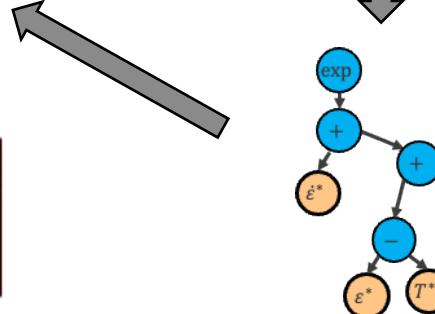
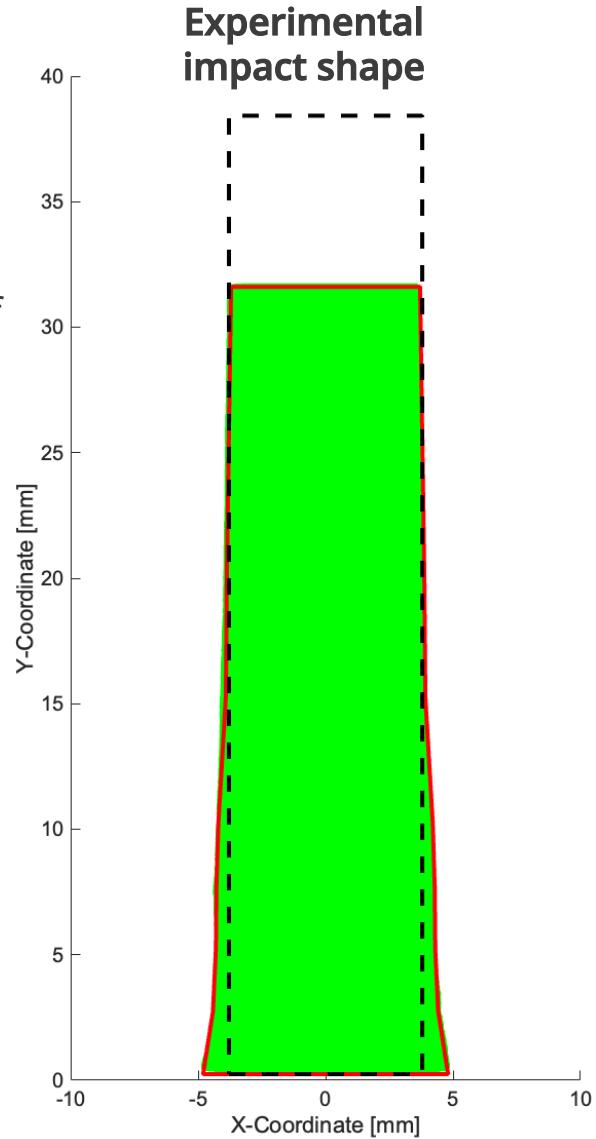


RMSE ~ 24.03 MPa

Stress-strain curves may not be enough...

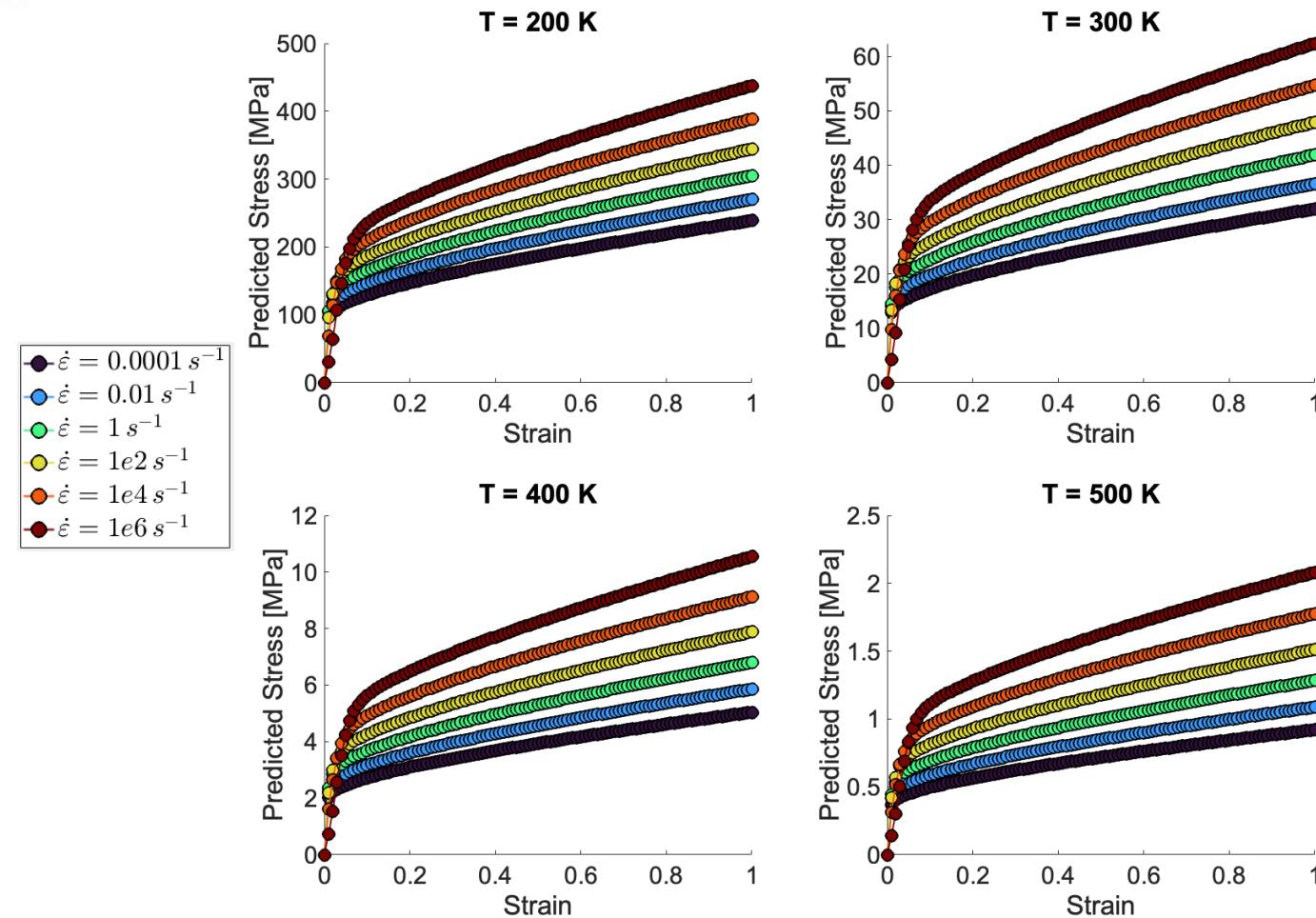


Evaluate model using
ALEGRA simulation
results

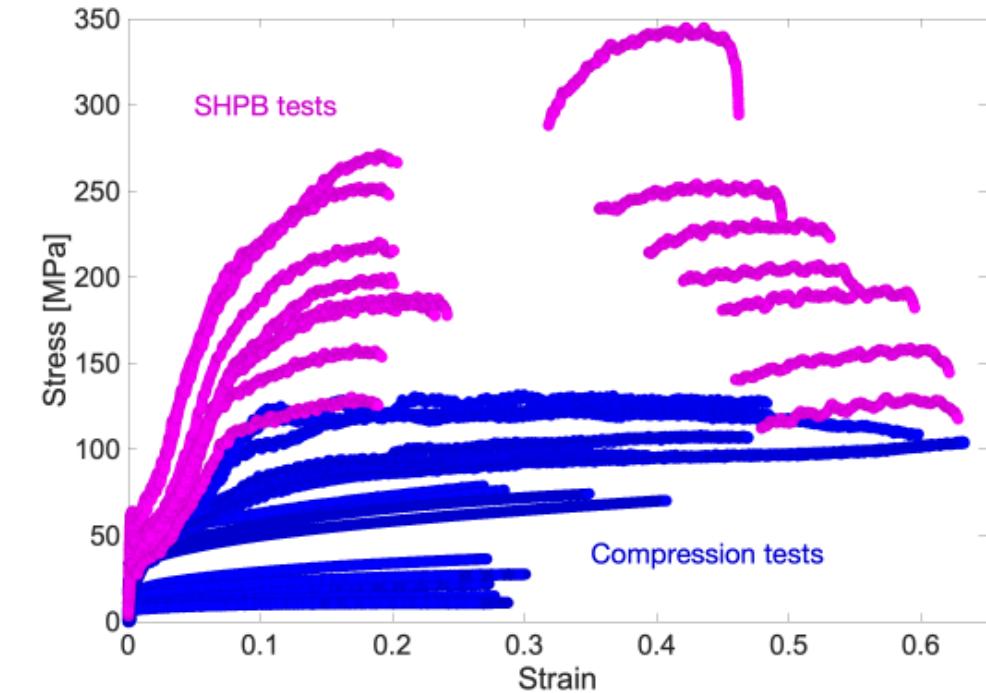


Leveraging the analytical expression

Genetic Programming



Experimental Data



Temperature: $190 \sim 400\text{ K}$

Strain-rate: $0.0001 \sim 3900\text{ s}^{-1}$

Traditional Strength Model Development: Zerilli-Armstrong and Johnson Cook

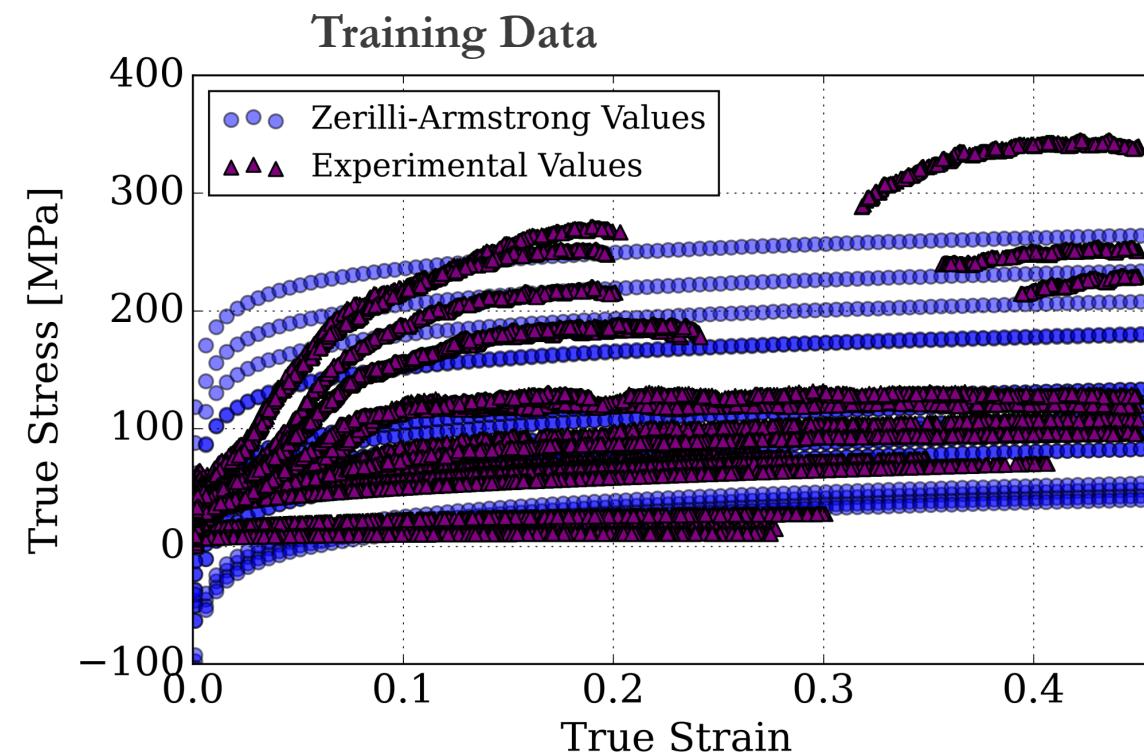
$$\sigma = C_0 + C_1 \exp(-C_3 T + C_4 T \ln(\dot{\varepsilon})) + C_5 \varepsilon^n$$

C_0 (MPa)	C_1 (MPa)	C_3 (1/K)	C_4 (1/K)	C_5	n
204.98	577.51	0.008	0.0004	-159.08	-0.10

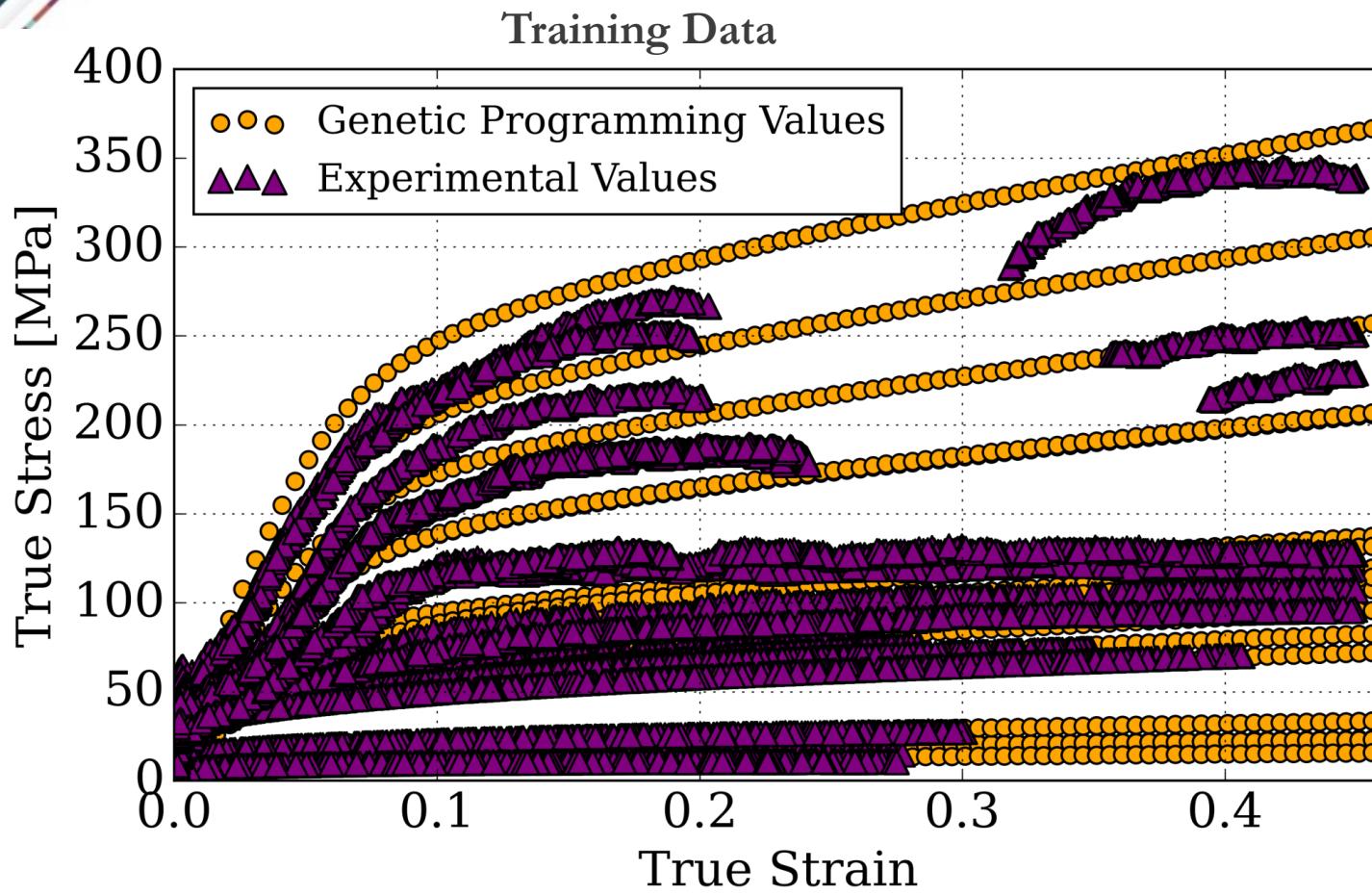
$$\sigma = [A + B \varepsilon^n][1 + C \ln(\dot{\varepsilon})][1 - T^*{}^m]$$

$$\dot{\varepsilon}^* = \dot{\varepsilon}/\dot{\varepsilon}_0 \quad \dot{\varepsilon}_0 = 1/s \quad T_m = 505\text{ K} \quad T^* = T/T_m$$

A (MPa)	B (MPa)	n	C	m
-10653.59	15044.97	0.05	0.09	0.05



Data-driven Strength Model Development: Best Model

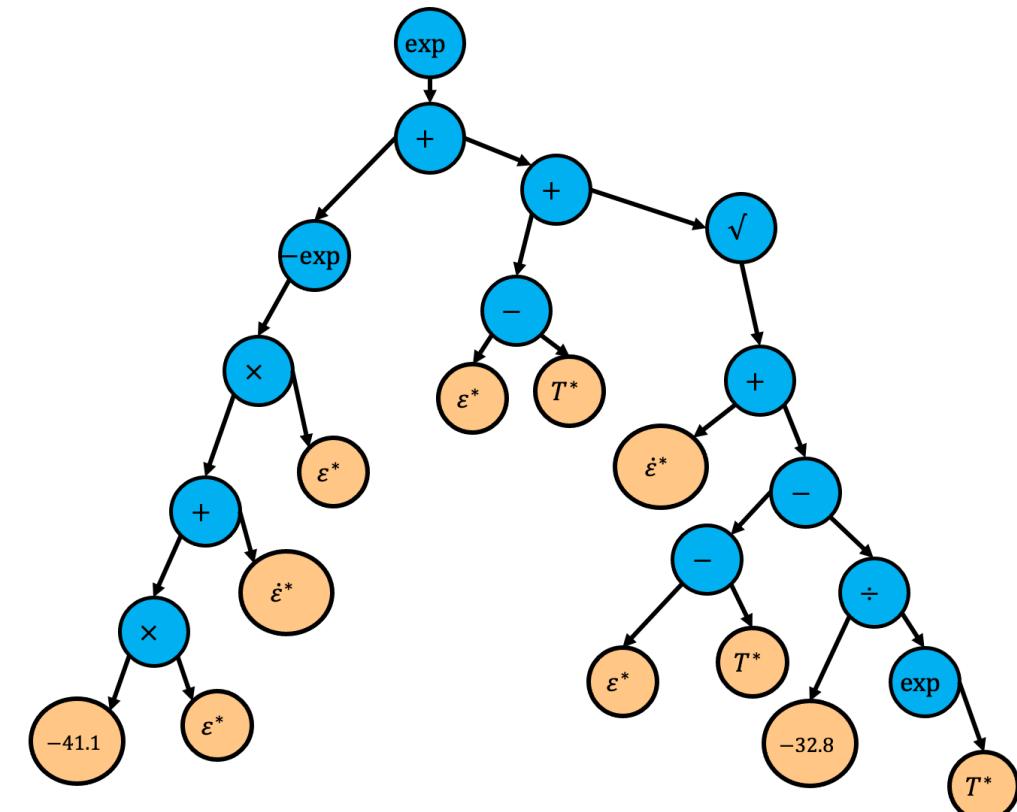


Population=34738

Tournament Size=468

Parsimony Coefficient=0.003

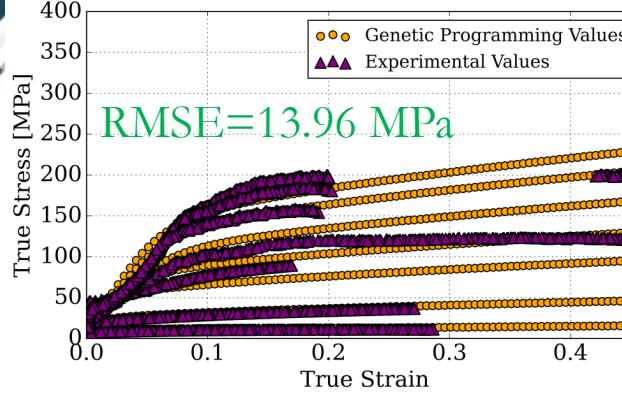
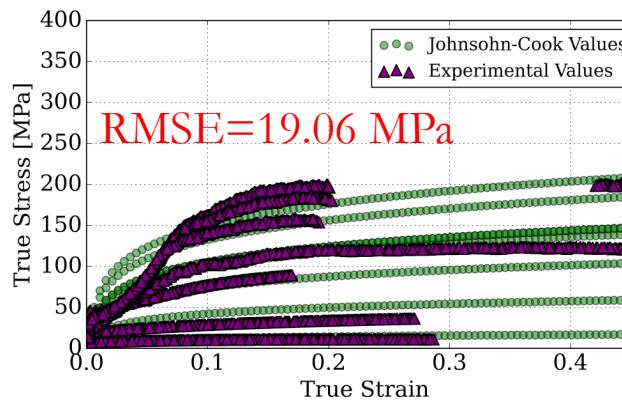
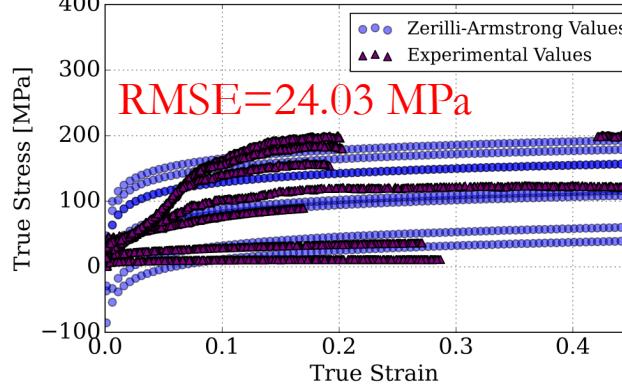
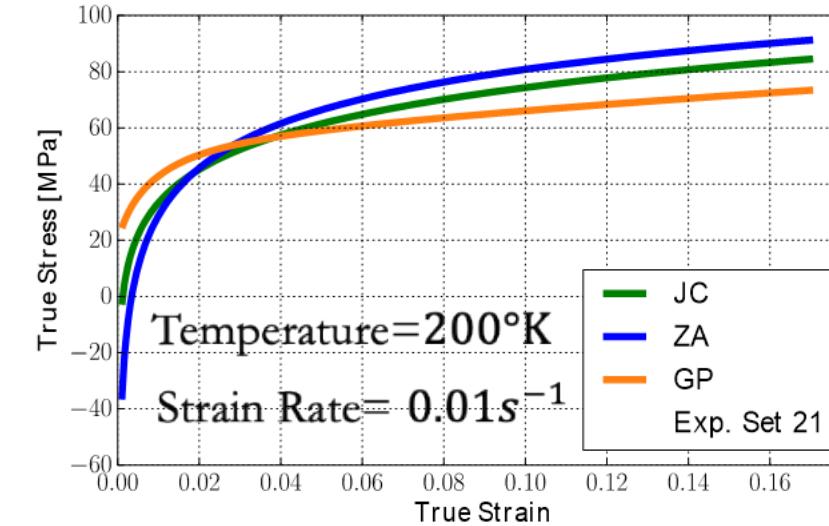
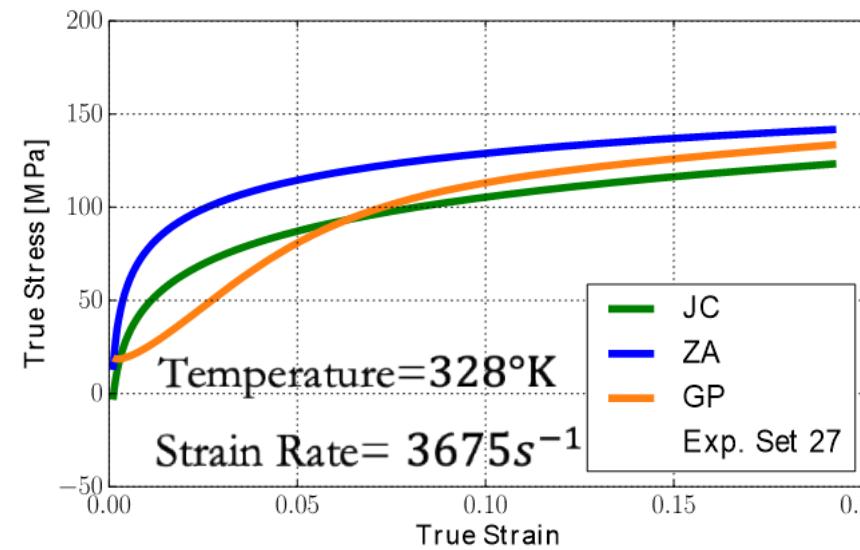
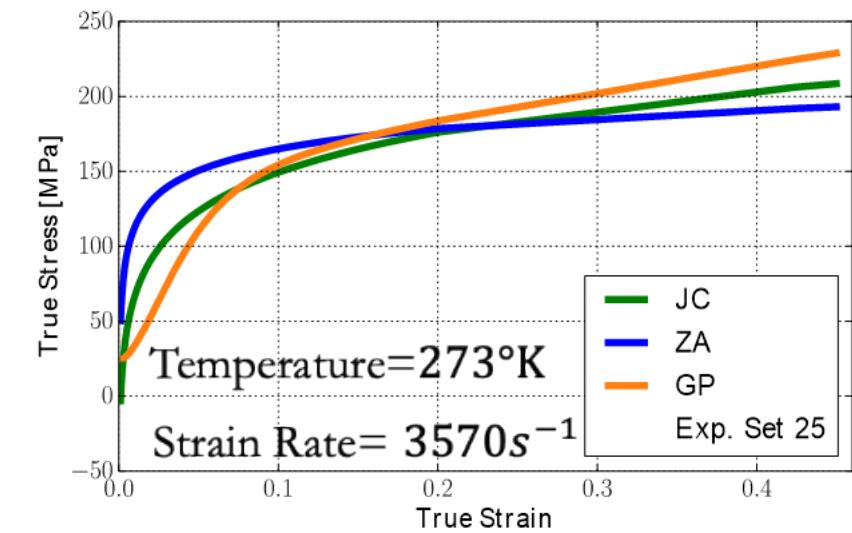
RMSE=13.32 MPa



$$\sigma = \exp \left(-\exp \left((-41.1\varepsilon^* + \dot{\varepsilon}^*) * \varepsilon^* \right) + \left((\varepsilon^* - T^*) + \left(\dot{\varepsilon}^* + \left((\varepsilon^* - T^*) - \left(\frac{-32.8}{\exp(T^*)} \right) \right)^{0.5} \right) \right) \right)$$

where $\varepsilon^* = \varepsilon^{3.96}$ $\dot{\varepsilon}^* = \ln(\dot{\varepsilon})$ $T^* = \frac{T}{T_{melting}}$ 25

Performance of Different Models: Evaluation on test set



Performance of Different Models: Traditional vs. GP

