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Tin displays complex behavior

+ Used in plating, soldering, and alloying

+ Low melting temperature (~500 K) and
recrystallization temperature (~300 K)

+ Leads to complex microstructural
evolution and large distributions in
mechanical response
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/" Experimental characterization of g-Tin

‘4
A 350

+ Compression tests
300 SHPB tests

Experimentalists: Jay Carroll & Zachary Casias

+ Temperature: 200 ~ 400 K 250
» Strain-rate: 0.0001 ~ 100 s~1
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+ Split-Hopkinson Pressure Bar (SHPB) tests

» Experimentalist: Saryu Fensin (Los Alamos) 100 ,—::__

+ Temperature: 190 ~ 375 K solB
+ Strain-rate: 3175 ~ 3900 s~*

Compression tests
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/~ Johnson-Cook (JC): 5 parameters

0= (A+Be")(1+ Clne)(1-T"™)

Zerilli-Armstrong (ZA): 6 parameters

o = Cy + C, exp(—CsT + C,TIné) + Cse™

Mechanical Threshold Stress (MTS): 20 parameters

o =6, + :—u [S(&,T)6 + S; (£, T)6; + S. (&, T)3.]

Preston-Tonks-Wallace (PTW): 12 parameters
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/" Traditional strength models - o = f(g,£,T)

Limitations

(Fixed form

+ Extrapolation is difficult
+ Multiple parameters to fit

+ Assumption-based
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J.R. Koza, Statistics and Computing (1994)
Y. Wang et al., MRS Comm. (2019)

/" Can genetic programming be an alternative method?
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/" What did genetic programming predict to be the best model?
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4 Genetic Programming
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Testing the GP model with the Taylor impact test

D=758mm
’4_.‘ Genetic Programming
— « Simple technigque to study dynamic
Tin behaviors
projectile « Strain-rates: 107 ~ 10* 51

B H=3818mm ° !Mmplemented within Sandia’s
Vo =96 m/s multiphysics shock-hydrodynamics
code (ALEGRA)
« Material definition:
« Equation of State: Sesame 2101
 Yield Model:
* Johnson-Cook
» Zerilli-Armstrong
» Preston-Tonks-Wallace
* Genetic Programming

Steel anvil




Why such a soft response from the GP model?

Incipient plasticity

Stresses extracted af strain = 0.01 |

XTo20 mgxper@meng Predicts softening at high
= xperimen . . .
% T = 400 K (Experiment) strain-rates, V\!thh is NOT
102 T =200 K (GP) physical
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/ Experimental \

Stress-strain curves
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/" Improving on GP model development

Generate new set of \
formulations by performing
genetic operations on
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7 New and improved GP model
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’ Does not predict softening Genetic Programming
at high strain-rates 050
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" Comparison with previous GP model

Previous GP model New GP model




/,
/o

Comparison with traditional models and experiment

< Experiment - . :
ohnson-Cook Zerilli-Armstron Preston-Tonks-Wallace Genetic Programmin
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Experimental
Experimental impact shape
Con C| us | ons stress-strain curves )

Genetic programming (GP) is a novel, useful, and easy
way to generate strength models for complex materials -
at a wide range of temperatures and strain-rates °

COMprassion 1asts

\ Genetic 1

« Along with experimental data, GP models need physical Programming
constraints to predict realistic material behavior

 Future work:

« Introduce new inputs to GP model from experimental
Taylor impact tests (radii, heights)

* Create a feedback loop that optimizes formulated models by
evaluating their hydrocode simulation results
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J.R. Koza, Statistics and Computing (1994)
Y. Wang et al., MRS Comm. (2019)

/" Can genetic programming be an alternative method?
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Selecting hyper-parameters using Monte Carlo sampling

Population size

Number of
formulations generated

Tournament size

Randomly samples | EE——

subsets of population

Parsimony coefficient

Penalty to overly
complex formulations

Genetic Programmi@

est Model
(example)

Continues for

\ 40 generations J

. 00O,

~

Monte Carlo Sampling (200 samples)  Best model chosen from hyper-parameters that yielded

Population 50~50000
Tournament Size 10~1000
Parsimony Coefficient 0.001~0.01

the lowest RMSE value and had the smallest difference in
performance between the training and test sets
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Comparison with traditional models
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Genetic Programming RMSE Comparison - Training vs. Test
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/" Johnson-Cook RMSE Comparison - Training vs. Test
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/7 Zerilli-Armstrong RMSE Comparison - Training vs. Test
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/" Stress-strain curves may not be enough...
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Experimental stress-strain curves dor impact shape
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Leveraging the analytical expression

Genetic Programming Experimental Data
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/" Traditional Strength Model Development: Zerilli-Armstrong and Johnson Cook
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” Data-driven Strength Model Development: Best Model
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/" Performance of Different Models: Evaluation on test set
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‘4 Performance of Different Models: Traditional vs. GP
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