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Results

e Species used in analysis span genetic distances
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* Tree developed by custom phylogenetic algorithm

Shallow model results
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Can machine learning be used to determine relationships between
epigenomics and gene expression in fungi, and can these predictions be
validated experimentally?

Background

Improving biomanufacturing outcomes

 Engineered fungi are promising chassis for future
sustainable biomanufacturing and bioproduction

* Reliable functional regulation of diverse fungi at scale
remains a significant challenge to commercialization

 Optimized chassis require knowledge of conserved
and variable controls of gene regulation across fungal
species
* Fungal biomanufacturing requires dynamic control

of genes, metabolic flux, and regulatory cross talk
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Legend: Lmac = Leptosphaeria maculans; Ncrassa = Neurospora crassa,; Fgram = Fusarium
graminearum

Deep learning model results

Custom deep learning model
architecture stacks three 1D CNN
layers, a self-attention layer, and two
fully-connected layers

* Model output is 2-class prediction of

Trained Model Mcrassa
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Shallow models have limited ability to predict intra-species gene expression based on
average epigenetic modification expression signals.

Custom CNN + Attention model predicts intra- and cross-species gene expression
based on epigenetic modifications signal profiles.

There is therefore likely some conservation of epigenetic mechanisms across related
species

Limitations in predictive capacity may be due to underlying biological constraints or
limited data availability.

Highly modular gene expression through understanding and predictive modeling of
regulatory epigenetic modification rules is possible through machine learning and will
support sustainable and secure bioenergy and biomanufacturing goals.
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predicting requlatory mechanisms

EPIGENETIC MODIFICATION TO PREDICT

RNA EXPRESSION ®
Uses peri-gene (TSS +/- n bp) histone modifications

and DNA methylation data to predict or regress

against RNA expression.

Building more robust predictive models by adding data

from published and in-house sequencing work

Continue exploration into adaptability of tools across more

species

|ldentify biomanufacturing-pertinent scenarios to deploy our

machine learning technology

 ldentify and experimentally validate epigenetic modification
profiles that regulate gene-of-interest expression

« Develop model-informed tools to modulate epi

fungi '

DNA SEQUENCE TO PREDICT EPIGENETIC
. MODIFICATIONS ®
J Uses native DNA sequence to predict or regress

against epigenetic modification binding.

UNSUPERVISED LEARNING OF EPIGENETIC

MODIFICATIONS AND/OR DNA SEQUENCE [y
Learn patterns in the epigenetic modification or DNA

sequence data without expression information.

APPROACH 1

APPROACH 2 APPROACH 3

Predictability and Gene
Function (Gene Ontology)

PPPPPPPPP -Slim Molecular Function
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