

Exceptional service in the national interest

APPLIED MACHINE LEARNING FOR ELUCIDATING RELATIONSHIPS BETWEEN EPIGENOMIC REGULATORY RULES AND GENE EXPRESSION

*BETWEEN FUNGAL SPECIES ACROSS
PHYLOGENETIC DISTANCES*

Presented by: Laura Weinstock, PhD

Sandia National Laboratories

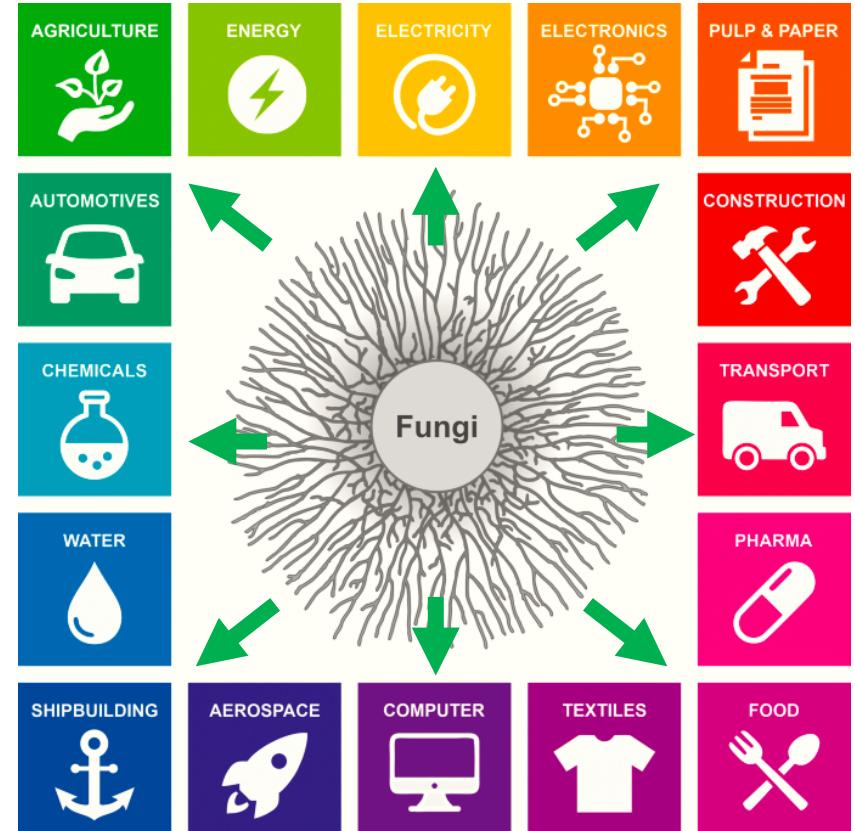
March 13, 2024

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

BACKGROUND: FUNGI IN BIOMANUFACTURING

- Engineered fungi are promising chassis for future sustainable biomanufacturing and bioproduction.
- Yeast alone (Nicholas Money, 2018):
 - 5% of USA's GDP (>\$900B)
 - 3% of USA's workforce (>5M)
- Reliable regulation of the functionality in diverse fungi at scale remains a significant challenge to commercialization.

Improving biomanufacturing outcomes

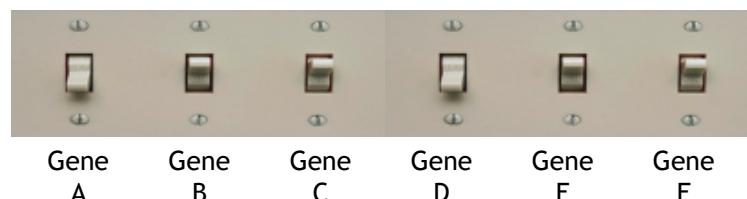


Meyer *et al.* (2020).

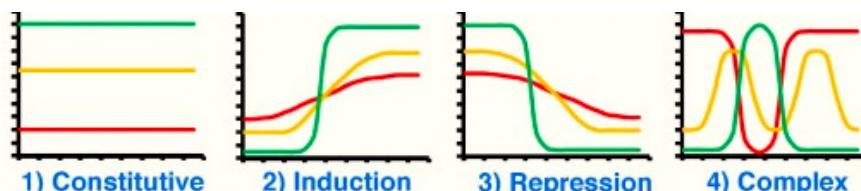
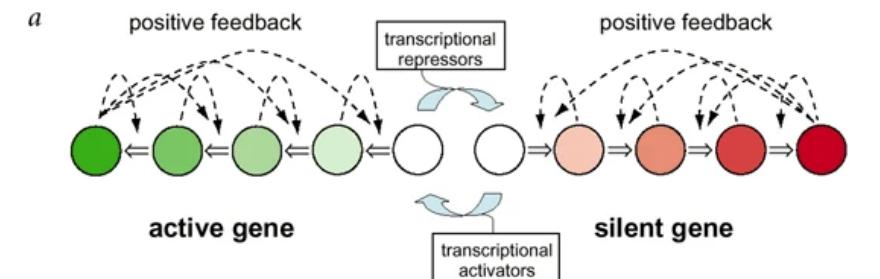
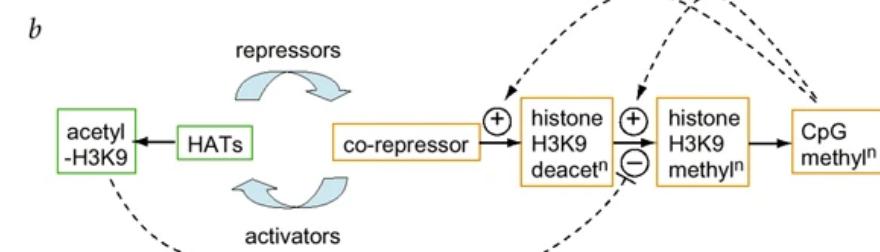
BACKGROUND: REGULATING BIOPRODUCTION

- Biomanufacturing requires dynamic, fine-tuned multicellular control
- Getting the exact desired properties of fungal chassis is challenging, and it is uneconomical to seek new chassis to overcome every limitation.
- Precise modulation of chassis attributes will support efficient biomanufacturing
- Epigenetic modifications play a crucial role in regulating gene expression and provide finer-resolution control of expression than genetic modifications

A systems problem needing a systems-level solution



In reality, you need more than on and off switches



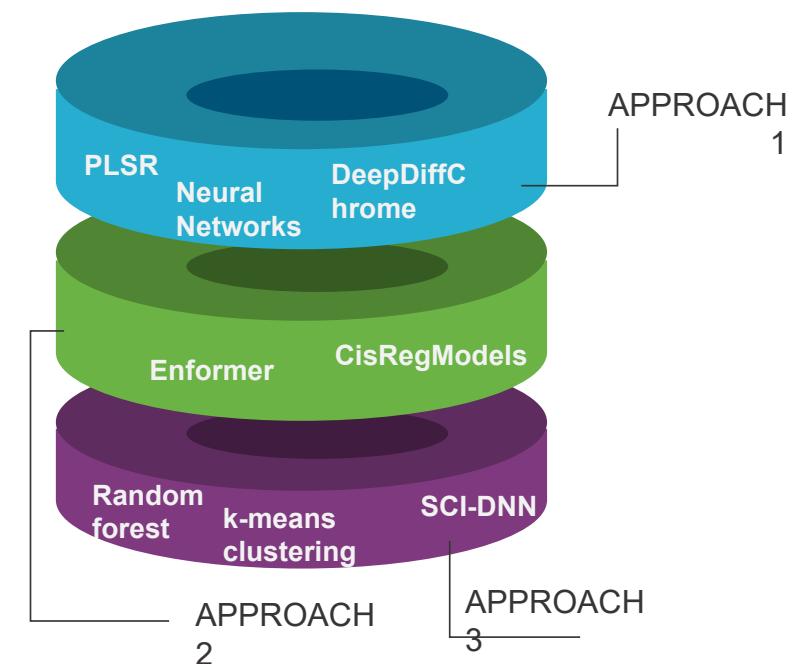
Jaenisch & Bird. (2003). *Nat Gen.*

DEFINING THE PROBLEM FOR MODEL DEVELOPMENT

Can machine learning be used to determine relationships between epigenomics and gene expression in fungi?

- Fungal biomanufacturing requires: the right genes, available metabolic flux, controlled regulatory cross-talk:
 - Must find the right 'knobs and levers' of broad gene regulation for process optimization
 - Use of predictive models to assess process controllability, supplement with targeted experimentation

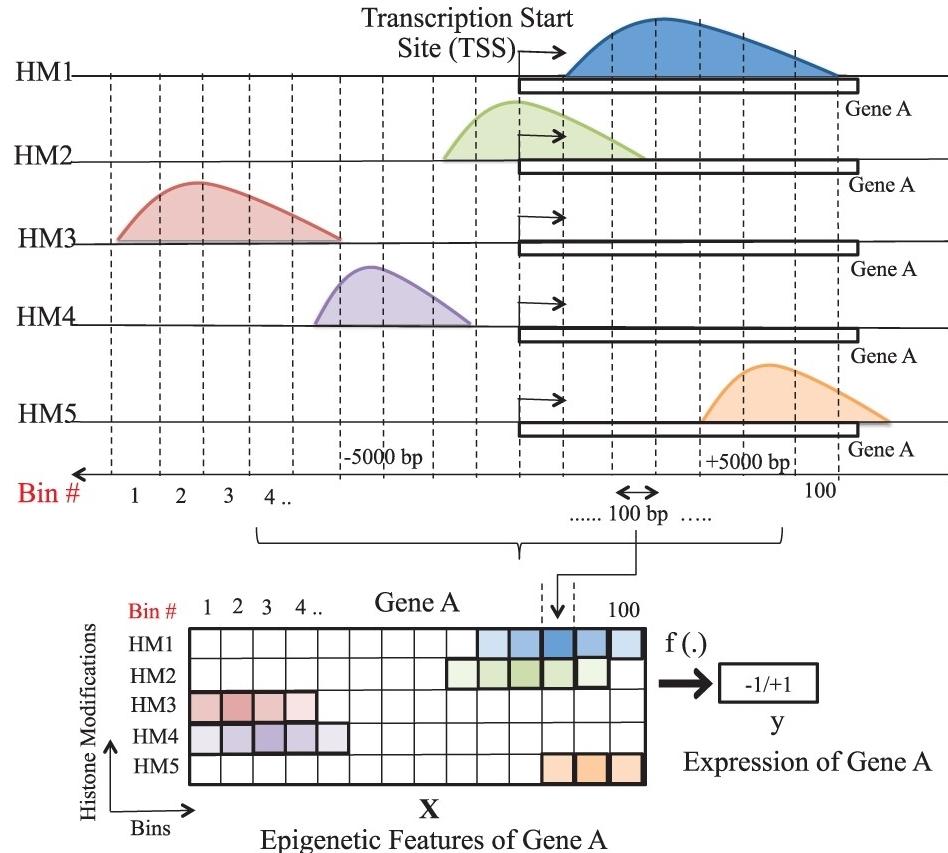
- 1 EPIGENETIC MODIFICATION TO PREDICT RNA EXPRESSION**
Uses peri-gene (TSS +/- n bp) histone modifications and DNA methylation data to predict or regress against RNA expression.
- 2 DNA SEQUENCE TO PREDICT EPIGENETIC MODIFICATIONS**
Uses native DNA sequence to predict or regress against epigenetic modification binding.
- 3 UNSUPERVISED LEARNING OF EPIGENETIC MODIFICATIONS AND/OR DNA SEQUENCE**
Learn patterns in the epigenetic modification or DNA sequence data without expression information.



PREVIOUS EFFORTS USING MACHINE LEARNING TO UNDERSTAND GENE REGULATION

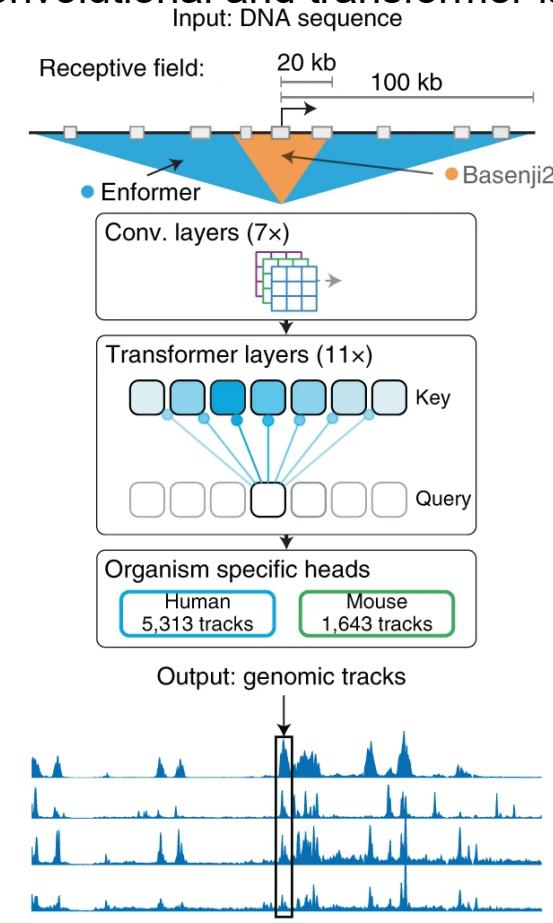
Convolution and attention are powerful tools to combine for extracting features from sequence and epigenetic signal information

DeepChrome: binary classification of gene expression using binned histone modification expression profiles



Singh et al. (2016) *Bioinformatics*.

Enformer: sequence-to-sequence prediction using convolutional and transformer layers

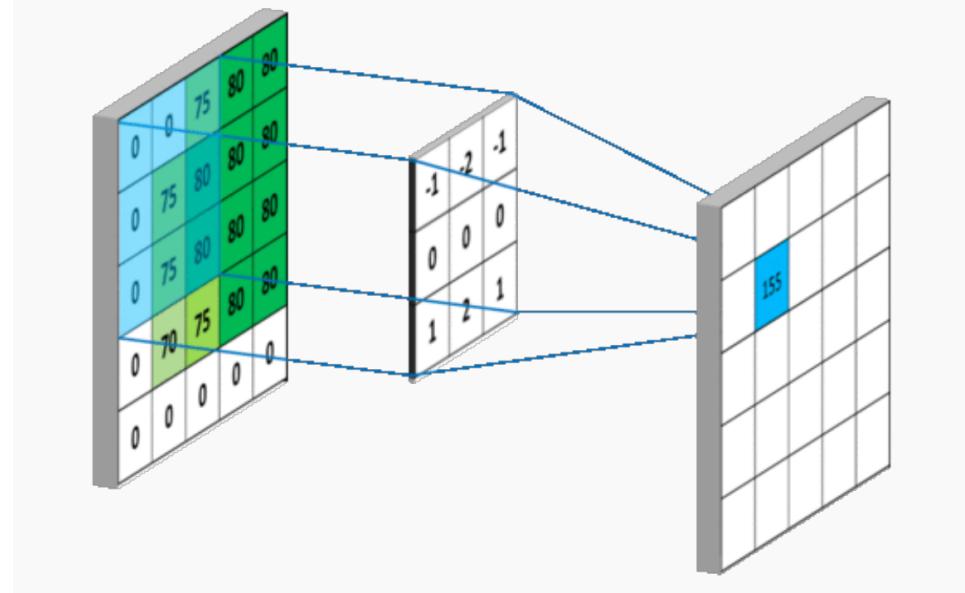


Avsec et al. (2021). *Nat Methods*.

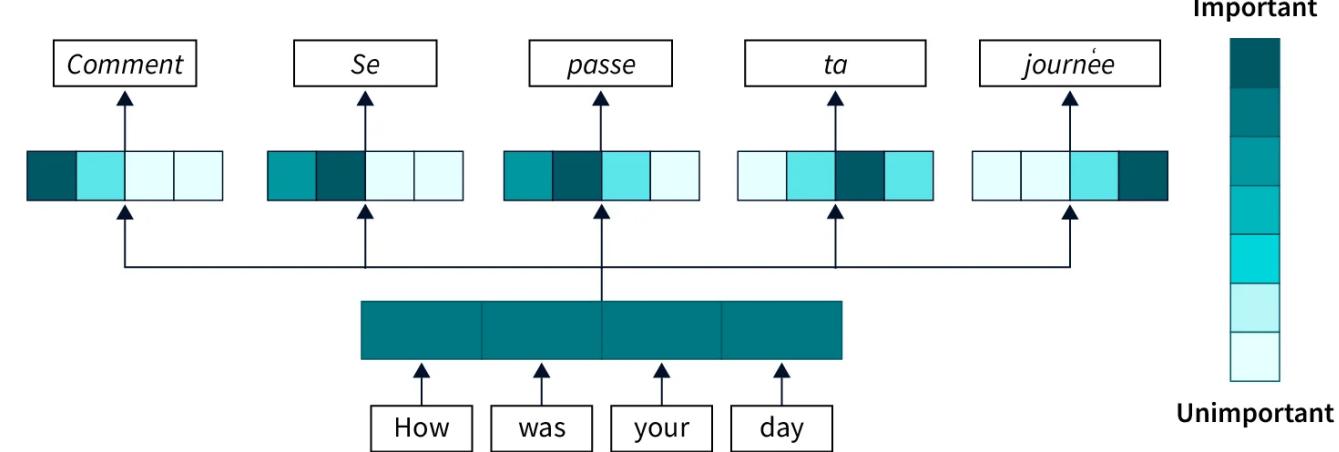
OVERVIEW OF KEY MACHINE LEARNING LAYERS

Convolution finds array of features, attention finds key features

Convolutional layers

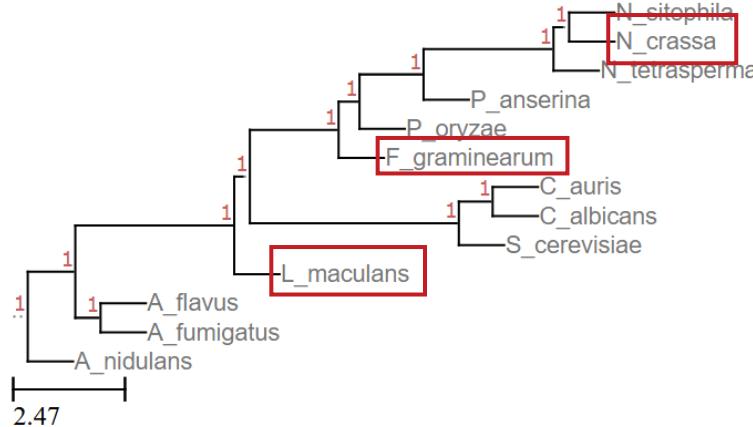


Attention layers

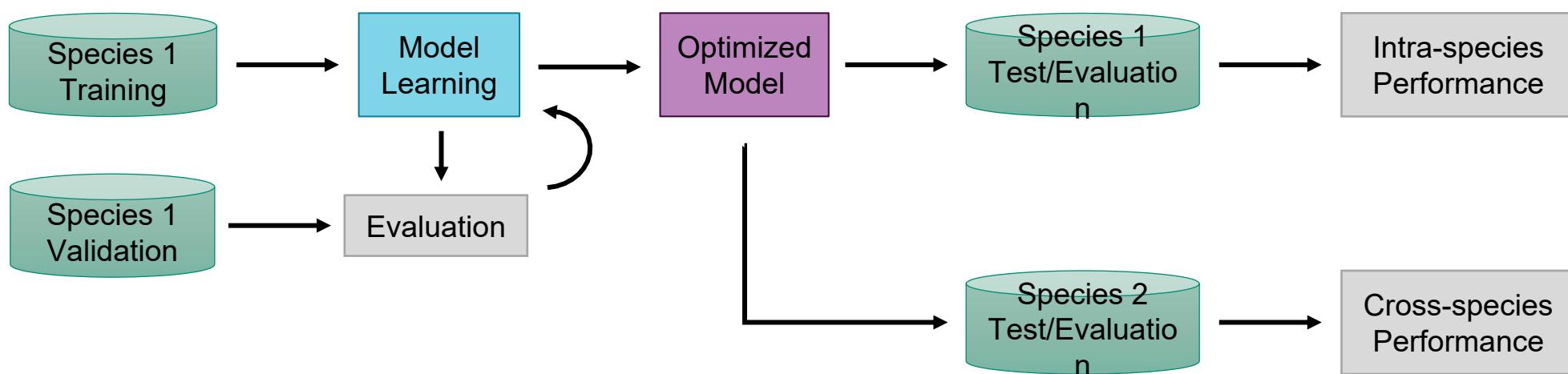


MODEL TRAINING AND EVALUATION STRATEGY

- Species selected based on phylogenetic distance and overlapping epigenetic modification data availability



- Training and testing data → epigenetic modification data
- Predicted values → RNA expression



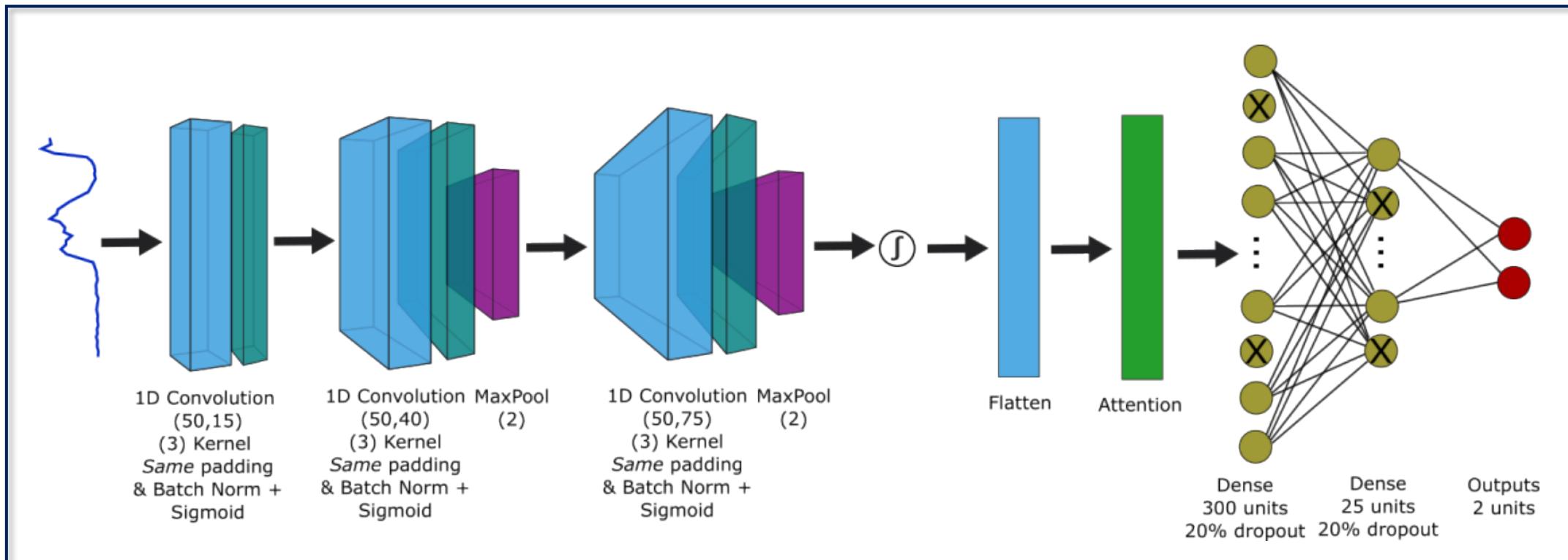
SHALLOW MODEL RESULTS: CROSS-SPECIES EVALUATION

Candidate tree-based models do not maintain performance in cross-species prediction.



DEEP LEARNING MODEL ARCHITECTURE

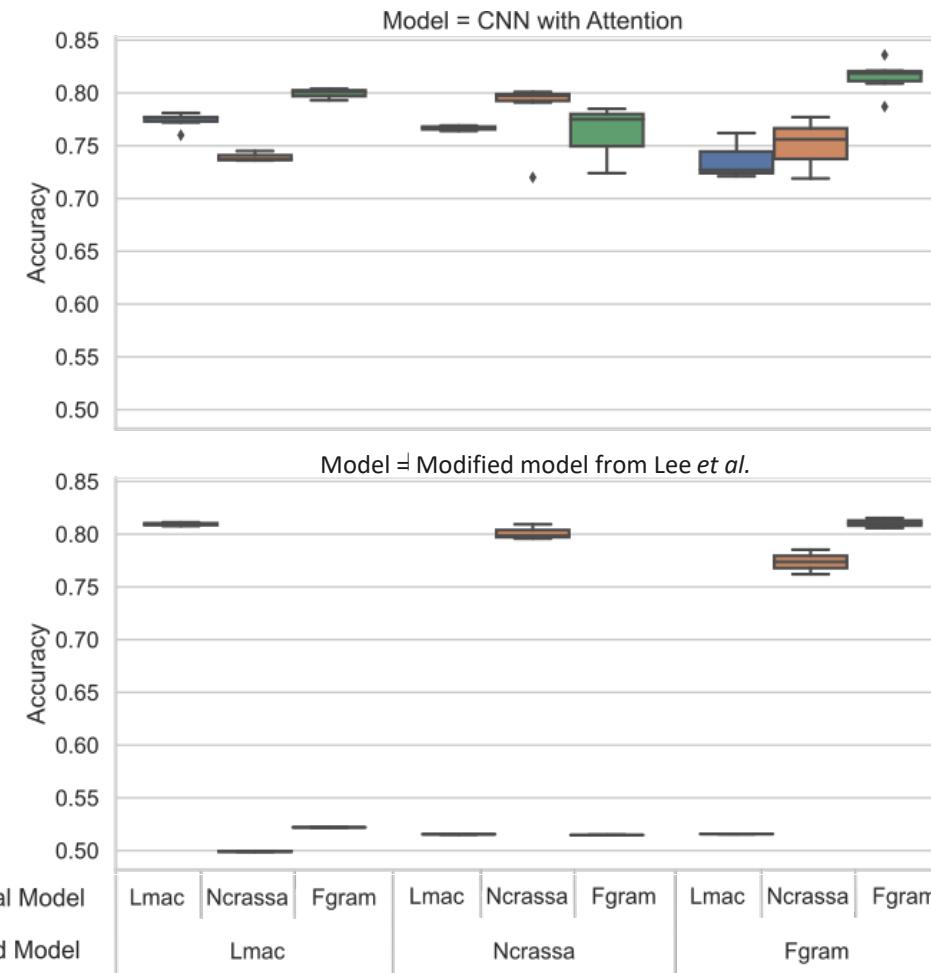
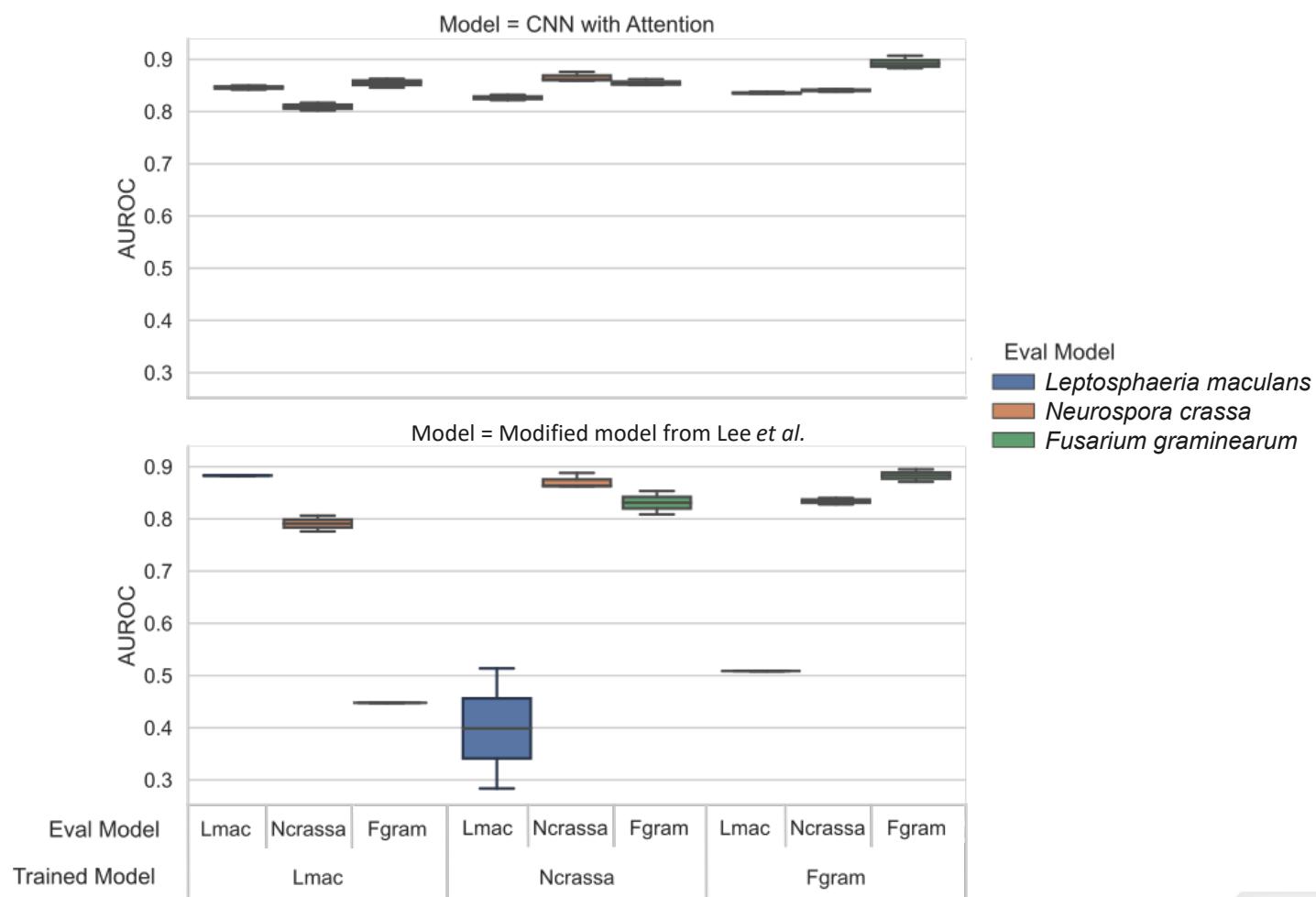
Custom model with Convolution with MaxPooling, Attention, and Fully Connected layers uses epigenetic signal profile to predict 2-class gene expression



- Based on previous models for similar purposes in other species

DEEP LEARNING MODEL RESULTS

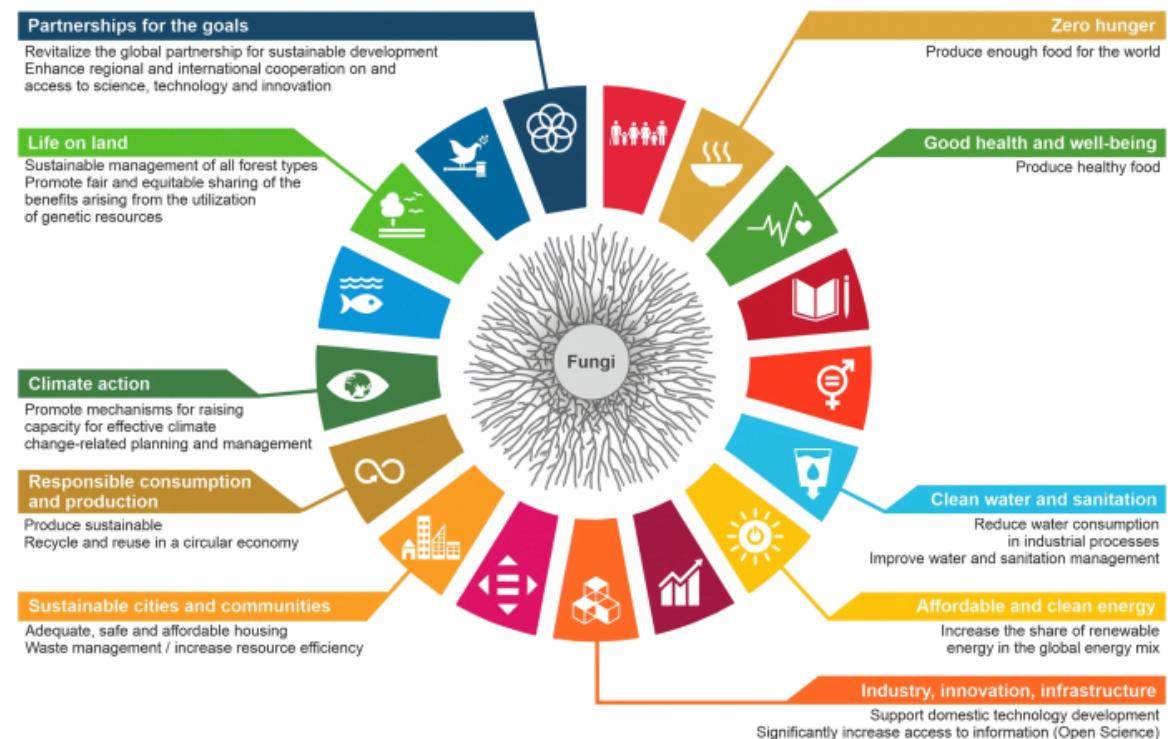
Custom CNN with Attention model outperforms benchmark models on cross-species prediction performance.



CONCLUSIONS

- Shallow models have limited ability to predict intra-species gene expression based on average epigenetic modification expression signals.
- Custom CNN + Attention model predicts intra- and cross-species gene expression based on epigenetic modifications signal profiles.
- We can use conservation of epigenetic mechanisms across related species to predict functional outcomes
- Limitations in predictive capacity may be due to underlying biological constraints or limited data availability.
- Highly modular gene expression enabled by predictive ML modeling of regulatory epigenetic modification rules is possible
- Support sustainable and secure bioenergy and biomanufacturing goals, and understanding of fungal disease.

Supporting sustainable circular bioeconomy goals



Meyer *et al.* (2020).

FUTURE DIRECTIONS

- Additional sequence, chromatin structure, and unsupervised prediction strategies
- Identify modification features that drive prediction
- Experimentally validate predicted modifications that regulate gene expression
- Develop modular epigenome editing tool for testing across fungi

1

1 EPIGENETIC MODIFICATION TO PREDICT RNA EXPRESSION

Uses peri-gene (TSS +/- n bp) histone modifications and DNA methylation data to predict or regress against RNA expression.

2

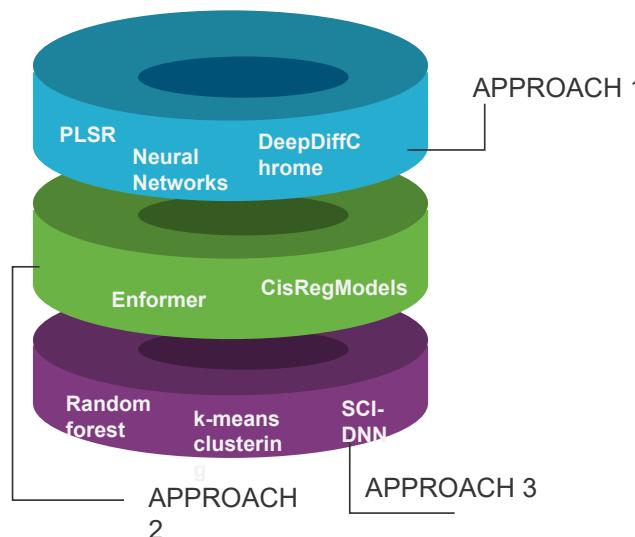
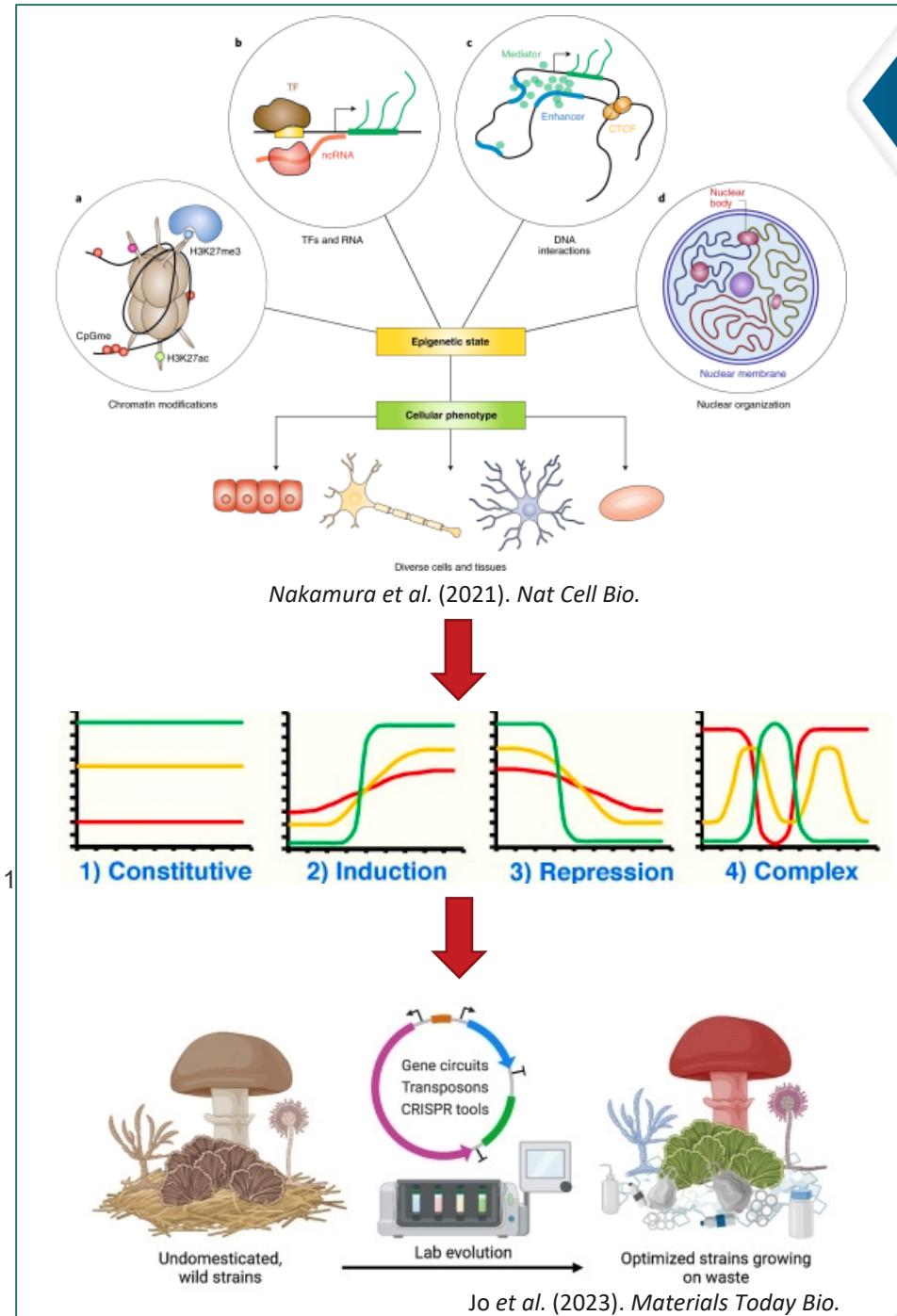
2 DNA SEQUENCE TO PREDICT EPIGENETIC MODIFICATIONS

Uses native DNA sequence to predict or regress against epigenetic modification binding.

3

3 UNSUPERVISED LEARNING OF EPIGENETIC MODIFICATIONS AND/OR DNA SEQUENCE

Learn patterns in the epigenetic modification or DNA sequence data without expression information.

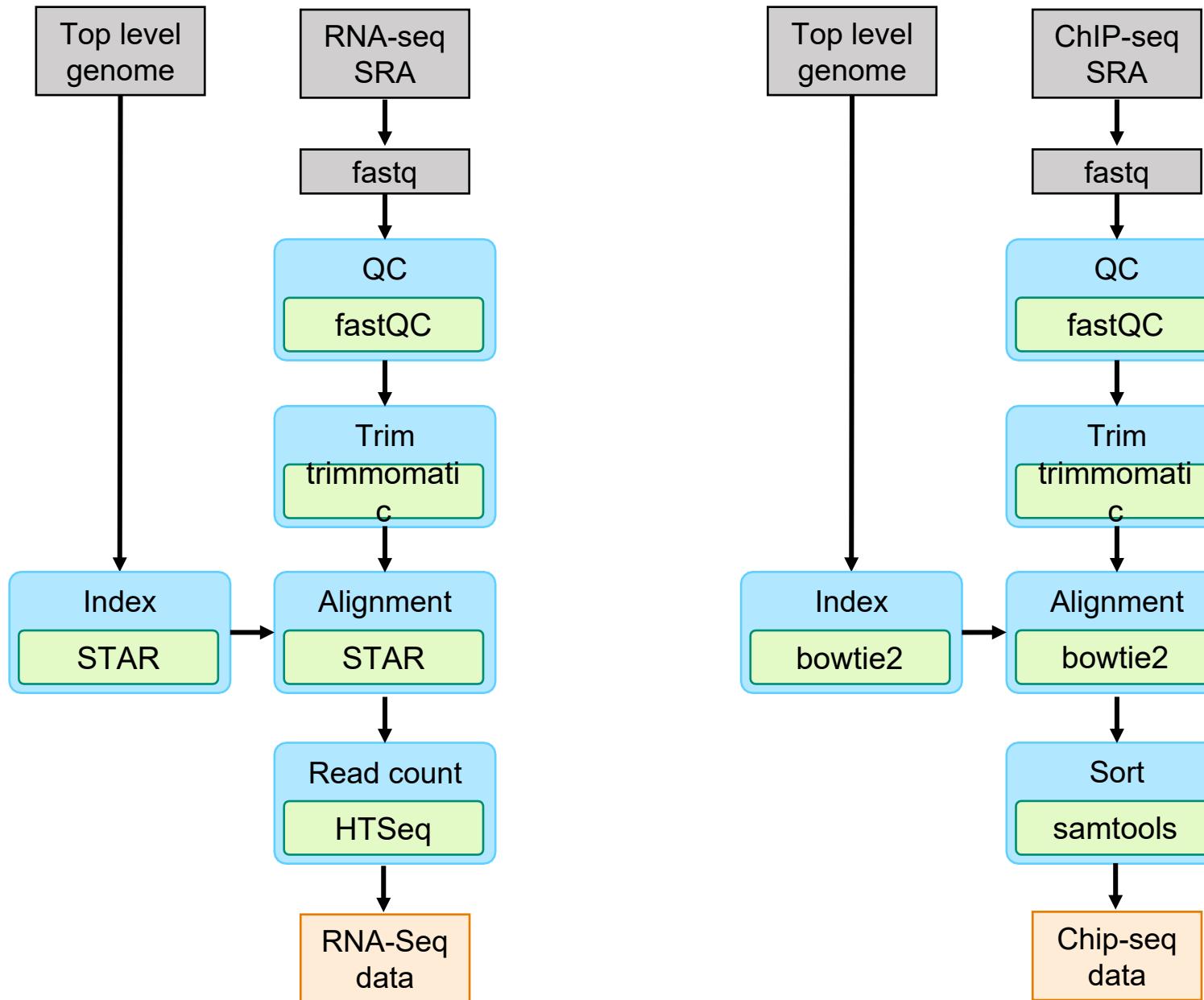


ACKNOWLEDGMENTS

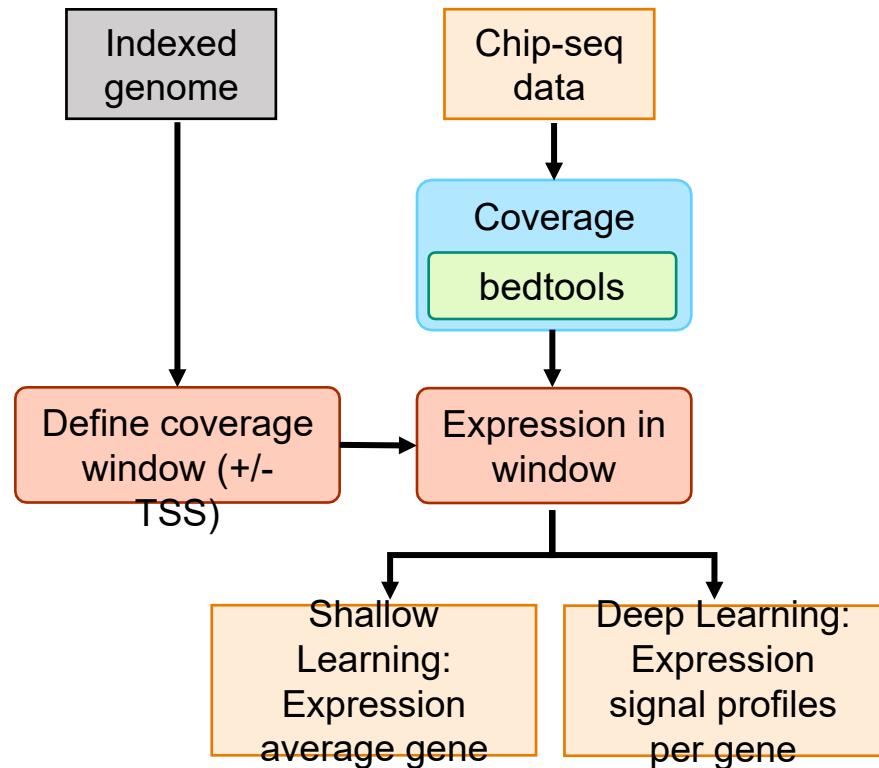
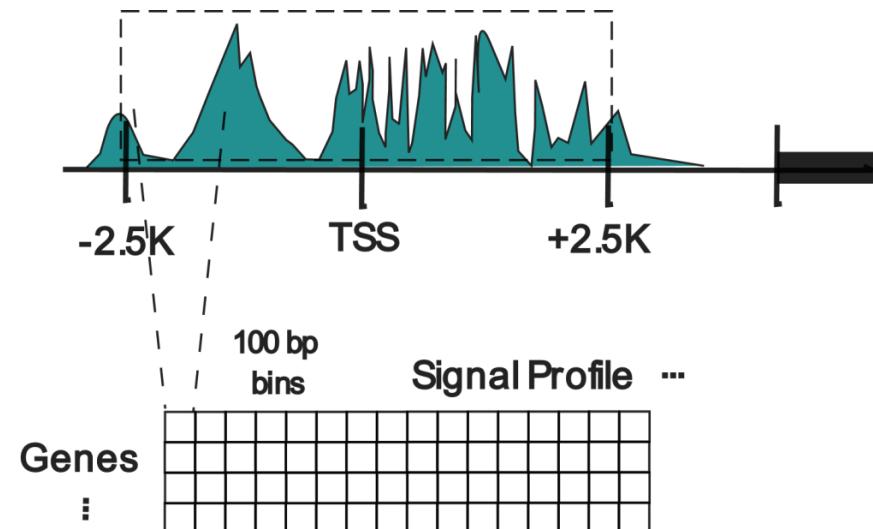
- PI: **Raga Krishnakumar**
- Cameron Kundstadt
- Jenna Schambach
- Anna Fisher
- Matthew Hirakawa
- Elizabeth Koning
- Ethan Lee
- Wittney Mays
- Warren Davis
- Yooli Light
- Joshua Podlevsky

BACKUP

DATA PRE-PROCESSING PIPELINES



DATA PREPARATION



MINED EPIGENETIC DATA

Fgram matchup table

Run	genotype	GEO	
		Accession	Antibody
GSM1226			
1 SRR999608	WT	424	Active Motif 39155 H3K27me3
GSM1226			
4 SRR999611	WT	427	abcam ab 9050 H3K36me3
GSM1226			
6 SRR999613	WT	429	Millipore 07-030 H3K4me2
GSM1226			
10 SRR999617	WT	433	abcam ab 8580 H3K4me3

N crassa matchup table

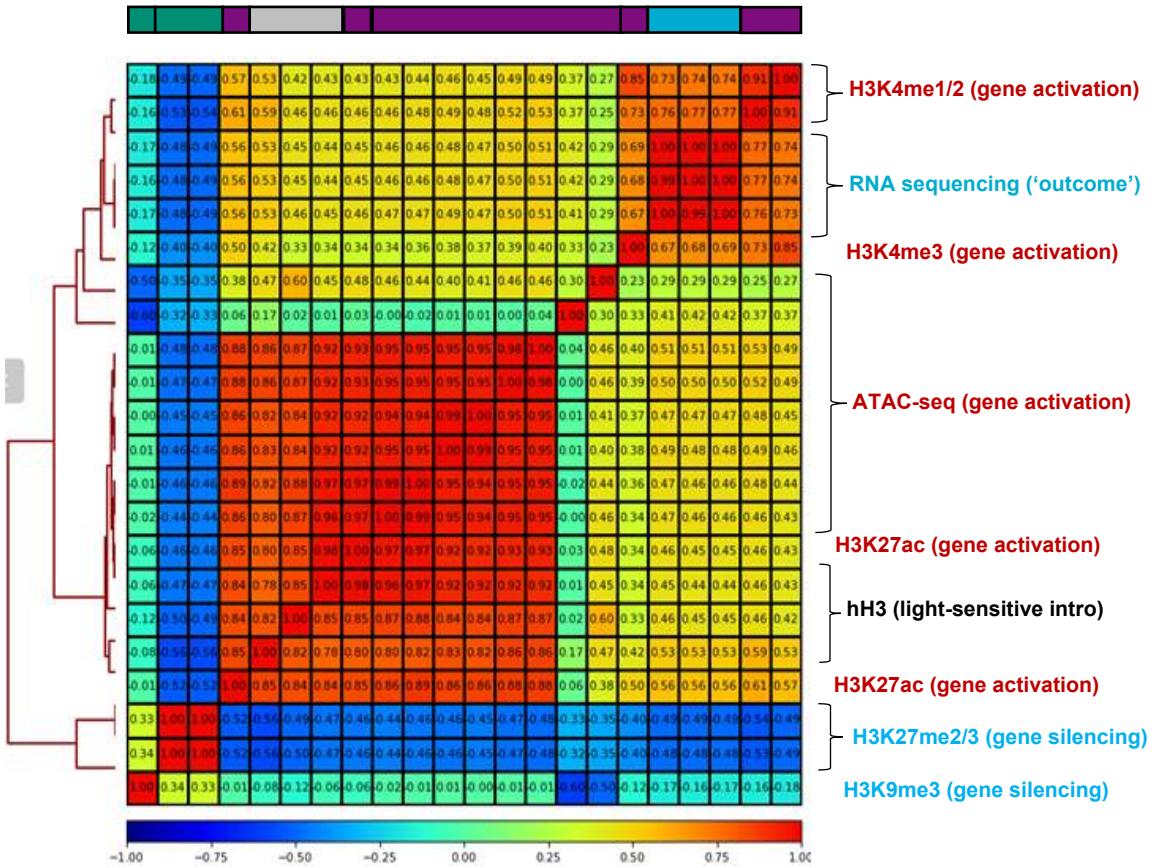
Run	Assay Type	genotype	chip_antibody
9 SRR12229305	ChIP-Seq	WT	H3K27ac
10 SRR12229306	ChIP-Seq	WT	H3K4me1
11 SRR12229307	ChIP-Seq	WT	H3K4me2
12 SRR12229308	ChIP-Seq	WT	H3K4me3
13 SRR12229309	ChIP-Seq	WT	H3K36me3
14 SRR12229310	ChIP-Seq	WT	H3K9me3
18 SRR12229314	ChIP-Seq	WT	H3K27me2/3

HISTONE MODIFICATION FUNCTIONS

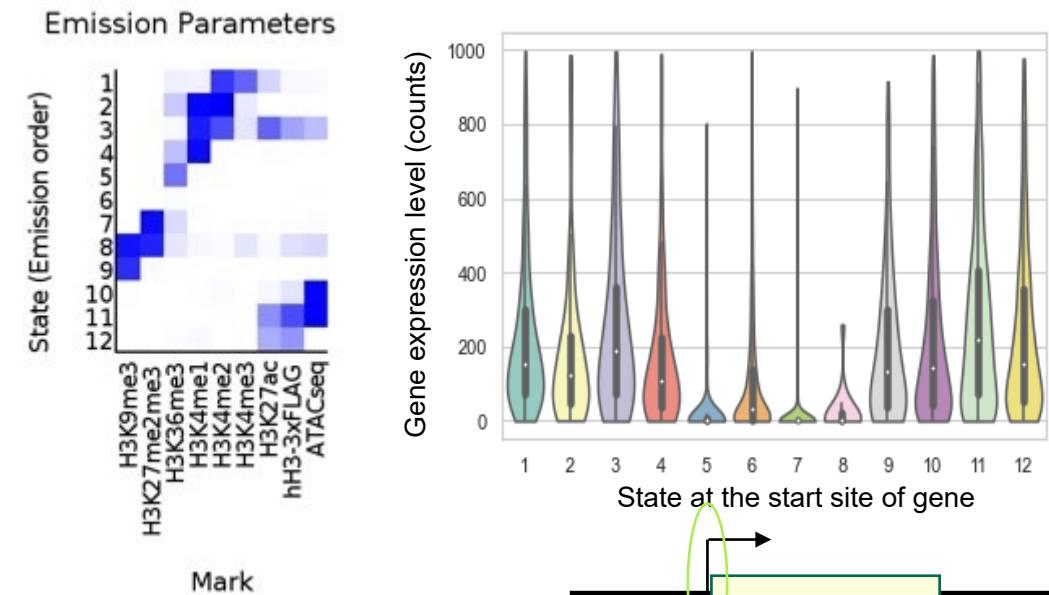
Histone/Position/Modification	Location	Effect	Enzyme
H3K4me2		Gene activation	Set1, MLL, Set7/9, SMYD3, LSD1, JAR1D1A
H3K4me3	5' End of transcriptionally active genes	Gene activation	Set1, MLL, Set7/9, SMYD3, JAR1D1A
H3K9me	Euchromatin	Gene silencing	G9a; Suv91, StB1, PRD14, CLL8, GLP, Suv39h1, Suv39h2
H3K9me2	Euchromatin	Gene silencing	G9a; Suv91, StB1, PRD14, CLL8, GLP, Suv39h1, Suv39h2, JMJD2A
H3K9me3	Promoters and heterochromatin, Gene coding region	Gene silencing Gene activation	G9a; Suv91, StB1, PRD14, CLL8, GLP, Suv39h1, Suv39h2, JMJD2A
H3K27me1	Heterochromatin	Gene activation	
H3K27me2/3	Inactive-X chromosome, homeotic genes	Gene silencing	EZH2
H3K36me	Promoter	Not well characterized	JHDM1A
H3K36me2	Near double strand breaks, for repair	Gene silencing	NSD1, JMJD2A, JHDM1A
H3K36me3	3' End of active genes. Marks exons.	Gene activation	JMJD2A
H3K79me2		Gene activation	Dot1L

DATA VIZ TO CONFIRM EXPRESSION PATTERNS

deepTools to create a correlation clustergram

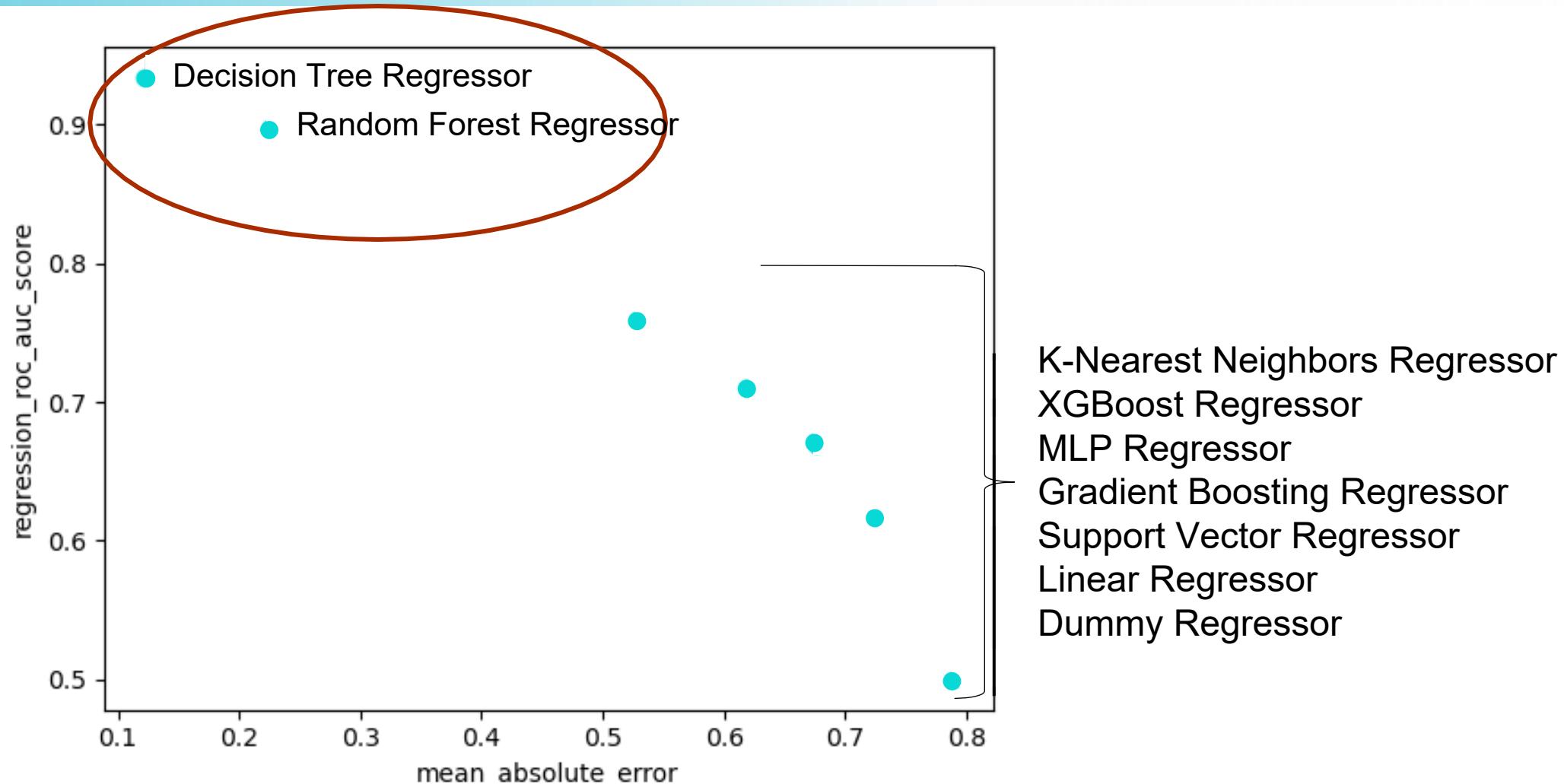


ChromHMM to observe combinatorial correlations



SHALLOW MODEL RESULTS: MODEL BATTERY SCREENING

Tree-based models outperform other shallow learning models on intra-species prediction using *N. crassa* data.



SHALLOW MODEL RESULTS: PRECISION

