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BACKGROUND: FUNGI IN BIOMANUFACTURING

Improving biomanufacturing outcomes

¢ Engineered fungi are promiSing ChaSSiS for fUture AGRICULTURE ENERGY ELECTRONICS PULP & PAPER
sustainable biomanufacturing and bioproduction. S o &g.‘_:} =
&/ ey ﬂ

* Yeast alone (Nicholas Money, 2018):
= 5% of USA’'s GDP (>$900B) e;\;-
= 3% of USA's workforce (>5M)
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* Reliable regulation of the functionality in diverse fungi at
scale remains a significant challenge to
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Meyer et al. (2020).
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BACKGROUND: REGULATING BIOPRODUCTION

» Biomanufacturing requires dynamic, fine-tuned multicellular control

* Getting the exact desired properties of fungal chassis is challenging, and it is uneconomical to seek new
chassis to overcome every limitation.

* Precise modulation of chassis attributes will support efficient biomanufacturing

* Epigenetic modifications play a crucial role in regulating gene expression and provide finer-resolution control
of expression than genetic modifications
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DEFINING THE PROBLEM FOR MODEL DEVELOPMENT

Can machine learning be used to determine relationships between epigenomics
and gene expression in fungi?

* Fungal biomanufacturing requires: the right genes, available metabolic flux, controlled regulatory cross-talk:

= Must find the right ‘knobs and levers’ of broad gene regulation for process optimization
= Use of predictive models to assess process controllability, supplement with targeted experimentation

EPIGENETIC MODIFICATION TO

PREDICT RNA EXPRESSION
Uses peri-gene (TSS +/- n bp) histone
modifications gnd DNA methylat_lon data to preqict PLSR DeepDIffC
or regress against RNA expression. Neural hrome

DNA SEQUENCE TO PREDICT Networks
EPIGENETIC MODIFICATIONS

Uses native DNA sequence to predict or regress
against epigenetic modification binding.

APPROACH

Enformer CisRegModels

UNSUPERVISED LEARNING OF EPIGENETIC

MODIFICATIONS AND/OR DNA SEQUENCE Random RS
Learn patterns in the epigenetic modification or grest clustering
DNA sequence data without expression
APPROACH

APPROACH
2

information.



PREVIOUS EFFORTS USING MACHINE LEARNING TO
UNDERSTAND GENE REGULATION

Convolution and attention are powerful tools to combine for extracting features from
sequence and epigenetic signal information

DeepChrome: binary classification of gene expression Enformer: sequence-to-sequence prediction using

using binned histone modification expression profiles convolutionlaltaDrrlg transformer layers
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OVERVIEW OF KEY MACHINE LEARNING LAYERS

Convolution finds array of features, attention finds key features

Convolutional layers
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MODEL TRAINING AND EVALUATION STRATEGY

» Species selected based on phylogenetic distance and overlapplng epigenetic modification data
availability e
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 Training and testing data - epigenetic modification data

* Predicted values = RNA expression
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SHALLOW MODEL RESULTS: CROSS-SPECIES EVALUATION

Candidate tree-based models do not maintain performance in cross-species
prediction.

Model = RandomForestClassifier Model = DecisionTreeClassifier
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DEEP LEARNING MODEL ARCHITECTURE

Custom model with Convolution with MaxPooling, Attention, and Fully Connected
layers uses epigenetic signal profile to predict 2-class gene expression

1D Convolution 1D Convolution MaxPool 1D Convolution MaxPool Flatten
(50,15) (50,40) (2) (50,75) (2)
(3) Kernel (3) Kernel (3) Kernel
Same padding Same padding Same padding
& Batch Norm + & Batch Norm + & Batch Norm + Dense Dense Outputs
Sigmaoid Sigmoid Sigmoid 300 units 25 units 2 units

20% dropout 20% dropout

« Based on previous models for similar purposes in other species



DEEP LEARNING MODEL RESULTS

Custom CNN with Attention model outperforms benchmark models on cross-species

prediction performance.
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CONCLUSIONS

Shallow models have limited ability to predict intra-
species gene expression based on average epigenetic
modification expression signals.

Custom CNN + Attention model predicts intra- and
Cross-species gene expression based on epigenetic
modifications signal profiles.

We can use conservation of epigenetic mechanisms
across related species to predict functional outcomes

Limitations in predictive capacity may be due to
underlying biological constraints or limited data
availability.

Highly modular gene expression enabled by predictive
ML modeling of regulatory epigenetic modification rules
is possible

Support sustainable and secure bioenergy and
biomanufacturing goals, and understanding of fungal
disease.

Supporting sustainable circular bioeconomy goals

Partnerships for the goals

Revitalize: the global partnership for sustainable development
Enhance regional and international cooperation on and
aceess to sciente, lechnology and innavation

Produce enough food for the world

Good health and well-being
Produce healthy food

Sustainable management of all forest types
Prormote fair and equitable sharing af the
benefits arising from the wtilization

of genatic resources

Climate action

Promote mechanisms for raising
capacity for effective climate
change-related planning and managemeant

Responsible consumption
and production
Produce sustainable
Recycle and reuse in a circular economy

Clean water and sanitation

Reduce water consumplion
in industrial processes.
Improve water and sandation management

Adeguate, safe and affordable housing
Waste management / increase resource efficiency

Increase the share of renewable
energy in the global energy mix

Industry, innovation, infrastructure

Support domestic technology development
Significantly increase access to information (Open Science)

Meyer et al. (2020).
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FUTURE DIRECTIONS

- Additional sequence, chromatin structure, and unsupervised

prediction strategies

* ldentify modification features that drive prediction

« Experimentally validate predicted modifications that regulate

gene expression

* Develop modular epigenome editing tool for testing across

fungi

EPIGENETIC MODIFICATION TO PREDICT
RNA EXPRESSION

Uses peri-gene (TSS +/- n bp) histone
modifications and DNA methylation data to
predict or regress against RNA expression.

DNA SEQUENCE TO PREDICT
EPIGENETIC MODIFICATIONS

Uses native DNA sequence to predict or regress
against epigenetic modification binding.

UNSUPERVISED LEARNING OF EPIGENETIC
MODIFICATIONS AND/OR DNA SEQUENCE
Learn patterns in the epigenetic modification or
DNA sequence data without expression
information.

APPROACH 1

PLSR DeepDiffC

Neural
Networks frome

Enformer CisRegModels

Random
k-means

clusterin

APPROACH 3

APPROACH

Diverse cells and lissues

Nakamura et al. (2021). Nat Cell Bio.
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“

Gena ::ircb__;

Transposons

CRISPR waly

Lab evolution

Optimized strains growing
wild strains on waste

Jo et al. (2023). Materials Today Bio.

Undomesticated,
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DATA PRE-PROCESSING PIPELINES
Top level RNA-seq Top level ChlP-seq
genome SRA genome SRA
] !
fastq fastq
} |
QC QC
fastQC fastQC
} }
Trim Trim
rt‘rlmmomatl trimmomati
C C
v l v l
Index Alignment Index Alignment
STAR | STAR bowtie2 | bowtie2
} }
Read count Sort
HTSeq samtools
| }
RNA-Seq Chip-seq
data data
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DATA PREPARATION

Indexed Chip-seq
genome data
Coverage
bedtools
l -2.5‘\K " TSS +2 5K
v | I
Define coverage Expression in | 1 100bp .
window (+/- window ! I bins Signal Profile -
ISS
) | Genes
oY v ;
Shallow Deep Learning:
Learning: Expression
Expression signal profiles

___averagegene | | _pergene
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MINED EPIGENETIC DATA

Fgram matchup table

GEO
Run genotype Accession Antibody
GSM1226
1SRR999608 WT 424 Active Motif 39155 H3K27me3
GSM1226
4SRR999611 WT 427 abcam ab 9050 H3K36me3
GSM1226
6SRR999613 WT 429 Millipore 07-030 H3K4me2
GSM1226
10SRR999617 WT 433 abcam ab 8580 H3K4me3
N crassa matchup table
Run Assay Type genotype chip_antibody
9SRR12229305 ChlP-Seq WT H3K27ac
10SRR12229306 ChIP-Seq WT H3K4mel
11SRR12229307 ChIP-Seq WT H3K4me2
12 SRR12229308 ChlP-Seq WT H3K4me3
13 SRR12229309 ChIP-Seq WT H3K36me3
14SRR12229310 ChIP-Seq WT H3K9me3
18 SRR12229314 ChIP-Seq WT H3K27me2/3

17



HISTONE MODIFICATION FUNCTIONS

Histone/Position/Modification Location Effect Enzyme
H3K4me2 Gene activation Setl, TSLIEJI'H];S]?S];’;‘B]S TYDS’
H3K4me3 5"End of transcriptionally active genes Gene activation Setl, MLL, Set7/9, SMYDS,

JARID1A
GYa; Suv9l, StB1, PRD14,
H3K9me Euchromatin Gene silencing CLLS, GLF, 5uv39hl,
Suv39h2
(GYa; Suv9l, StB1, PRD14,
H3K9me?2 Euchromatin Gene silencing CLLS, GLP, Suv39h1,
Suv39h2, IMJD2A
H3K9me3 Promoters and I*lmeterncllmrﬂmatin, Gene Gene sih?nciﬁg mgii;‘étstgilggﬁu
coding region Gene activation Suvaoh2, MJD2A
H3K27mel Heterochromatin Gene activation
H3K27me2/3 i Gene silencing EZH2
homeotic genes
H3K36me Promoter Not well characterized JTHDMI1A
H3K36me2 Near double strand breaks, for repair Gene silencing NSD1, IMJD2A, JHDM1A
H3K36me3 3" End of active genes. Marks exons. Gene activation IMJD2ZA
H3K79me2 Gene activation DotlL
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DATA VIZ TO CONFIRM EXPRESSION PATTERNS

deepTools to create a correlation clustergram ChromHMM to observe combinatorial correlations
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SHALLOW MODEL RESULTS: MODEL BATTERY SCREENING

Tree-based models outperform other shallow learning models on intra-species
prediction using N. crassa data.

_— o~

/ Decision Tree Regressor
D.El< Random Forest Regressqr
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K-Nearest Neighbors Regressor
1 0.7 1 XGBoost Regressor

MLP Regressor

T Gradient Boosting Regressor
0.6 - Support Vector Regressor
Linear Regressor

Dummy Regressor

roc_auc score

regression
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mean_absolute error
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SHALLOW MODEL RESULTS: PRECISION
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