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BACKGROUND: FUNGI IN BIOMANUFACTURING
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Meyer et al. (2020).

Improving biomanufacturing outcomes
• ​Engineered fungi are promising chassis for future 

sustainable biomanufacturing and bioproduction.

• Yeast alone (Nicholas Money, 2018): 

§ 5% of USA’s GDP (>$900B)

§ 3% of USA’s workforce (>5M)

• Reliable regulation of the functionality in diverse fungi at 
scale remains a significant challenge to 
commercialization. 



BACKGROUND: REGULATING BIOPRODUCTION
• Biomanufacturing requires dynamic, fine-tuned multicellular control

• Getting the exact desired properties of fungal chassis is challenging, and it is uneconomical to seek new 
chassis to overcome every limitation.

• Precise modulation of chassis attributes will support efficient biomanufacturing 

• Epigenetic modifications play a crucial role in regulating gene expression and provide finer-resolution control 
of expression than genetic modifications
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A systems problem needing a 
systems-level solution
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In reality, you need more than on and off switches

Jaenisch & Bird. (2003). Nat Gen. 



• Fungal biomanufacturing requires: the right genes, available metabolic flux, controlled regulatory cross-talk:
§ Must find the right ‘knobs and levers’ of broad gene regulation for process optimization 
§ Use of predictive models to assess process controllability, supplement with targeted experimentation
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DEFINING THE PROBLEM FOR MODEL DEVELOPMENT
Can machine learning be used to determine relationships between epigenomics 
and gene expression in fungi?

EPIGENETIC MODIFICATION TO 
PREDICT RNA EXPRESSION
Uses peri-gene (TSS +/- n bp) histone 
modifications and DNA methylation data to predict 
or regress against RNA expression. 
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APPROACH 
3 

APPROACH 
2

APPROACH 
1

DNA SEQUENCE TO PREDICT 
EPIGENETIC MODIFICATIONS
Uses native DNA sequence to predict or regress 
against epigenetic modification binding. 

2
UNSUPERVISED LEARNING OF EPIGENETIC 
MODIFICATIONS AND/OR DNA SEQUENCE
Learn patterns in the epigenetic modification or 
DNA sequence data without expression 
information.

3

PLSR
Neural 
Networks

DeepDiffC
hrome

CisRegModelsEnformer

SCI-DNNk-means 
clustering

Random 
forest



5

PREVIOUS EFFORTS USING MACHINE LEARNING TO 
UNDERSTAND GENE REGULATION

Convolution and attention are powerful tools to combine for extracting features from 
sequence and epigenetic signal information

Singh et al. (2016) Bioinformatics.
Avsec et al. (2021). Nat Methods.

DeepChrome: binary classification of gene expression 
using binned histone modification expression profiles

Enformer: sequence-to-sequence prediction using 
convolutional and transformer layers



Convolutional layers
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OVERVIEW OF KEY MACHINE LEARNING LAYERS

Convolution finds array of features, attention finds key features 

Attention layers



MODEL TRAINING AND EVALUATION STRATEGY

• Training and testing data  epigenetic modification data

• Predicted values  RNA expression
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• Species selected based on phylogenetic distance and overlapping epigenetic modification data 
availability 
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SHALLOW MODEL RESULTS: CROSS-SPECIES EVALUATION
Candidate tree-based models do not maintain performance in cross-species 
prediction.

Eval Model
     Leptosphaeria maculans
     Neurospora crassa
     Fusarium graminearum



• Based on previous models for similar purposes in other species
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DEEP LEARNING MODEL ARCHITECTURE
Custom model with Convolution with MaxPooling, Attention, and Fully Connected 
layers uses epigenetic signal profile to predict 2-class gene expression
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DEEP LEARNING MODEL RESULTS
Custom CNN with Attention model outperforms benchmark models on cross-species 
prediction performance. 

Model = Modified model from Lee et al. Model = Modified model from Lee et al. 

Leptosphaeria maculans
Neurospora crassa
Fusarium graminearum



CONCLUSIONS

• Shallow models have limited ability to predict intra-
species gene expression based on average epigenetic 
modification expression signals.

• Custom CNN + Attention model predicts intra- and 
cross-species gene expression based on epigenetic 
modifications signal profiles.

• We can use conservation of epigenetic mechanisms 
across related species to predict functional outcomes

• Limitations in predictive capacity may be due to 
underlying biological constraints or limited data 
availability. 

• Highly modular gene expression enabled by predictive 
ML modeling of regulatory epigenetic modification rules 
is possible 

• Support sustainable and secure bioenergy and 
biomanufacturing goals, and understanding of fungal 
disease.

11

Supporting sustainable circular bioeconomy goals

Meyer et al. (2020).



FUTURE DIRECTIONS

12

• Additional sequence, chromatin structure, and unsupervised 
prediction strategies

• Identify modification features that drive prediction

• Experimentally validate predicted modifications that regulate 
gene expression

• Develop modular epigenome editing tool for testing across 
fungi

EPIGENETIC MODIFICATION TO PREDICT 
RNA EXPRESSION
Uses peri-gene (TSS +/- n bp) histone 
modifications and DNA methylation data to 
predict or regress against RNA expression. 

1

APPROACH 3 APPROACH 
2

APPROACH 1

DNA SEQUENCE TO PREDICT 
EPIGENETIC MODIFICATIONS
Uses native DNA sequence to predict or regress 
against epigenetic modification binding. 

2

UNSUPERVISED LEARNING OF EPIGENETIC 
MODIFICATIONS AND/OR DNA SEQUENCE
Learn patterns in the epigenetic modification or 
DNA sequence data without expression 
information.

3
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Jo et al. (2023). Materials Today Bio.

Nakamura et al. (2021). Nat Cell Bio.



ACKNOWLEDGMENTS

• PI: Raga Krishnakumar

• Cameron Kundstadt

• Jenna Schambach 

• Anna Fisher

• Matthew Hirakawa 

• Elizabeth Koning

• Ethan Lee 

• Wittney Mays

• Warren Davis

• Yooli Light

• Joshua Podlevsky 

13



BACKUP
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DATA PRE-PROCESSING PIPELINES
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DATA PREPARATION
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MINED EPIGENETIC DATA

Fgram matchup table 

Run genotype
GEO 
Accession Antibody

1 SRR999608 WT
GSM1226
424 Active Motif 39155 H3K27me3

4 SRR999611 WT
GSM1226
427 abcam ab 9050 H3K36me3

6 SRR999613 WT
GSM1226
429 Millipore 07-030 H3K4me2

10 SRR999617 WT
GSM1226
433 abcam ab 8580 H3K4me3

N crassa matchup table

Run Assay Type genotype chip_antibody
9 SRR12229305 ChIP-Seq WT H3K27ac

10 SRR12229306 ChIP-Seq WT H3K4me1
11 SRR12229307 ChIP-Seq WT H3K4me2
12 SRR12229308 ChIP-Seq WT H3K4me3
13 SRR12229309 ChIP-Seq WT H3K36me3
14 SRR12229310 ChIP-Seq WT H3K9me3
18 SRR12229314 ChIP-Seq WT H3K27me2/3
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HISTONE MODIFICATION FUNCTIONS
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DATA VIZ TO CONFIRM EXPRESSION PATTERNS
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H3K4me1/2 (gene activation)

RNA sequencing (‘outcome’)

H3K4me3 (gene activation)

ATAC-seq (gene activation)

H3K27ac (gene activation)

hH3 (light-sensitive intro)

H3K27ac (gene activation)

H3K27me2/3 (gene silencing)

H3K9me3 (gene silencing)

ChromHMM to observe combinatorial correlationsdeepTools to create a correlation clustergram
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SHALLOW MODEL RESULTS: MODEL BATTERY SCREENING
Tree-based models outperform other shallow learning models on intra-species 
prediction using N. crassa data.

Decision Tree Regressor
Random Forest Regressor 

K-Nearest Neighbors Regressor 
XGBoost Regressor
MLP Regressor
Gradient Boosting Regressor 
Support Vector Regressor
Linear Regressor
Dummy Regressor



SHALLOW MODEL RESULTS: PRECISION
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Leptosphaeria maculans
Neurospora crassa
Fusarium graminearum


