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MOTIVATION AND BACKGROUND

• Current lack of 
multi-agent 
frameworks for 
finding agile tactical 
solutions in 
defense problems.

• Multi-Agent 
Reinforcement 
Learning (MARL) 
may be a powerful 
solution but it is 
difficult to train.

• We create a novel 
architecture for 
improving MARL.

• We characterize 
attributes of 
suboptimal MARL 
convergence.
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3D PARTICLE INTERCEPTION ENVIRONMENT

Predators hunting a solitary prey 
moving towards its herd

• Predators are trained to catch prey 
before it reaches the herd.

• Predators can accelerate in any 
direction, instantaneously.

• Prey moves in a straight line towards 
herd.

• One or more predators spawn 
randomly within 2 concentric rings 
around herd.

• If predators collide, there is no 
penalty but predators are removed.
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MULTI-AGENT REINFORCEMENT LEARNING
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SHARED DEEP NEURAL NETWORK 

- Trained using proximal policy 
optimization (PPO) algorithm
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CUSTOM ARCHITECTURE
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ROUTING 
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PERFORMANCE INCREASE
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• Significant performance 
improvement

• Each predator is controlled with 
exact neural network copy

• Decentralized control without 
need for communication

1 Predator 2 Predators

3 Predators
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PERFORMANCE ANALYSIS

§ Complicated Reward Space: 

Collision with Predators

§ Larger Observation and Action Spaces:

Curse of Dimensionality

§ Time-Varying, Correlated Observations:

§ Predator Correlation: Time-varying

§ Prey Correlation: Time-Invariant

§ Uniform Uncorrelated

Predator

Noise 
Range

Prey
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Time-Varying, Correlated Observations
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ADDING NOISE TO OBSERVATIONS
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COLLISIONS
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COLLISIONS
No Collisions

Collisions
§ Complicated Reward Space: 

Collision with Predators

§ Larger Observation and Action 
Spaces:

Curse of Dimensionality

§ Time-Varying, Correlated

§ Predator Correlation: Time-varying

§ Prey Correlation: Time-Invariant

§ Uniform Uncorrelated
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CURSE OF DIMENSIONALITY

0 Fake Predators
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CURSE OF DIMENSIONALITY

0 Fake Predators

1 Fake Predators

2 Fake Predators

§ Complicated Reward Space: 

Collision with Predators

§ Larger Observation and Action 
Spaces:

Curse of Dimensionality

§ Time-Varying, Correlated 
Observations:

§ Predator Correlation: Time-varying

§ Prey Correlation: Time-Invariant

§ Uniform Uncorrelated
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NOISE CORRELATION

Uncorrelated

Corr. Time-Variant

Corr. Time-Invariant
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NOISE CORRELATION

§ Complicated Reward Space: 

Collision with Predators

§ Larger Observation and Action 
Spaces:

Curse of Dimensionality

§ Time-Varying, Correlated 
Observations:

§ Predator Correlation: Time-varying

§ Prey Correlation: Time-Invariant

§ Uniform Uncorrelated

Uncorrelated

Corr. Time-Variant

Corr. Time-Invariant
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SUMMARY

• Increasing the 
number of 
predators leads to 
decreasing 
performance, 
demonstrating the 
curse of 
dimensionality.

• We showed 
performance 
decreases due to 
uncorrelated noise 
rather than 
predator or prey 
correlated noise.

• 40% increase over 
baseline with our 
custom MARL 
architecture in 
most difficult 
scenario.



FUTURE WORK

• Minimize effects of observation noise:
§ Modeling noise explicitly via a model or 

implicitly with Recurrent Neural Networks.
§ Use regularization, which shrinks 

parameters towards 0, to help reduce noise 
impact. 

• Explore other RL algorithms with our 
architecture and their impact on learning 
speed.
§ Our method allows us to use single-agent 

algorithms to solve multi-agent problems.
• Increase the scenario difficulty with prey that 

can learn and evade.
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THANK YOU!
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