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MOTIVATION AND BACKGROUND

* \We create a novel

 Current lack of

* Multi-Agent

multi-agent
frameworks for
finding agile tactical

solutions in
defense problems.

Reinforcement
Learning (MARL)
may be a powerful
solution but it is
difficult to train.

architecture for
Improving MARL.

We characterize
attributes of

suboptimal MARL
convergence.




3D PARTICLE INTERCEPTION ENVIRONMEN T

Predators hunting a solitary prey
moving towards its herd

* Predators are trained to catch prey
before it reaches the herd.

* Predators can accelerate in any
direction, instantaneously.

 Prey moves in a straight line towards
herd.

* One or more predators spawn
randomly within 2 concentric rings
around herd.

« |If predators collide, there is no
penalty but predators are removed.



MULTI-AGENT REINFORCEMENT LEARNING
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SHARED DEEP NEURAL NETWORK
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CUSTOM ARCHITECTURE
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ROUTING
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PERFORMANCE INCREASE

Episode Return
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Significant performance
improvement

Each predator is controlled with
exact neural network copy
Decentralized control without
need for communication



PERFORMANCE ANALYSIS

= Complicated Reward Space:

Collision with Predators

= Larger Observation and Action Spaces:

Curse of Dimensionality

= Time-Varying, Correlated Observations:

= Predator Correlation: Time-varying
= Prey Correlation: Time-Invariant

= Uniform Uncorrelated

Time-Invariant Correlated

Predator

Prey{




Time-Varying, Correlated Observations
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ADDING NOISE TO OBSERVATIONS
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COLLISIONS
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COLLISIONS
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CURSE OF DIMENSIONALITY
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CURSE OF DIMENSIONALITY

0 Fake Predators

B ompplicatod Boward soaces 1.00 -
Collisionwith-Predators 0.75 1 y‘
= Larger Observation and Action _ 1 Fake Predators
Spaces: 2 025-
&
Curse of Dimensionality g 0.00°
_ _ 8 —0.25 -
=" Time-Varying, Correlated =
Observations: —0.50~
2 Fake Predators
. . | ~0.75 -
= Predator Correlation: Time-varying
~1.00 -
" Prey Correlation: Time-Invariant 0 100 200 300 400 500

. 1073 Steps
® Uniform Uncorrelated

15



NOISE CORRELATION
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NOISE CORRELATION
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SUMMARY

 40% increase over
baseline with our
custom MARL
architecture in
most difficult
scenario.

* Increasing the
number of
predators leads to
decreasing
performance,

demonstrating the
curse of
dimensionality.

 \We showed

performance
decreases due to
uncorrelated noise
rather than
predator or prey
correlated noise.




FUTURE WORK

 Minimize effects of observation noise:

= Modeling noise explicitly via a model or
implicitly with Recurrent Neural Networks.

= Use regularization, which shrinks
parameters towards 0, to help reduce noise
impact.

* Explore other RL algorithms with our
architecture and their impact on learning
speed.

= Our method allows us to use single-agent
algorithms to solve multi-agent problems.

* Increase the scenario difficulty with prey that
can learn and evade.
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