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The basics of distributed acoustic sensing (DAS)
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Distributed acoustic sensing
(DAS) uses backscatter to
measure strain-rate

Strain responds to
seismioacoustic wavefields,
pressure perturbations from
surface waves

Temporally: continuous at
often up to 1 kHz

Spatially: channel spacing of
2-10 M is common



Geophysics applications of DAS

Research Coordination Network working groups:
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DAS on seafloor telecommunication cables

Bouffaut et al., 2022

Perturbations from acoustic waves displace
defects in the fiber, delaying the backscattered
pulse. This time delay is converted into
spatialized strain by the interrogator.

station (interrogator)

Distributed acoustic
sensing channels

-
Laser pulse
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DAS on seafloor telecommunication cables: global potential

Map: TeleGeography



Seafloor cable DAS data from California first suggested that ocean

surface wave signals are observable
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Can we make quantitative wave estimates from DAS using empirical

calibration ?

1) Oliktok Point, Alaska
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2) Duck, North Carolina (FRF)
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Can we make quantitative wave estimates from DAS using empirical

calibration ?

2) Duck, North Carolina (FRF)
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Can we make quantitative wave estimates from DAS using empirical

calibration ?

1) Oliktok Point, Alaska
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Surface waves are derived from strain using empirical calibration

channel 7960, time 20220817_180009
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Surface waves are derived from strain using empirical calibration

Example spectral result
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Surface waves are derived from strain using empirical calibration
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Small gradients can allow 1 point to be used for calibration
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Calibration stabilizes around 2 weeks

2) Duck, North Carolina (FRF)
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Wave spectral shape and bulk parameters compare well

Wave statistics comparisons, channel 1696
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Wave spectral shape and bulk parameters compare well

Wave statistics comparisons, channel 1696
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Comparison of empirical transfer function
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Applications: Wave-ice attenuation causes large spatial

graaients
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Applications: Wave-ice attenuation increases with

frequency
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Applications: Wave-ice attenuation increases with

frequency

November 11, 2021 17:00

Higher resolution estimates of wave 7 ,
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Applications: Spatio-temporal attenuation reveals
evolution of ice
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Applications: High-resolution wave observations reveal bathymetry

and variation in wave reflection

17 November 20:00 UTC
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Applications: Wave dispersion may be used to infer ocean

currents and flow

Measuring current velocity along the cable direction Measuring flow with two parallel cables

using Doppler effects
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Summary

* We can reliably estimate wave parameters (H;
T,) from DAS to leading order over a wide range
of dynamic conditions using a simple empirical
transfer function approach

* Unknown impacts of cable characteristics, burial
depth, and bed coupling are likely important and
limit ability to apply analytical transfer functions

Seafloor DAS is a promising method for mapping
coastal processes of spatially-varying regions

* Wave attenuation (seaice, etc.)

* Wave reflection

* Bathymetry

Image: Ray £l Mn_& (south Beach, MV)
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