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Accelerating Scientific Discovery and Predict 
Physics Without Full-Scale Computation

Large Language Models (LLMs) understand and generate text/videos. Can we build similar 
models for simulating physics?

Could you simulate 
porous material being 
hit at high speed?
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Great! Provide 
pressure and density 
fields, please?
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Predicting Temporal Evolution through Physics 
Simulations is Computationally Expensive

Goal: 
Develop an ML model 
that learns spatio-
temporal fields 
evolution from 
simulation data, 
reducing computational 
cost.

Challenge: 
• High-fidelity simulations 

require expensive iterative 
solvers.

• Model reduction techniques 
often lose key dynamics.

We can train LLMs to run physics simulations. Physics simulations are expensive, can we 
accelerate the process training LLMs using ML models? 

C. F. Jekel

M. Shachar
M. G. Fernández-Godino

C. F. Jekel
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The Problem of Interest is a Highly Porous 
Material under Extreme Loading

Porous materials exhibit complex shock responses:

• Anomalous responses where higher pressure 

behind the shock front leads to lower density.

• Significantly reduced shock wave speeds compared 

to fully dense materials, varying smoothly with 

porosity.

Controlling porosity distributions can achieve variable 

shock speeds, allowing for precise wave shape control, 

management of interfacial instabilities and energy 

(Jones et al., 2018; Huy Pham et al., 2023).

Goal: Simulations are expensive. Develop a neural network-based ML model that learns spatio-
temporal evolution from simulation data, reducing computational cost.

Trunin et al., 2001
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Hydrocode: Marbl

Number of time-steps per 
simulations: 61 (~12𝝁s)

Number of fields:7

Spatial resolution: 60x60

Studied variables:
0.2 cm < target_w < 1.0 cm
0.05 cm < porous_h < 3.8 cm
0.05 < Al_porosity < 0.75

Number of simulations:1000
Sampling technique = Latin 
Hypercube Sampling
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Training ML models for full field temporal simulation predictions require lots of data. Marbl 
hydrocode was used for this purpose and the geometry specifications are shown above.

Many Hydrodynamic Simulations Were Ran to 
Obtain Enough Data for ML Training

V=2 ∙ 105
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Hydrocode: Marbl

Number of time-steps per 
simulations: 61 (~12𝝁s)

Number of fields:7

Spatial resolution: 60x60

Studied variables:
0.2 cm < target_w < 1.0 cm
0.05 cm < porous_h < 3.8 cm
0.05 < Al_porosity < 0.75

Number of simulations:1000
Sampling technique = Latin 
Hypercube Sampling

Training ML models for full field temporal simulation predictions require lots of data. Marbl 
hydrocode was used for this purpose and the geometry specifications are shown above.

Many Hydrodynamic Simulations Were Ran to 
Obtain Enough Data for ML Training
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DensityMaterials Pressure Temperature Energy Velocity x Velocity y

Model Inputs: 7-field, 5-time steps

Model Outputs: 7-field,  next time step

All field values normalized between 0 and 1

The ML Model (7STM) Predicts the Shocked 
Plate Evolution Considering Seven Fields 

7STM receives information of previous steps and is able to predict the following time step for 
fields Materials, Density, Pressure, Temperature, Energy, Velocity x, and Velocity y.



13
LLNL-CONF-2002671

7STM Output Prediction
61 Time Steps

*Demonstrated with one representative field (out of 7) for simplicity

7STM Receives Five Time Steps and Return 
the Next Frame.

7STM receives fields of previous steps and predict the following time step auto-regressively. The 
predicted time step is now fed into the input set for the next prediction.
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Temporal Autoencoder is the Architecture 
Used to Predict the 2D Evolution of 7 Fields

5-time steps

[t, x, y, z] 
[5, 7, 60, 60]

[t, x, y, z] 
[1, 7, 60, 60]

Encoder

CNN
Max-Pooling

LSTM

MSE Loss 
Function

x7 fields

Inputs Outputs

7-field Spatio-Temporal Model (7STM) 

7STM predicts the next time step using a temporal autoencoder with CNN and LSTM, capturing 
spatio-temporal evolution across seven fields.

1-time step 

x7 fields

5-time steps 



QUALITATIVE 
PERFORMANCE

*Field values normalized between zero and one. 
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Qualitative Performance: Density

Ground 
Truth

7STM
Pred.

Diff.

*Field values normalized between zero and one. 

First row is the test sequence (unseen during training), called ground truth (GT); the second row 
is the 7STM prediction, and the third shows the difference between GT and 7STM predictions.
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Qualitative Performance: Energy

Ground 
Truth

7STM
Pred.

Diff.

First row is the test sequence (unseen during training), called ground truth (GT); the second row 
is the 7STM prediction, and the third shows the difference between GT and 7STM predictions.

*Field values normalized between zero and one. 
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Qualitative Performance: Temperature

Ground 
Truth

7STM
Pred.

Diff.

First row is the test sequence (unseen during training), called ground truth (GT); the second row 
is the 7STM prediction, and the third shows the difference between GT and 7STM predictions.

*Field values normalized between zero and one. 
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Qualitative Performance: Materials

Ground 
Truth

7STM
Pred.

Diff.

First row is the test sequence (unseen during training), called ground truth (GT); the second row 
is the 7STM prediction, and the third shows the difference between GT and 7STM predictions.

*Field values normalized between zero and one. 
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Qualitative Performance: Velocity_x

Ground 
Truth

7STM
Pred.

Diff.

First row is the test sequence (unseen during training), called ground truth (GT); the second row 
is the 7STM prediction, and the third shows the difference between GT and 7STM predictions.

*Field values normalized between zero and one. 
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Qualitative Performance: Velocity_y

Ground 
Truth

7STM
Pred.

Diff.

First row is the test sequence (unseen during training), called ground truth (GT); the second row 
is the 7STM prediction, and the third shows the difference between GT and 7STM predictions.

*Field values normalized between zero and one. 
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Qualitative Performance: Pressure

Ground 
Truth

7STM
Pred.

Diff.

First row is the test sequence (unseen during training), called ground truth (GT); the second row 
is the 7STM prediction, and the third shows the difference between GT and 7STM predictions.

*Field values normalized between zero and one. 
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• Trained for 1000 
epochs

• Error stabilizes after 
1000 epochs

• Smooth error reduction 
observed in both 
training and validation 
datasets

• Validation loss function 
(MSE) reaches 6e-5.

• In relative terms MSE 
represents a 0.005% 
validation error.

This slide presents the quantitative performance of 7STM over the course of training, focusing 
on loss convergence.

7STM’s Quantitative Performance on Training 
and Validation Data as a Function of Epoch
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Mass = 0.1

Absolute/Pointwise Error

Absolute/Pointwise Error

Structural/Perceptual Error

Structural/Perceptual Error

Description of the Metrics Used to Assess 
7STM’s Quantitative Performance

MSE and Conservation of Mass assess prediction magnitude accuracy, while SSIM and IoU 
evaluate perceptual and structural differences.
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• The solid line 
represents the mean 
performance across 91 
test simulations.

• The shaded region 
denotes ±1 standard 
deviation from the 
mean.

• The dashed line 
indicates the maximum 
error within the trained 
range.

The model demonstrates exceptional performance, with errors consistently below 1% throughout 
the simulated/trained time.

7STM’s Performance on 91 Test Data 
Sequences as a Function of Time Step

1%

99.8%

1%

99.2%
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Metric Mean Error Standard Deviation

MSE 2e-4 2e-4

Conservation of Mass 4e-3 3e-3

IoU 0.9996 0.0005

SSIM 0.998 0.002

• The table values represent the field- and time-averaged metrics across 91 test simulations.

• Mean values highlight the overall model's consistent high accuracy throughout the simulations.

• Standard deviations remain relatively small, indicating low variability in performance across 
different test cases.

*Arrows indicate 
whether a higher or 
lower value is 
better for each 
metric.

MSE and Conservation of Mass assess prediction magnitude accuracy, while SSIM and IoU 
evaluate perceptual and structural differences.

7STM’s Averaged Performance on 91 Test Data 
Sequences

1.4%

0.4%

99.96%

99.8%

Although datasets differ making direct comparison challenging, prior ML-based fluid 
simulations report RMSE errors over 10% (Fernández-Godino, 2023; Negiar et al., 2023; 
Chalapathi et al., 2024; Saad et al., 2024), while our model’s error is ten times lower.

RMSE



CONCLUSION



29
LLNL-CONF-2002671

Conclusion

• Porous materials exhibit unique shock responses, and optimizing porosity 
distributions allows for precise shock wave control.

• The 7-field Spatio-Temporal Model (7STM) achieves fast full simulation 
predictions in 7 seconds, reducing computational cost two orders of magnitude 
compared to simulations.

• The 7STM is lightweight and can be run on personal computers.

• The model delivers highly accurate predictions, with absolute errors below 1% 
and perceptual accuracy above 0.99, maintaining this performance even at late 
simulation times.

• The fast shape optimization enabled by 7STM allows for a more comprehensive 
exploration and exploitation of optimal porosity configurations, advancing the 
study of shock compression in porous media.

7STM's speed, accuracy, and portability enable rapid and comprehensive optimization, 
unlocking new opportunities for discovering enhanced optimal porosity configurations.
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Work in Progress

• Integrate adjoint information into the 7STM to enhance gradient-based 
optimization and improve accuracy in predicting optimal porosity distributions.

• Apply 7STM to real-world experiments for validation and further refinement of 
the predictive framework.

• Integrate 7STM into an LLM-driven agentic framework to create an interactive, 
conversational interface between users and predictive science.

Our team is advancing exascale optimization by leveraging deep learning and LLMs to expand 
access to predictive science, accelerate workflows, and enhance design optimization.
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7STM Architecture
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