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MOTIVATION



Accelerating Scientific Discovery and Predict
Physics Without Full-Scale Computation

Could you simulate
porous material being
hit at high speed?

E

Great! Provide
pressure and density
fields, please?

MISSING
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E

Large Language Models (LLMs) understand and generate text/videos. Can we build similar
models for simulating physics?



Predicting Temporal Evolution through Physics
Simulations is Computationally Expensive

Challenge: 0 "R
* High-fidelity simulations 200 o
require expensive iterative K
solvers.
* Model reduction techniques 6°° :
often lose key dynamics. 800 ,
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Goal:

Develop an ML model
that learns spatio-
temporal fields
evolution from
simulation data,
reducing computational
cost.
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We can train LLMs to run physics simulations. Physics simulations are expensive, can we
accelerate the process training LLMs using ML models?




SIMULATION DATA



The Problem of Interest is a Highly Porous
~Material under Extreme Loading

Porous materials exhibit complex shock responses:
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* Significantly reduced shock wave speeds compared
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to fully dense materials, varying smoothly with
porosity.

Controlling porosity distributions can achieve variable
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shock speeds, allowing for precise wave shape control, .
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management of interfacial instabilities and energy

Trunin et al., 2001
(Jones et al., 2018; Huy Pham et al., 2023).

Goal: Simulations are expensive. Develop a neural network-based ML model that learns spatio-
temporal evolution from simulation data, reducing computational cost.



Many Hydrodynamic Simulations Were Ran to
Obtain Enough Data for ML Training

No Flux Hydrocode: Marbl

Air Units: g, cm, s Number of time-steps per

simulations: 61 (~12us)
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Training ML models for full field temporal simulation predictions require lots of data. Marbl
hydrocode was used for this purpose and the geometry specifications are shown above.



Many Hydrodynamic Simulations Were Ran to
Obtain Enough Data for ML Training

Hydrocode: Marbl

Number of time-steps per
simulations: 61 (~12us)

Number of fields:7
Spatial resolution: 60x60

Studied variables:
0.2cm<target w<1.0cm
0.05 cm < porous _h <3.8cm
0.05 < Al porosity < 0.75

Number of simulations:1000
Sampling technique = Latin
Hypercube Sampling

Training ML models for full field temporal simulation predictions require lots of data. Marbl
hydrocode was used for this purpose and the geometry specifications are shown above.



MACHINE LEARNING MODEL



The ML Model (7STM) Predicts the Shocked
_Plate Evolution Considering Seven Fields

{ Model Inputs: 7-field, 5-time steps J

/I\/Iaterials Density Pressure Temperature Energy Velocity x Velocity y \

b1l 1]

{ Model Outputs: 7-field, next time step }

All field values normalized between 0 and 1

75TM receives information of previous steps and is able to predict the following time step for
fields Materials, Density, Pressure, Temperature, Energy, Velocity x, and Velocity .



7STM Receives Five Time Steps and Return
the Next Frame.

[t1:t5]:
|
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7STM Output Prediction
61 Time Steps

75TM Input

e LR Ground Truth

75TM receives fields of previous steps and predict the following time step auto-regressively. The
predicted time step is now fed into the input set for the next prediction.



Temporal Autoencoder is the Architecture
Used to Predict the 2D Evolution of 7 Fields

/ 7-field Spatio-Temporal Model (7STM) \

x7 fields

\_ Ii/

7STM predicts the next time step using a temporal autoencoder with CNN and LSTM, capturing
spatio-temporal evolution across seven fields.

MSE Loss

Function
. -

LSTM




QUALITATIVE
PERFORMANCE



Qualitative Performance: Density

*Field values normalized between zero and one.
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First row is the test sequence (unseen during training), called ground truth (GT); the second row
is the 7STM prediction, and the third shows the difference between GT and 7STM predictions.



Qualitative Performance: Energy

*Field values normalized between zero and one.
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First row is the test sequence (unseen during training), called ground truth (GT); the second row
is the 7STM prediction, and the third shows the difference between GT and 7STM predictions.



Qualitative Performance: Temperature

*Field values normalized between zero and one.
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First row is the test sequence (unseen during training), called ground truth (GT); the second row
is the 7STM prediction, and the third shows the difference between GT and 7STM predictions.



Qualitative Performance: Materials

*Field values normalized between zero and one.
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First row is the test sequence (unseen during training), called ground truth (GT); the second row
is the 7STM prediction, and the third shows the difference between GT and 7STM predictions.



Qualitative Performance: Velocity x

*Field values normalized between zero and one.
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First row is the test sequence (unseen during training), called ground truth (GT); the second row
is the 7STM prediction, and the third shows the difference between GT and 7STM predictions.



Qualitative Performance: Velocity y

*Field values normalized between zero and one.
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First row is the test sequence (unseen during training), called ground truth (GT); the second row
is the 7STM prediction, and the third shows the difference between GT and 7STM predictions.



Qualitative Performance: Pressure

*Field values normalized between zero and one.
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First row is the test sequence (unseen during training), called ground truth (GT); the second row
is the 7STM prediction, and the third shows the difference between GT and 7STM predictions.



QUANTITATIVE
PERFORMANCE



7STM’s Quantitative Performance on Training
and Validation Data as a Function of Epoch

e Trained for 1000
epochs

= Training Loss
e Error stabilizes after 10721 Validation Loss

1000 epochs

* Smooth error reduction
observed in both
training and validation
datasets
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e Validation loss function
(MSE) reaches 6e-5.
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* |n relative terms MSE
represents a 0.005%

validation error. 0 250 500 750 1000
Epoch

This slide presents the quantitative performance of 7STM over the course of training, focusing
on loss convergence.



Description of the Metrics Used to Assess
7STM’s Quantitative Performance

Where: ~ O
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MSE and Conservation of Mass assess prediction magnitude accuracy, while SSIM and loU
evaluate perceptual and structural differences.



7STM’s Performance on 91 Test Data
~Sequences as a Function of Time Step
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The model demonstrates exceptional performance, with errors consistently below 1% throughout
the simulated/trained time.



7STM’s Averaged Performance on 91 Test Data
Sequences

* The table values represent the field- and time-averaged metrics across 91 test simulations.
* Mean values highlight the overall model's consistent high accuracy throughout the simulations.

 Standard deviations remain relatively small, indicating low variability in performance across

different test cases.
(Metric Standard Deviation

Mean Error

_ RMSE ) *Arrows indicate
MSE ! 2e-4 2 whether a higher or
Conservation of Mass l 4e-3 3e-3 lower value is
better for each
ou I 0.9996 0.0005 metric.
SSIM I 0.998 0.002

Although datasets differ making direct comparison challenging, prior ML-based fluid
simulations report RMSE errors over 10% (Fernandez-Godino, 2023; Negiar et al., 2023;
Chalapathi et al., 2024; Saad et al., 2024), while our model’s error is ten times lower.

MSE and Conservation of Mass assess prediction magnitude accuracy, while SSIM and loU
evaluate perceptual and structural differences.



CONCLUSION



Conclusion

* Porous materials exhibit unique shock responses, and optimizing porosity
distributions allows for precise shock wave control.

* The 7-field Spatio-Temporal Model (7STM) achieves fast full simulation
predictions in 7 seconds, reducing computational cost two orders of magnitude
compared to simulations.

* The 7STM is lightweight and can be run on personal computers.

* The model delivers highly accurate predictions, with absolute errors below 1%
and perceptual accuracy above 0.99, maintaining this performance even at late
simulation times.

* The fast shape optimization enabled by 7STM allows for a more comprehensive
exploration and exploitation of optimal porosity configurations, advancing the
study of shock compression in porous media.

7STM's speed, accuracy, and portability enable rapid and comprehensive optimization,
unlocking new opportunities for discovering enhanced optimal porosity configurations.



Work in Progress

* Integrate adjoint information into the 7STM to enhance gradient-based
optimization and improve accuracy in predicting optimal porosity distributions.

* Apply 7STM to real-world experiments for validation and further refinement of
the predictive framework.

* Integrate 7STM into an LLM-driven agentic framework to create an interactive,
conversational interface between users and predictive science,

Our team is advancing exascale optimization by leveraging deep learning and LLMs to expand
access to predictive science, accelerate workflows, and enhance design optimization.
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