
Machine Learning (ML) Classifier to Assist
Metadata Creation

1st Hannah Collier
Environmental Science Division
Oak Ridge National Laboratory

Oak Ridge, USA
collierhr@ornl.gov

2nd Eric Enright
Environmental Science Division
Oak Ridge National Laboratory

Oak Ridge, USA
enrightew@ornl.gov

3rd Sujata Goswami
Advanced Light Source

Lawrence Berkeley National Laboratory
Berkeley, USA

sujatagoswami@lbl.gov

4th Chirag Shah
Environmental Science Division
Oak Ridge National Laboratory

Oak Ridge, USA
shahch@ornl.gov

5th Maggie Davis
Buildings and Transportation Science Div

Oak Ridge National Laboratory
Oak Ridge, USA
davismr@ornl.gov

6th Rachael Isphording
Climate Change Research Centre;

ARC Centre of Excellence for Climate Extremes
University of New South Wales

Sydney, Australia
0000-0003-4451-6204

Abstract—The Atmospheric Radiation Measurement (ARM)
Data Center is responsible for the timely collection, archival,
and curation of science data products. These products are
freely available through an online data repository. Metadata
creation is paramount for scientific users to find and access over
seven petabytes of atmospheric science data. The hierarchical
metadata structure allows users to search for information at
both broad and narrow levels. This project aims to leverage 30
years’ worth of manually created metadata to enable machine
predictions of broad-term classifications from narrow-term
descriptions. These classification predictions would assist
metadata coordinators with their term selections. This paper
discusses the cleaning and preprocessing of the training data, the
pipeline developed to determine the best model for this task, and
the creation of an API metadata classifier for ARM measurement
metadata. Our results show that the Linear Support Vector
Classification (LinearSVC) algorithm, along with the Term
Frequency – Inverse Document Frequency (TF-IDF) vectorizer,
is well-suited for our multi-class classification task. Lengthier
input training data led to better results, and artificial balancing
was unnecessary for this particular use case. This predictive
classifier enhances efficiency in metadata creation, as well as
supports greater consistency and accuracy in metadata tagging.

Index Terms—ARM Data Center, Metadata, Supervised
Machine Learning, TF-IDF, LinearSVC

I. INTRODUCTION

A Machine Learning (ML) model is the output generated
when you train an ML algorithm with data [1]. ML rules are

This manuscript has been authored by UT-Battelle LLC, under contract
DE-AC05-00OR22725 with the US Department of Energy (DOE). The US
government retains and the publisher, by accepting the article for publication,
acknowledges that the US government retains a nonexclusive, paid-up, irre-
vocable, worldwide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for US government purposes. DOE will
provide public access to these results of federally sponsored research in ac-
cordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-
public-access-plan).

based on input data as well as the answers expected from the
data. Specifically for supervised ML, these inputs and outputs
are labeled, and therefore can be ingested by the machine.
Training a model using labeled data can help eliminate man-
ual classification work and can help with future prediction.
Supervised machine learning can be used to classify inputs
into two or more classes.

Researchers have investigated the feasibility of text multi-
class classification ML capabilities across several domains
[2], [3], [4], [5] and [6]. Many of these publications discuss
performance metrics across traditional supervised multi-class
classification algorithms, such as Random Forest, Naive Bayes,
K-Nearest Neighbors, and Support Vector Machines. In this
paper, we explore using Linear Support Vector Classification,
K-nearest Neighbors Classifier, and Multinomial Naive Bayes
classifiers to support metadata tagging and search capabilities
within a data repository.

For domain-specific data repositories, metadata tagging re-
quires domain and ontology knowledge. One such domain-
specific data repository is the Atmospheric Radiation Mea-
surement (ARM) data repository. ARM is a United States
Department of Energy Office of Science user facility, which is
operated across nine national laboratories and has collabora-
tions with many national and international partners. ARM has
been collecting continuous observations of cloud and aerosol
properties, among other atmospheric science measurements,
for over 30 years. The ARM Data Center (ADC), located at
Oak Ridge National Laboratory, works to ensure the timely
collection, processing, and delivery of data products to the
scientific community. Teams within the ADC focus on fol-
lowing the FAIR data principles by ensuring data is (f)indable,
(a)ccessible, (i)nteroperable, and (r)eusable [7]. Efforts include
providing a user-friendly experience for data searchers through
thoughtful user interfaces and clearly labeled data products.

Metadata tagging is critical to how easily a user can
sift through over seven petabytes (PB) of data, finding and

accessing the most appropriate atmospheric science data prod-
ucts within the search interface. Augmenting the human-lead
process of metadata term classification using natural language
processing (NLP), a subset of ML, can help with keyword
accuracy and consistency, as well as workflow efficiency.

II. GOALS

The goal of this project was to classify metadata terms
for atmospheric science datasets using ML. In this paper, we
discuss the process of reviewing and cleaning the training
dataset, along with its challenges and necessity. Further, we
present the pipeline that we implemented to test various
algorithms for text classification.

In Section 3, we describe ARM metadata, workflows, and
terminologies. In Section 4, we explain the data preprocessing
steps, and in Section 5 we present the three models tested and
the pipeline created to test the various models. Each algorithm
was tested with two separate training datasets and with and
without artificial data balancing. We then discuss the results
in Section 6, followed by discussions.

III. ARM METADATA WORKFLOW AND STRUCTURE

Metadata, or “data about data”, plays an important role
in how data products can be found within a data repository.
Users can search for ARM data through the Data Discovery
interface (https://adc.arm.gov/discovery/#/), and other helpful
information can be found through the ARM website (arm.gov).
At the ADC, metadata specialists tag data products with
information such as the location where data were collected,
the type of instrument used, the primary variables collected,
and the level of data processing. Created metadata are stored
in a PostgreSQL database, which is then called for web page
content and Data Discovery search filters.

For routine data collected from ARM instruments, certain
metadata codes are combined into a naming convention called
a datastream. ARM datastreams include information on the
location, the level of data processing, and the instrument. Each
component of the datastream, including site code, facility code,
instrument code, and data level, can be searched for within
Data Discovery. A datastream makes up the first part of a
data filename, followed by the date and time stamps (Fig. 1).

Fig. 1. Datastream naming process.

The instrument code within a datastream is the lowest
level metadata contained in a hierarchical structure for in-
strument categorization. An instrument code is categorized
into a broader instrument class, and then an even broader
instrument category. This hierarchy is important in allowing
different levels of search filtering within Data Discovery.

Measurement metadata are also configured in a hierarchical
structure. ARM data files are typically stored in Network Com-
mon Data Form (NetCDF) format. NetCDF is a community
standard format for creating, accessing, and sharing array-
oriented scientific data. ARM NetCDF files have embedded
metadata in the file’s header, including the collected measure-
ment variables and their descriptions. Primary measurement
status is assigned to certain variables by instrument mentors
as the measurements that are the most scientifically relevant for
a data product. These are the measurements that are available
for search through the Data Discovery interface.

Currently, metadata specialists review each primary mea-
surement variable and its description to manually classify it
into a wider measurement class, called Primary Measurement
Type (PMT) (Fig. 2). PMTs are classified into a larger um-
brella term called a measurement category. The hierarchical
structure of variables assigned to PMT classifications is the
basis of this project. With over 30 years of ARM data
collection, a robust dataset of such classifications exists. Over
62,000 variable/PMT pairs have been created and associated
with ARM data products, and these pairs are maintained in
a PostgreSQL database. Using past variable descriptions and
their PMT classifications as a training dataset, we aimed
to train a model to predict PMT classifications for variable
descriptions.

Fig. 2. Primary Measurement Type classification.

Importantly, the PMT classifications will always go through
a manual review. While we anticipate using this model within
our workflow to cut down on research time and effort, a
metadata specialist will review the top model-selected PMTs
for each measurement variable description and select the best
fit. In this way, ML will be used to augment the workflow, pro-
viding guidance in consistency, rather than replacing domain
expert knowledge.

IV. METHODS

The ADC maintains metadata tags and associations in a
PostgreSQL database. This database was queried to create a
training set and test set for testing the ML algorithms. The
effectiveness of supervised machine learning depends on the
quality and quantity of the model’s training data. This step
takes a thorough understanding of the data. Initial ML model
testing identified the need for focused cleaning of the training
data set.

A. Mitigating Inconsistent Classification with Data Cleaning

There were 198 distinct measurement variable descriptions
found that had been assigned to 2 or 3 different PMTs.
During the course of ARM data collection and metadata
creation, new PMTs have been created as measurements and
semantics evolved. While we try to ensure that previously
assigned measurement variables are updated to be classified
with the most accurate PMT, this is hard to ensure with the
wealth of historic metadata. Cleaning the training data became
an auditing task which involved updating some variables’
PMT assignments to ensure the best possible consistency and
accuracy.

B. Testing Augmented Input Data to Solve Further Inconsis-
tent Classification

Some measurement variable descriptions are vague and
logically can be classified within more than one PMT. A PMT
is assigned to a variable within a specific datastream, so the
instrument information is always known during this step. In
order to augment the input data with as much information
as possible, we included the instrument name with the vari-
able description within the training dataset. Table I provides
examples of the base training data with only the variable
description as input (Var Dataset) and the augmented training
data (Var-Inst Dataset) which contains the variable description
and instrument name.

TABLE I
EXAMPLES OF THE BASE TRAINING DATA

Training
Data

Input PMT Name
(training output)

Var
Dataset

Hemispheric broadband irradiance,
at end of shadowband sweep,
broadband channel

irradswbbtotdn

Var-Inst
Dataset

Hemispheric broadband irradiance,
at end of shadowband sweep,
broadband channel. Portable Radi-
ation Package: Fast Rotating Shad-
owband Radiometer full resolution
6-s sampling

irradswbbtotdn

We were unsure whether this additional text would benefit or
hinder the model training, so we tested both training datasets
in the model selection process described in the next section.
These tests helped us decide which training dataset was the
best for this task. Results showed that the input data including
the instrument name improved model performance (Section 6).

Fig. 3. Imbalanced PMT.

C. Testing Artificial Balancing to Mitigate Imbalanced Data

The training dataset is imbalanced. Overall our training data
contains 127 distinct PMTs. There are some PMTs which
contain thousands of unique variable descriptions (majority
classes), while many others contain five or less (minority
classes) (Fig. 3). This imbalance is cause for concern, as
the model’s predictions may be biased towards the majority
classes.

There are a number of methods available to mitigate im-
balanced training data. Oversampling increases the number of
samples in the minority class in order to balance the distribu-
tion samples among classes in the training data. Conversely,
undersampling reduces the number of samples in the majority
class in order to provide balance. These methods can be
used individually or combined in order to artificially balance
training data.

It was unclear how the imbalanced data would affect our use
case. We intended that the model would always provide the
user with five PMT classification suggestions for a variable
description, which will then go through a manual selection
and approval process. To determine if balancing was needed
to ensure that the correct PMT was in the top five rec-
ommended classifications, we used SciKit Learns’ Synthetic
Minority Over-sampling Technique (SMOTE). SMOTE is an
oversampling method, which creates synthesized examples for
minority classes, without simply duplicating samples. Section
6 provides results showing how this method was not needed
for our use case.

D. Preprocessing - Natural Language Toolkit

Once the model input was determined and the training data
was created through PostgreSQL queries, the pipeline shown
in Fig. 4 commenced. To begin this pipeline, the training data
(either Var Dataset or Var-Inst Dataset) were imported into the
Python script using the Pandas library, creating a dataframe,
and then preprocessed. Preprocessing included dropping any

duplicates from the training data. As the metadata stored in
the database included every variable/PMT pair associated with
various data products, there were many duplicates.

For Var Dataset, removing duplicate pairs reduced the train-
ing data to 4,383 variable descriptions and their PMT classifi-
cations. For Var-Inst Dataset, 17,786 variable and instrument
descriptions with PMT classifications remained. Then, the
Natural Language Toolkit (NLTK) library was used to remove
stopwords, which are common language words like “the”,
“and” and “is”. Since these words typically do not convey
important semantic information, it is common to remove these
words with NLP.

E. Preprocessing - Text Vectorization

Term Frequency – Inverse Document Frequency (TF-IDF)
was used to vectorize the text into numerical data. This process
measures the importance of a term based on how frequently
it is used in a corpus. A term that is used often in one input
description, but infrequently in the other input descriptions,
will be weighted high. TF-IDF is calculated by multiplying
the term frequency (TF) by the inverse document frequency
(IDF).

tfidf(t, d,D) = tf(t, d) ∗ idf(t,D) (1)

The term frequency is the number of times a term (t) occurs
within a document (d):

tf(t, d) =
ft,d∑
t′∈d ft′d

(2)

IDF is the logarithm of the total number of documents (N)
divided by the number of documents that contain the term:

idf(t,D) = log
N

|{d ∈ D : t ∈ d}|
(3)

V. MODEL SELECTION

After the data review and preprocessing steps, we tested
several algorithms. Selecting a ML algorithm for a certain task
can take lots of research, tests, and trial and error. In order to
test multiple algorithms, we used the Python package, Scikit
Learn [8]. The Scikit Learn package documentation provides a
helpful flowchart to help choose the appropriate estimator for a
project, based on different data availability and objectives [9].
Using this flowchart, we decided to test the following three
algorithms in more detail:

• Linear Support Vector Classification
• K-nearest Neighbors Classifier
• Multinomial Naive Bayes

The next three subsections provide general information on
each of these classification algorithms.

A. LinearSVC

Linear Support Vector Classification (LinearSVC) is a type
of support vector machine (SVM) that creates a decision
boundary, also known as a hyperplane. This hyperplane is
used to classify data points. In SVMs, the margin refers to the
distance between the hyperplane and the closest data points.
SVMs aim to find the hyperplane that maximizes the margin,
which helps improve the separation between different classes.
LinearSVC focuses on creating a linear hyperplane, making
it more efficient for certain data. Additionally, LinearSVC
supports multi-class classification, making it a well-suited
option for our use case.

B. KNeighborsClassifier

The K-Nearest Neighbors (KNN) classifier uses an algo-
rithm called KNN. This algorithm identified the k nearest data
points to a new, unclassified point based on a chosen distance
metric. In our case, we used the Euclidean distance. During
classification, the KNN algorithm considers the k nearest
neighbors of the unclassified point. Within Scikit Learn, k is
an adjustable hyperparameter which determines the number of
neighbors to examine. The algorithm assigns the class label
that is most frequent among these k neighbors.

C. MultinomialNB

Multinomial Naive Bayes (MNB) is based on Bayes’ The-
orem and works by calculating probabilities based on the dis-
tributions of text within the training data. These probabilities
are calculated for each class, and ultimately, the class with
the highest probability score is chosen as the predicted class.
MNB is often significantly faster than other models.

D. Methods

In addition to algorithm selection, different hyperparameters
were tested for the TF-IDF vectorizer, both training datasets
were tested for each algorithm, and the SMOTE balancing
method was also tried for each algorithm. To do this, a pipeline
(Fig. 4) was created to facilitate selecting the following for our
use case:

• Best algorithm and hyperparameters
• Best TF-IDF hyperparameters
• Best training dataset
• Whether or not to use SMOTE balancing
For each run, Var Dataset or Var-Inst Dataset was selected,

we determined whether or not to include SMOTE balancing,
and we selected an algorithm to test. We then split the selected
dataset into 80% training, and 20% validation. The validation
data was set aside to collect metrics for each of the runs.
With the 80% training data, we train the algorithm and various
parameters using the GridSearchCV method in Scikit Learn.
This allowed us to test many different hyperparameters in one
run. Parameters were provided in dictionaries for both the TF-
IDF vectorizer and for the algorithm. While GridSearchCV is
computationally expensive, we had access to high performance
computing resources, which allowed for a shorter computing
time.

Fig. 4. Algorithm selection pipeline generated using Kedro [10].

GridSearchCV utilizes the k-fold cross validation method.
In the k-fold cross validation method, the training data is split
into smaller sets, or folds. During each step of k-fold, one fold
is used for testing data, while the remaining folds are used for
training data. After the data is split the model is trained.

This process is repeated so that the number of steps equals
the number of folds; we used five folds. This repetition ensures
that the model is not overfitting the training data and is able
to predict classification for new input data. At the end of each
step a cross validation score is calculated. These scores are
then averaged to create a mean cross validation score.

E. Metrics

After GridSearchCV ran for a particular algorithm, dataset
and balancing method, we accessed different attributes like
the best hyperparameters, the best performing model that
was trained during k-fold, and the mean cross validated

score. With the 20% validation data, we determined additional
performance metrics. We used the best model determined
by the GridSearchCV process to predict classifications for
the validation data input. Using the Scikit Learn classifica-
tion report method, the predicted classes were compared to
the true classifications provided in the validation data. This
method provided us with metric calculations for precision,
recall, and F1-score. The metrics were all weighted based on
the amount of instances per class. Precision and recall are
calculated in equation 4 and 5, where TP is true positive, TN
is true negative, FP is false positive, and FN is false negative.
Lastly, the F1-score is the harmonic mean of precision and
recall.

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1 = 2 ·
(

(precision · recall)
(precision+ recall)

)
(6)

Additionally, to ensure the model was working for our use
case, we investigated the model’s misclassifications. Ideally,
even if the sample is misclassified with the model’s top predic-
tion, the correct label should be in the top five recommended
classifications to satisfy our use case.

The top 5 recommended classifications correspond to the
highest probabilities obtained using CalibratedClassifierCV.
During training, this method performs cross-validation by
creating k folds. It splits the training data into validation and
training subsets for each fold. In each fold, a copy of the
chosen classifier (the base estimator) is trained on the training
subset. Then, the validation subset is used with the newly
trained model to obtain un-calibrated probabilities. These un-
calibrated probabilities might not directly reflect the true class
probabilities. To address this, CalibratedClassifierCV employs
a sigmoid regression model to adjust the raw predictions closer
to the actual labels. The sigmoid model uses the sigmoid
parametric sigmoid equation [11]:

p(yi = 1|fi) = 1/1 + exp(Afi +B) (7)

In this equation, yi is the actual label for the sample i, and
fi is the output of the base estimator classifier for the sample
i. The values for A and B are calculated when fitting the re-
gressor. This process transforms the uncalibrated probabilities
into calibrated probabilities. Finally, CalibratedClassifierCV
calculates an average of the calibrated probabilities from all
folds to provide the final set of recommended classifications.

This pipeline was run 12 times. Each of the three algorithms
were tested with both datasets, and each dataset was tested
with and without SMOTE balancing. Therefore, four runs were
completed for each algorithm. From the metrics discussed
in the next section, we selected the best performing training
dataset, model, hyperparameters, and balancing method.

TABLE II
BEST SCORES FOR EACH OF THE PIPELINE RUNS

Model Training Dataset Balancing Mean Cross Validated Score Recall Precision Accuracy F1-score Correct PMT in Top 5
KNC Var none 75.20% 78.67% 81.44% 78.67% 78.48% 92.89%
KNC Var smote 75.70% 80.89% 85.11% 80.89% 81.50% 91.10%
KNC Var-Inst none 82% 86.00% 86.92% 86.00% 85.67% 97.48%
KNC Var-Inst smote 83.80% 87.20% 88.78% 87.20% 87.48% 93.76%
LSVC Var none 85% 88.89% 91.81% 88.89% 89.38% 97.78
LSVC Var smote 85.30% 87.11% 88.50% 87.11% 86.53% 96%
LSVC Var-Inst none 96.10% 98.58% 98.95% 98.58% 98.70% 99.63%
LSVC Var-Inst smote 96.50% 98.47% 98.90% 98.47% 98.61% 99.12%
MNB Var none 65.20% 80.44% 85.13% 80.44% 80.39% 91.56%
MNB Var smote 76.10% 79.11% 84.62% 79.11% 79.92% 93.78%
MNB Var-Inst none 74.50% 81.29% 82.97% 81.29% 80.70% 95.08%
MNB Var-Inst smote 78.60% 83.26% 89.80% 83.26% 85.42% 92.56%

VI. RESULTS OF CLASSIFICATION

Table II shows the best scores for each of the pipeline
runs. The Var-Inst Dataset, which included measurement and
instrument descriptions (Table I) scored better than the Var
Dataset for each of the algorithms. This is likely due to the
larger amount of unique input and output pairs. The results
may have also benefited from the additional content provided
in the input data.

The ideal percentage for our metrics is 100%. With F1-
score, recall, precision, mean cross validation score, and ac-
curacy results over 90%, LinearSVC demonstrated incredibly
promising results, and we selected it as the algorithm for this
project. While using SMOTE to artificially balance the training
data slightly benefited the MNB and KNN algorithms, it
showed very little improvement for the LinearSVC algorithm,
if any. In fact, recall, precision, accuracy, F1-score, and the
amount of correct PMTs in the top 5 results were slightly
better without SMOTE balancing for the highest performing
pipeline run (using LinearSVC and Var-Inst Dataset).

Based on the results of the GridSearchCV, the best perform-
ing hyperparameters selected for the LinearSVC algorithm and
TF-IDF text vectorizer include:

tfidf_params = {
"max_df": 0.4,
"min_df": 1,
"ngram_range": (1,2)

}

LSVC_params = {
"C": 100,
"loss": "squared_hinge",
"max_iter": 5000,
"solver": "lbfgs"

}

A. Testing

After selecting the best hyperparameters for LinearSVC
and TF-IDF, we split our data into 95% training data and
5% testing data to train and test the selected model and
parameters for the LinearSVC algorithm, with Var-Inst Dataset
and without SMOTE balancing. This strategy allows us to see

how the model functions on a larger portion of training data
to test our selection. After training, we test the results with the
remaining 5% of the data, calculating the same metrics that
were presented from the GridSearchCV pipeline runs (Table
III). The mean cross validated score is not included since it
was only calculated during the k-fold cross validation method,
which was not used in this final testing. With metrics over
98%, the testing step corroborates our previous results.

B. Implementation

Using the best performing parameters, a model was then
trained on the full Var-Inst Dataset, using the TF-IDF vector-
izer and LinearSVC algorithm. This final model was saved to
a pickle (.pkl) file so it can be called into other scripts.

An API was developed using FastAPI, which is a Python
framework for building APIs. The API works by a user
sending a request to the API with a datastream as the input
parameter. The API then queries the database to retrieve the
associated variable descriptions and instrument name for that
datastream. These variable descriptions are concatenated with
the instrument code name and are fed into the model. The
model outputs the top 5 recommended PMTs for each input,
along with the calibrated classifier probability value for each
recommendation (Fig. 5).

C. Next Steps

We intend to implement this API within our internal meta-
data creation tool which connects to the database. Once this
is done, the metadata specialist can make a selection out
of the PMTs provided for the official PMT classification.
As new variable/PMT pairings are created, so too are more
training data. A new model will be retrained on ARM metadata
routinely, likely on a monthly basis, and the new model will be
saved to be used within the API. As the metadata specialists
review the PMT selections, they will ensure the model is
functioning well, noting any issues or errors. Ultimately, the
model should become even better over time.

Upon successful implementation of this model into our
classification workflow, additional models may be trained
using TF-IDF and the LinearSVC algorithm to classify other
hierarchical metadata terms.

TABLE III
GRIDSEARCHCV PIPELINE RUNS

Model Training Dataset Balancing Recall Precision Accuracy F1-score Correct PMT in Top 5
LSVC Var-Inst None 98.28% 98.30% 98.28% 98.22% 99.70%

Fig. 5. Recommended PMT results with an API.

VII. DISCUSSIONS

Our results indicate that using TF-IDF and the Linear SVC
algorithm provides promising results for this multiclass text
classification task. Other studies have found similar results
[3], [5], [4], although none with this large number of classes,
and not for the purpose of augmenting a human workflow. We
did not investigate the use of large language models (LLMs)
within this research. However, others have investigated these
methods for text classification [12], [13], [14], and [15]. While
these methods have promising results, finding a LLM best
suited for a certain domain is critical [12], and traditional su-
pervised classifiers are comparable and use less computational
power [13].

This study highlights the importance of reviewing and
cleaning training data through each step of the model selec-
tion process, especially for such specialized ML applications.
Additionally, it is important to consider specific use cases
when reviewing a model’s metrics. As the final PMT review
and selection will still be done by a metadata specialist,
this diminishes the need for the model’s top classification
prediction to be perfect. However, the need for the correct
PMT to be in the top five results is a high priority metric.

Implementing this model into our metadata creation work-

flow helps cut down on time and effort and helps guide
us towards better consistency. However, by maintaining the
human element in this workflow, we can monitor the model’s
performance and ensure the accuracy needed for a seamless
data search experience for the ARM data repository’s users.

ACKNOWLEDGMENT

This research was supported by the Atmospheric Radiation
Measurement (ARM) user facility, a U.S. Department of
Energy (DOE) Office of Science user facility managed by the
Office of Biological and Environmental Research Program.

REFERENCES

[1] F. Chollet, Deep learning with Python. Simon and Schuster, 2021.
[2] B. A. Xavier and P.-H. Chen, “Natural language processing for imaging

protocol assignment: machine learning for multiclass classification of
abdominal ct protocols using indication text data,” Journal of Digital
Imaging, vol. 35, no. 5, pp. 1120–1130, 2022.

[3] C. Gong, G. Deng, H. Shan, and C. Deng, “Predictive classification
model based on vespa comprehensive detection system,” in Journal of
Physics: Conference Series, vol. 1982, no. 1. IOP Publishing, 2021, p.
012080.

[4] N. Kalcheva, M. Karova, and I. Penev, “Comparison of the accuracy
of svm kemel functions in text classification,” in 2020 International
Conference on Biomedical Innovations and Applications (BIA). IEEE,
2020, pp. 141–145.

[5] G. Leonard, F. Sisnadi, N. V. Wardhana, M. A. A. Al-Ghofari, and
A. S. Girsang, “News classification based on news headline using svc
classifier,” in 2022 16th International Conference on Telecommunication
Systems, Services, and Applications (TSSA). IEEE, 2022, pp. 1–4.

[6] M. E. Phillips and J. Chen, “Machine learning for name type classifica-
tion in library metadata,” Proceedings of the Association for Information
Science and Technology, vol. 54, no. 1, pp. 773–774, 2017.

[7] M. D. Wilkinson, M. Dumontier, I. J. J. Aalbersberg, G. Appleton,
M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos,
P. E. Bourne, J. Bouwman, A. J. Brookes, T. Clark, M. Crosas, I. Dillo,
O. Dumon, S. Edmunds, C. T. Evelo, R. Finkers, A. Gonzalez-Beltran,
A. J. G. Gray, P. Groth, C. Goble, J. S. Grethe, J. Heringa, P. A. C.
’t Hoen, R. Hooft, T. Kuhn, R. Kok, J. Kok, S. J. Lusher, M. E.
Martone, A. Mons, A. L. Packer, B. Persson, P. Rocca-Serra, M. Roos,
R. van Schaik, S.-A. Sansone, E. Schultes, T. Sengstag, T. Slater,
G. Strawn, M. A. Swertz, M. Thompson, J. van der Lei, E. van Mulligen,
J. Velterop, A. Waagmeester, P. Wittenburg, K. Wolstencroft, J. Zhao,
and B. Mons, “The fair guiding principles for scientific data management
and stewardship,” Scientific data, vol. 3, no. 1, pp. 160 018–160 018,
2016.

[8] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” the Journal of machine
Learning research, vol. 12, pp. 2825–2830, 2011.

[9] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[10] S. Alam, N. L. Chan, L. Couto, Y. p. Dada, I. Danov, and . (list all
authors), “Kedro,” 2024. [Online]. Available: https://github.com/kedro-
org/kedro

[11] J. Platt et al., “Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods,” Advances in large
margin classifiers, vol. 10, no. 3, pp. 61–74, 1999.

[12] E. Lee, C. Lee, and S. Ahn, “Comparative study of multiclass text
classification in research proposals using pretrained language models,”
Applied Sciences, vol. 12, no. 9, p. 4522, 2022.

[13] K. Shyrokykh, M. Girnyk, and L. Dellmuth, “Short text classification
with machine learning in the social sciences: The case of climate change
on twitter,” Plos one, vol. 18, no. 9, p. e0290762, 2023.

[14] A. Moreo, A. Esuli, and F. Sebastiani, “Word-class embeddings for
multiclass text classification,” Data Mining and Knowledge Discovery,
vol. 35, pp. 911–963, 2021.

[15] K. Ameri, M. Hempel, H. Sharif, J. Lopez Jr, and K. Perumalla, “Cybert:
Cybersecurity claim classification by fine-tuning the bert language
model,” Journal of cybersecurity and privacy, vol. 1, no. 4, pp. 615–637,
2021.

