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Abstract—This paper discusses the key challenges and future
research directions for privacy-preserving federated learning
(PPFL), with a focus on its application to large-scale scientific Al
models, in particular, foundation models (FMs). PPFL enables
collaborative model training across distributed datasets while
preserving privacy— an important collaborative approach for
science. We discuss the need for efficient and scalable algorithms
to address the increasing complexity of FMs, particularly when
dealing with heterogeneous clients. In addition, we underscore
the need for developing advance privacy-preserving techniques,
such as differential privacy, to balance privacy and utility in large
FMs emphasizing fairness and incentive mechanisms to ensure
equitable participation among heterogeneous clients. Finally, we
emphasize the need for a robust software stack supporting
scalable and secure PPFL deployments across multiple high-
performance computing facilities. We envision that PPFL would
play a crucial role to advance scientific discovery and enable
large-scale, privacy-aware collaborations across science domains.

Index Terms—federated learning, privacy preservation, foun-
dation models, distributed computing

I. INTRODUCTION

As artificial intelligence (AI) models grow larger and more
sophisticated, the need for innovative methods to train these
models efficiently and securely has become increasingly im-
portant. Traditional centralized approaches to model training,
which require collecting data at a single location, are often
impractical or infeasible in sectors such as healthcare, material
science, and energy systems due to data sharing restrictions.
Federated learning (FL) offers a distributed approach where
model training occurs across multiple decentralized devices or
servers, allowing for collaborative learning without the need
for centralized storage. This is particularly valuable in fields
requiring multi-institutional collaboration. Privacy-preserving
FL (PPFL), built on FL; incorporating privacy mechanisms
such as differential privacy (DP) will play an important role
in such collaboration by enabling large-scale model training
while protecting sensitive information.
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Fig. 1. Illustration of federated learning across four heterogeneous computing
facilities and a central server, each of which facilitates a large amount of data
without sharing. Only model updates are exchanged between clients and the
server potentially with privacy-preserving mechanism.

The Department of Energy (DOE) has recognized the sig-
nificance of Al in advancing scientific research and recently
awarded $68 million in funding for Al for science initiatives-
initiatives aimed at leveraging Al and ML to drive scientific
discoveries. One of the key research areas is the development
of PPFL techniques to learn foundation models (FMs)-large-
scale, pre-trained models that can be adapted and fine-tuned
for specific downstream tasks—across distributed datasets and
computing environments. Training FMs in scientific domains
requires computational efficiency and often privacy protection,
as sensitive and proprietary data can be spread across geo-
graphically distributed institutions, each with their own privacy
requirements. Therefore, the ability to train FMs efficiently
and reliably across distributed computing environments is
crucial for accelerating scientific advancements and optimized
operations in science and engineering domains.

PPFL has the potential to advance scientific collaboration by
enabling secure, large-scale learning without moving sensitive
data outside institutions. For instance, in domains such as bio-
medicine and energy systems, where data is distributed across
hospitals, laboratories, or electric utility companies, PPFL
enables to train models from a large amount of decentralized
data while maintaining privacy guarantees. However, scaling
PPFL to train FMs in science applications presents unique
challenges: efficient and scalable algorithms are necessary to
handle the large size and complexity of FMs, particularly with
heterogeneous client environments See Figure 1.



Another crucial challenge is privacy preservation. Existing
techniques such DP, that protecting privacy-sensitive data; in-
troduce the well-known trade-off between model performance
and privacy guarantee increasing computation and communi-
cation overheads when applied to large models with billions of
parameters. More crucially, ensuring privacy with optimal-but
resource efficient performance when collaborating institutions
have different privacy requirements and computing resources.

Deploying PPFL in high-performance computing (HPC)
environments is a challenging task, particularly in the context
of scientific research where datasets and computing resources
are distributed across multiple secure locations with strict
security protocols and firewall policies. The development of
a deployable, robust software stack capable of scaling PPFL
across heterogeneous large computing facilities, including
DOE supercomputers and the National Al Research Resource
(NAIRR) Pilot resources, is crucial to support the massive
computational demands of scientific FMs to ensure data pri-
vacy and compliance with institutional security policies.

This vision paper explores the key challenges in leveraging
PPFL for scientific applications, focusing on the need for
efficient and scalable algorithms, advanced privacy-preserving
techniques, fairness and incentive structures, and the devel-
opment of a robust software stack to support distributed
computing across heterogeneous computational environments.

II. STATE OF THE ART AND CHALLENGES

PPFL is essential in various fields such as healthcare,
finance, and energy systems, where privacy-sensitive data can-
not be shared directly. Current PPFL methods, while effective
in controlled settings, face several limitations when scaling to
larger Al models or diverse datasets. In this section, we discuss
state-of-the-art approaches and various challenges in PPFL.

A. Efficient and Scalable Algorithms

FL faces challenges in scaling to FMs. Current methods
such as quantization, sparsification, and model compression
have been introduced to reduce the communication overhead
involved in sharing model updates between clients and the
server. However, these techniques struggle to maintain effi-
ciency as model sizes grow exponentially. Such limitations
become challenging with heterogeneous clients with different
network, computational capabilities and datasets.

Moreover, while memory-efficient techniques such as low-
rank adaptation (LoRA) [1] and model pruning [2] have shown
potential in reducing memory usage, they are not yet fully
enabled for FL. For instance, LoRA’s strategy of adapting in
the low dimensional space does not account for clients with
heterogeneous hardware capabilities as the low dimensional
space is not same for all clients, requiring algorithms to
dynamically adjust their memory and computation settings
to remain effective. The advancement of FL algorithms must
reduce communication and memory requirements and dynam-
ically adapts to the computing power of each client to improve
efficiency across a broad range of scientific applications.

B. Privacy Preservation for Large Models

Applying DP in the training of large-scale models intensifies
challenges related to execution time, memory consumption,
and accuracy [3]. The high number of model parameters
significantly increases training costs, with DP often extending
training times substantially [4]. Memory requirements are also
elevated, as per-example gradients are necessary, and model
accuracy tends to degrade as more noise is introduced for
privacy [5]. Striking a balance between privacy and model
performance remains a major challenge.

DP fine-tuning methods are introduced in [3] and applied to
transformer-based LLMs [6] for task-specific fine-tuning using
smaller, private datasets. To minimize runtime and memory
overheads, DP has also been integrated into various PEFT
methods [7]. Utilizing the DP stochastic gradient descent
(DP-SGD) algorithm, FL faces the challenge of balancing
privacy with utility due to the vast model size. Additionally,
different federated learning (FL) clients may have varying
privacy needs due to diverse policies or user preferences,
resulting in heterogeneous or personalized privacy budgets
across institutions. Currently this challenge has been studied
in centralized settings [8], but only a few works exist as simple
heuristics in FL settings [9]. However, some efforts have been
done to enhance privacy protection with high utility but they
are not designed for clients with varying privacy needs [10].

C. Incentives and Fairness

Ensuring client participation in FL is a critical challenge,
particularly in environments where clients have different levels
of data quality, computational power, network connectivity,
and privacy requirement. Traditional incentive structures, often
based on contribution metrics like data volume or computation
cycles, can lead to unfair imbalances, where clients with more
power and resources dominate the training process. This can
result in biased global models that overly learn data from
these dominant clients, leading to poor generalization across
the entire client base. In scientific collaborations where data
heterogeneity is common, the lack of proper incentives can dis-
courage participation from smaller clients, ultimately reducing
the diversity of data and degrading model performance.

In addition to incentives, fairness in model performance is
a key concern in FL, especially in cross-silo settings where
institutions contribute multimodal data with heterogeneous
distributions. State-of-the-art techniques (e.g., [11], [12]) aim
to adjust the influence of clients based on the size or qual-
ity of their data. However, these methods often struggle in
the presence of highly imbalanced datasets or heterogeneous
client participation and lack the flexibility to handle real-
time fairness adjustments as client contributions and data
distributions evolve. The key challenge is developing fairness-
aware optimization techniques that embed fairness constraints
into the training process while maintaining computational effi-
ciency. Balancing fairness with scalability and model accuracy,
particularly in large-scale scientific collaborations, remains an
open problem; addressed to ensure that FL systems deliver
FMs that generalize equitably across all clients.



D. Continually-but Federated Learning Foundation Models

It is critical to ensure that a FM trained using privacy-
preserving FL maintains optimal performance throughout its
life cycle. However, when these models are fine tuned on
many down stream tasks, they exhibit a phenomenon known as
catastrophic forgetting [13]. This phenomenon is an important
challenge to overcome. A trivial but infeasible solution to
this problem is to ensure that the FM does not forget prior
information by simply retraining using all data. This solution
is infeasible due to memory and computational requirements.
Moreover, the FM needs to ensure capability to learn new
downstream tasks while selectively remembering relevant prior
tasks. This stability-plasticity trade-off [14] is an important
challenge to consider. This particular challenge is further com-
plicated by the requirements of FL and the need for privacy
guarantees. Upholding such requirements across distributed-
but heterogeneous clients throughout the lifelong of the model
with low memory and compute footprints is necessary.

E. Software Stack

Scaling FL across high-performance computing (HPC) en-
vironments like DOE supercomputers presents several unique
challenges, primarily related to security, data management,
and communication efficiency. Existing open-source FL frame-
works lack the necessary flexibility to operate in highly secure
and distributed environments, where strict firewall policies
often prevent direct communication across multiple HPC sites.
These security constraints make it difficult to deploy FL
experiments across distributed systems.

Another major challenge is the integration of efficient data
management and communication tools capable of handling the
scale and complexity of FL across HPC systems. While tools
like Globus Compute (previously known as FuncX [15]) offer
secure data transfer capabilities (e.g., APPFL [16], [17] and
Flight [18]), managing the continuous flow of model updates
across multiple compute nodes remains a challenging task.
Message broker services like Kafka have been used for FL [19]
but lack the capabilities to exploit the specialized hardware of
supercomputers.

The complexity increases with the need for low-latency,
real-time messaging systems that can ensure efficient synchro-
nization of model updates across geographically distributed
clients. Moreover, the traditional data management systems
used for handling tokenized models and their updates need to
be enhanced for large-scale distributed environments, ensuring
that data transfers occur smoothly without overwhelming the
network. This requires the development of advanced, scalable
communication infrastructures capable of maintaining perfor-
mance while adhering to the strict security and bandwidth con-
straints typical of HPC settings. Addressing these challenges
is critical for enabling scalable and efficient FL across HPC
systems, and will require the integration of more dynamic,
flexible software solutions tailored to such environments.

III. FUTURE DIRECTIONS

This section outlines key future directions, focusing on
enhancing efficiency, privacy, fairness, and the development
of a robust software stack.

A. Developing Efficient and Scalable Algorithms

Efficient communication is critical for scaling FL, particu-
larly applied to large FMs. While techniques such as model
quantization and sparsification help reduce communication
overhead, they struggle to keep pace with the increasing
complexity and size of FMs. A key future direction involves
adaptive algorithms that adjust compression schemes based on
network conditions and client resources. For instance, layer-
wise compression could selectively compress less important
model layers more aggressively, enabling efficient communi-
cation without sacrificing model performance.

Another critical challenge is heterogeneous client environ-
ments. FL. systems must deal with clients that have differ-
ent computational capabilities, ranging from large computing
facilities and data centers to low-power edge devices. This
heterogeneity can lead to performance bottlenecks, particularly
when slower devices, or stragglers, delay the global model
update process. Future work must explore heterogeneity-aware
algorithms, such as Federated Dropout [20] and asynchronous
FL [21], [22], which allows clients to contribute only partial
model updates based on their computational capacity. Effi-
ciently balancing workload distribution, enabling faster global
updates minimally affected by stragglers is a must.

Memory efficiency is also critical when dealing with FMs.
Existing techniques such as LoRA and model pruning need
to be further optimized for FL settings [23]. For example,
state-of-the-art federated pruning (e.g., [24]) could further be
improved by allowing clients to individually prune their local
models based on the available resources, while the server as-
sembles a globally pruned model that maintains performance.
Layer-wise adjustment techniques (e.g., by either freezing and
partially aggregating) could be explored; providing efficiency
in computation, communication, and memory usage in FL.

Energy efficiency will become increasingly important as FL
scales up, particularly when deploying models in environments
that span the computing continuum, from edge devices to HPC
clusters. We envision that energy-aware scheduling algorithms
will play a crucial role in optimizing the trade-off between
computational load and energy consumption. These algorithms
could orchestrate client participation based on their energy
profiles and computing power, allowing more energy-efficient
distribution of workload among clients.

B. Enhancing Privacy Preservation for Large Models

We propose creating algorithms to handle diverse privacy
requirements in FL. Current methods for managing heteroge-
neous DP in FL are often simplistic and can reduce perfor-
mance, either by applying the strictest privacy settings to all
clients or introducing biases through weighted averaging. A
promising approach, projected DP-SGD [25] could provide a
balance between privacy and utility by using projections.



Our method builds on this idea, introducing multilevel
projections that adapt to the changing needs of the training
process. By applying projections in stages, we can capture
important parameter variations while filtering out noise more
effectively. This approach allows us to address multiple groups
of clients with different privacy budgets and adapt to the evolv-
ing nature of training, ultimately improving both model accu-
racy and convergence. We aim to maintain privacy guarantees
while delivering more robust, scalable, and computationally
efficient models for diverse privacy requirements.

Alternatively, DP can be achieved through a shuffling
model that incorporates a randomizer and a shuffler [26].
The randomizer takes private data and public random inputs
to create message vectors, while the shuffler combines these
vectors and applies a random permutation to enhance privacy.
We propose developing tailored shuffling models for FL,
focusing on the communication messages exchanged between
the server and clients. Specifically, we will utilize mechanisms
that systematically reorder messages, adding an extra layer of
privacy and security to the data exchange process.

Our proposed shuffling model will operate on each client
side prior to data transmission during communication rounds.
We will explore various enhancements, such as improving
scalability and resilience to failures in distributed systems
[27], reduce communication costs [28], and mitigate risks of
unintended information leakage [29].

C. Fostering Incentives and Fairness

Balancing different heterogeneous clients with varying data
quality, computational resources, and privacy requirements
warrants novel research directions. Modelling incentive and
fairness structures across clients as a game with evolving
strategies to capture interactions across and among clients is
important. Designing and developing precise fairness metrics
to ensure equitable contributions and performance across all
clients while understanding their impact on the global model is
a way to describe fairness metric. Another important direction
is to investigate and develop fairness mechanisms, ideally in
real time by adjusting client contributions dynamically during
the training process. This requires development of adaptive
optimization and dynamic programming algorithms to adjust
aggregation weights and other hyperparameters based on the
evolving contributions of clients. Game-theoretic approaches
could also be applied incentivize clients for maintaining fair-
ness in model performance across all participants.

D. Continually Adapted Federated Learning

Adapting the FM throughout the lifetime of the models’
relevance is crucial due to reasons discussed in section II-D.
we must address many of the challenges with fairness and
incentives discussed in section II-C and section II-A in an
environment with evolving distributions. This evolving hetero-
geneity necessitates asynchronous updates. This problem will
take the shape of a dynamically evolving Nash game which
will model a non-stationary trade-off between different clients
ensuring fairness while dealing with the heterogeneity between

the data distributions. Within the context of this evolving
game, different client might behave as players describing the
varying needs of FM with an extremely flexible framework
would be extremely flexible that identifies the different trade-
offs, enables privacy [14].

E. Building a Robust Software Stack

To address the challenges of deploying FL across HPC envi-
ronments, future software frameworks must focus on building
scalable, secure communication infrastructures. As outlined in
Section II-E, existing frameworks struggle with managing real-
time communication and data synchronization due to stringent
firewall policies and security protocols in DOE supercom-
puters. Future developments must focus on creating low-
latency communication systems capable of efficiently handling
large FMs across geographically distributed clients, while
ensuring compliance with security requirements. Moreover,
these systems must be designed to remain resilient in the face
of network disruptions and client dropouts, ensuring reliable
updates to global model in dynamic, distributed settings.

In addition to communication, the data management layer of
the software stack must be significantly improved to handle the
tokenization, transfer, and updating of large models. Current
systems, as discussed in Section II-E, face significant bottle-
necks when dealing with model updates across multiple HPC
nodes. Future frameworks will need to implement real-time
data processing and streamlined model versioning systems to
reduce the computational and bandwidth overhead associated
with updating models in federated environments. Furthermore,
these systems must incorporate intelligent caching and data
locality strategies to minimize redundant data transfers, when
dealing with massive datasets across various HPC sites.

Moreover, while some existing FL frameworks already
embed DP and secure aggregation, future development must
prioritize scalability and efficiency, particularly for large-scale
models in HPC environments. Future software stacks should
focus on improving the scalability of privacy-preserving tools,
ensuring they can handle the computational and commu-
nication demands of HPC systems without compromising
performance. This requires not only enhancing the flexibility
of privacy mechanisms to accommodate varying client needs
but also tightly integrating them with data management and
communication layers to streamline the entire FL process.
The next generation of FL software must ensure that privacy-
preserving features, such as DP, are implemented in a way that
minimizes overhead and maximizes compatibility with HPC-
specific security and performance constraints.

In summary, future FL frameworks for HPC environments
will require a highly integrated software stack that combines
scalable communication, efficient data management, and ro-
bust privacy mechanisms. By addressing the challenges dis-
cussed in Section II-E, these future software ecosystems enable
FL with scaling across the computing continuum enabling
large-scale, privacy-conscious scientific applications.



IV. CONCLUSIONS

Recent advancements in FL have demonstrated its potential
to train models across distributed data sources while preserv-
ing data privacy. However, as we move toward larger, more
complex models such as FMs, several challenges arise. While
promising, state-of-the-art approaches show limitations when
scaling to the diverse and heterogeneous settings of scientific
applications. Key issues such as communication bottlenecks,
resource imbalances among clients, and integrating privacy-
preserving mechanisms into large FMs will require careful
design of algorithms and robust software stack.

Addressing these challenges requires interdisciplinary col-
laboration across multiple fields. Scalable optimization al-
gorithms, fairness-aware mechanisms, and privacy-preserving
techniques developed through collaborative efforts between
experts in optimization, computer science, and domain-specific
fields. In particular, collaborations with scientists and en-
gineers in energy systems, healthcare, climate science, and
experimental facilities are crucial to advance and adapt FL for
these scientific domains.

A key research direction lines in the development of adap-
tive FL systems that can better handle large-scale model
training across heterogeneous clients in terms of datasets, com-
putational resources, and privacy requirements. Advances in
game-theoretic approaches and fairness-aware learning algo-
rithms could be promising to address the challgnes with client
incentives and fairness. Moreover, novel privacy-preserving
techniques are important for model training at scale, without
sacrificing the training efficiency and model performance.
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