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ABSTRACT

The increasing adoption of Deep Neural Networks (DNNs) has
led to their application in many challenging scientific visualization
tasks. While advanced DNNs offer impressive generalization ca-
pabilities, understanding factors such as model prediction quality,
robustness, and uncertainty is crucial. These insights can enable do-
main scientists to make informed decisions about their data. How-
ever, DNNs inherently lack ability to estimate prediction uncer-
tainty, necessitating new research to construct robust uncertainty-
aware visualization techniques tailored for various visualization
tasks. In this work, we propose uncertainty-aware implicit neu-
ral representations to model scalar field data sets effectively and
comprehensively study the efficacy and benefits of estimated uncer-
tainty information for volume visualization tasks. We evaluate the
effectiveness of two principled deep uncertainty estimation tech-
niques: (1) Deep Ensemble and (2) Monte Carlo Dropout (MC-
Dropout). These techniques enable uncertainty-informed volume
visualization in scalar field data sets. Our extensive exploration
across multiple data sets demonstrates that uncertainty-aware mod-
els produce informative volume visualization results. Moreover,
integrating prediction uncertainty enhances the trustworthiness of
our DNN model, making it suitable for robustly analyzing and vi-
sualizing real-world scientific volumetric data sets.

Index Terms: Deep Learning, Uncertainty Quantification, Volume
Visualization, Scalar Field Data, Visualization.

1 INTRODUCTION

The scientific visualization community has witnessed myriad ap-
plications of deep learning owing to the rapid growth of deep
neural network (DNN) research [57]. Among many applications,
analysis, visualization, and representation of volumetric data us-
ing DNNs have emerged as a promising research domain. DNNs
have been used effectively to (1) synthesize volume rendered im-
ages given rendering and view parameters [6], (2) generate high-
quality super-resolution images [11], (3) perform interactive vol-
ume visualization [28], (4) build differentiable rendering models
to perform automatic viewpoint and transfer function optimiza-
tion [62], (5) learn adaptive volume sampling strategies to produce
accurate images [61], and (6) learn compressed volume represen-
tations [36, 60]. While the above DNN-based approaches facili-
tate multifaceted exploration of volumetric data, none of the ap-
proaches study the impact of prediction uncertainty associated with
such models. Model prediction uncertainty, if reliably estimated
and communicated to the domain experts, can enable them to make
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informed decisions about the data during analysis phase [8, 14].
As a consequence, the DNN-based volume visualization and anal-
ysis methods will become more trustworthy and reliable. However,
a literature survey reveals that epistemic uncertainty-aware DNN-
based volume visualization needs detailed exploration - a gap that
this work attempts to fill.

Given the recent success of implicit neural representations
(INRs) for compact modeling and representing volumetric data
sets [21, 36, 54], in this work, we study the efficacy and applicabil-
ity of uncertainty-aware INRs for volume visualization task. Since
traditional DNNs do not quantify their prediction uncertainty, we
augment our INRs with two different deep uncertainty quantifica-
tion techniques to collect uncertainty estimates along with the pre-
dicted data values. We thoroughly analyze and visualize the esti-
mated uncertainty to comprehend model accuracy, trustworthiness,
and reliability.

Given the existing deep uncertainty estimation techniques, in this
work, we prefer the methods of uncertainty estimation that can be
incorporated into an existing DNN with minimal architecture mod-
ification so that the visualization community can readily adopt such
models to conduct uncertainty-aware volume visualization using
DNNs. To that end, we employ Deep Ensembles as our first uncer-
tainty estimation method since Deep Ensembles often outperform
other uncertainty estimation methods and produce more accurate
predictions [5, 18, 29]. However, the benefits of Deep Ensembles
come at the cost of significantly large training time and resource
requirements since multiple DNN models need to be trained to pro-
duce an ensemble of DNNs. To mitigate this challenge, we study
the accuracy and viability of a single-model-based deep uncer-
tainty estimation technique known as Monte Carlo Dropout (MC-
Dropout) [14]. Theoretically, the MCDropout is equivalent to ap-
proximate inferencing in deep Gaussian processes [10, 14], making
it an attractive choice for our work.

We analyze the accuracy, effectiveness, and benefits of
uncertainty-aware implicit neural representations (INRs) of volume
data augmented with two deep uncertainty estimation techniques:
(1) Deep Ensemble and (2) MCDropout method to carry out infor-
mative visual analysis of scientific data. Since our methods provide
model uncertainty for predicted data values, we are able to quan-
tify fine-grained pixel-wise uncertainty for the volume-rendered
images for any user-provided transfer function. As the user changes
the transfer function, our pixel-wise uncertainty map also gets up-
dated according to the current transfer function configuration. We
can further investigate how uncertainty impacts each color channel
while computing the final pixel color using the ray casting method.
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Finally, we conduct a comprehensive study of the two principled
deep uncertainty estimation methods to evaluate their applicability
and viability in scientific volume visualization tasks. We examine
whether the error and uncertainty maps show any correlation and
further advocate that when error computation is not possible due
to the unavailability of ground truth data, model uncertainty is still
available and can be helpful in assessing the trustworthiness of the
volume rendering results. Therefore, our contributions are twofold:

1. We propose the use of uncertainty-aware implicit neural rep-
resentations for informative and robust visual analysis of vol-
ume data, emphasizing the significance of visualizing predic-
tion uncertainty to aid domain scientists in interpreting their
results more reliably.

2. We thoroughly compare and contrast between two deep un-
certainty estimation techniques: (1) Deep Ensemble, and (2)
MCDropout, showcasing their applicability for conducting
uncertainty-informed volume visualization.

2 BACKGROUND AND UNCERTAINTY IN DEEP NEURAL
NETWORKS

First we summarize research works related to deep learning for sci-
entific visualization and uncertainty visualization in the following
section. Then, we briefly introduce different methods for quanti-
fying uncertainty in deep neural networks, followed by a detailed
description of two well-known methods of estimating uncertainty
in DNNs used in this work.

2.1 Deep Learning for Scientific Visualization
Deep learning has found numerous applications in scientific visu-
alization. Techniques for generating compact neural representa-
tions of scientific data are proposed by Lu et al. [36] and Weiss
et al. [60]. Hong et al. [28], He et al. [26], and Berger et al. [6]
study the visualization of scalar field data using volume-rendered
images, and Weiss et al. [59] study volume data with isosurfaces.
An adaptive sampling-guided approach is further used by Weiss et
al. [61] for efficient volume data visualization using DNNs. An-
other prominent area of research involves generation of spatiotem-
poral super-resolution volumes from low-resolution data using deep
learning methods [20, 19, 64, 22]. For compressing the volume
data, new models are proposed for domain-knowledge-aware latent
space generation for scalar data [50]. For the generation of visu-
alization and exploration of parameter spaces for ensemble data,
DNNs are also used as surrogates [26, 52, 51]. Han et al. [23] pro-
pose a variable-to-variable translation technique for scientific data.
A comprehensive review of deep learning applications for scientific
visualization are available in the state-of-the-art survey [57].

2.2 Uncertainty Visualization
Visualization of uncertainty continues to be an important and chal-
lenging area. Pang et al. [39] give one of the earlier summaries of
uncertainty visualization techniques. Visualization methods that are
enhanced with tools for uncertainty estimation are given by Brodlie
et al. [13]. Non-parametric models are used by Athawale et al. [3]
to improve uncertainty in volume rendering. Spatial probability dis-
tributions, defined over triangular meshes, are visualized by Potter
et al. [44], preceded by a classification of uncertainty visualization
techniques [12].

Uncertainty visualization techniques are also explored for iso-
contouring methods. The level crossing probability of adjacent
points is computed by Pöthkow et al. [42], and to calculate the
level crossing probability for each cell, this method is further re-
fined in [43]. In [2], a visual analysis of fiber uncertainty is done.
Uncertainty visualization techniques are summed up in a compre-
hensive survey by Bonneau et al. in [8]. For image processing ap-
plications [15] and medical imaging [16], uncertainty visualization

techniques are summarized by Gillmann and colleagues. Whitaker
et al. [63] use contour boxplots to examine uncertainty visualiza-
tion in an ensemble of contours. The latest progress regarding un-
certainty in visualization research can be found in [30].

2.3 Uncertainty in Deep Neural Networks

Despite the widespread popularity of deep learning techniques,
there are significant concerns regarding their interpretability, ro-
bustness, and generalizability in real-world applications [66]. The
inability of conventional DNNs to provide uncertainty estimates
can undermine the practical results they offer in fields such as com-
puter vision, natural language processing, scientific visualization,
and visual analytics. Developing universal techniques to measure
and quantify uncertainty in DNNs remains a challenge, as the types
and sources of uncertainty vary greatly across different applica-
tions, making it difficult to generalize uncertainty estimation meth-
ods. In the following, we succinctly describe some causes of un-
certainty in DNNs and various methods proposed to simulate and
mitigate them.

Uncertainty in a DNN can be broadly categorized into data
(aleatoric) uncertainty and model (epistemic) uncertainty [7, 34].
Data uncertainty arises from errors and noise in measurement sys-
tems. In contrast, several factors contribute to model (epistemic)
uncertainty. Firstly, current DNN models simplify real-world sys-
tems to generate observations, but this simplification introduces er-
rors and uncertainty in predictions. Secondly, many DNNs require
careful adjustments, such as implementing dropout [14, 27], exper-
imentally adjusting the model hyperparameters [65], and applying
regularization [9]. Variations in these parameter settings can result
in different outcomes and associated uncertainty.

2.4 Methods to Model Uncertainty in DNNs

In the following, we discuss various techniques used for model-
ing uncertainty in DNNs. Then, we discuss two well-known un-
certainty estimation methods, MCDropout and Deep Ensembles in
detail since these two methods are employed in our work.

Deterministic Methods. Uncertainty estimation capabilities can
be integrated into deterministic models by training a network ex-
plicitly to quantify uncertainties, as discussed in the work on evi-
dential neural networks [49].

Test-time Augmentation Methods. Data augmentation during
testing improves model performance using adversarial examples [4,
58] which determine prediction uncertainty.

Deep Evidential Regression. In deep evidential regression, the
network simultaneously learns both parameters and hyperparame-
ters for the corresponding evidential distributions [1]. These evi-
dential distributions are then utilized to estimate model uncertainty.

Uncertainty via Stochastic Data Centering. In this approach,
the authors propose that training an ensemble of DNNs with data
sets shifted by a constant bias allows for estimating model uncer-
tainty by assessing the variability across predictions from these en-
semble members. They further introduce a method to achieve sim-
ilar uncertainty estimation using a single DNN [55].

Bayesian Methods. Bayesian neural networks (BNNs) utilize
prior distributions on the model parameters of DNNs to quan-
tify epistemic uncertainty [17, 34]. Training these networks typi-
cally are computatinally expensive and involves methods such as
stochastic gradient MCMC [37] and variational inference [24].

2.5 Ensemble Method

Ensemble techniques work on the idea that a group of learn-
ers of comparable competence is commonly better than a single
learner [47]. Ensemble methods provide an inherent way to mea-
sure predictive uncertainty by assessing the differences among var-
ious predictions [35, 40], besides just enhancing the generalization



Figure 1: The schematic of the MCDropout-enabled INR model which
uses a residual block-based MLP architecture. Dropout layer is
added at the last two residual blocks to generate uncertainty esti-
mates during inference time. The INR architecture for the Ensemble
method is identical to this, except there are no dropout layers.

error. Therefore, the predictive uncertainty of DNNs can be cal-
culated by taking ensemble methods into account [18, 46]. Deep
Ensembles [34] are proposed by Lakshminarayanan et al., where
DNNs are designed with two heads that give both the prediction
and the associated uncertainty. In essence, Deep Ensemble learning
can be equivalent to an approximation of Bayesian averaging [45].
In Bayesian averaging, the prediction of the final model is given as
follows:

prediction =
∫

PW (x) π(W |D) (1)

Here, PW (x) denotes the probabilistic prediction for sample x, and
π(W |D) is the posterior probability distribution on the neural net-
work weights, and D is the training data. In practice, estimation the
above integral is very challenging, and exploration of all the modes
of π(W |D) is not needed to calculate this integral precisely [45].
This observation suggests that, from a set of ensemble members,
averaging predictions without weights can be viewed as an approx-
imation of Equation 1 [45]. It should be noted that randomizing
the training data and initializing parameters randomly introduces
enough variety in each learned ensemble member to effectively pre-
dict the uncertainty during the training process, a technique adopted
in this work to generate the Deep Ensemble model. It is worth
mentioning that Ensemble techniques often surpass the techniques
that depend on probabilistic back-propagation and Monte Carlo
dropout [18, 5, 38, 56], and hence Ensemble methods are often re-
garded as the state-of-the-art. They also show more resilience to
changes in data distribution.

2.6 MCDropout Method

Dropout [14, 27] is primarily used as a regularization technique,
which is applied for fine-tuning machine learning models and pre-
venting overfitting by optimizing the adjusted loss function. Gal
et al., in their seminal work [14], propose a new viewpoint on
how dropout can be efficiently used as a method for approximate
Bayesian inference in deep Gaussian processes. By using dropout
at test time and running many forward passes with different dropout
masks, the model generates a range of predictions rather than a sin-
gle point estimate and is equivalent to sampling from the Bayesian
posterior distribution, P(W | X ,Y ), where W is the weights of the
neural network model, X is training data, and Y is target output. The
mean of these sampled predictions acts as the expected output of the
model. Then, the epistemic uncertainty of the DNN can be conve-
niently estimated by calculating the standard deviation among these
sampled predictions [52]. By collecting Monte Carlo (MC) sam-
ples from the network, which is dropout-enabled, such probabilis-
tic predictions are obtained by running multiple forward passes at
the time of inference, which is known as the Monte Carlo Dropout
(MCDropout) method.

3 UNCERTAINTY-AWARE IMPLICIT NEURAL REPRESENTA-
TION OF SCALAR FIELD DATA

3.1 Implicit Neural Representation
Implicit neural representations (INRs) using periodic activation
functions have shown promising results for learning representations
of coordinate-based data sets. Input coordinates within the data do-
main are mapped to their associated output values using such neu-
ral networks. By using a sinusoidal activation function in a feed-
forward neural network, known as SIREN (sinusoidal representa-
tion network), INRs can be effectively constructed, as proposed by
Sitzmann et al. [53] in their research. Recent works have employed
many variations of SIREN to address multiple complex problems
in the scientific data visualization community, achieving state-of-
the-art results [36, 21, 54, 48]. The achievements of these recent re-
search efforts have inspired us to build our uncertainty-aware model
by applying SIRENs as the base neural network architecture.

3.2 Model Architecture
Our objective is to learn a function that represents the mapping from
the input data coordinate domain to the corresponding scalar value
domain using an implicit neural network (INN). We make our base
model a multilayer perceptron for this purpose. It has d input neu-
rons (d can be 2 or 3 depending on the dimensionality of the scalar
field being modeled), l hidden layers, and 1 neuron in the output
layer. As proposed in [25], we strengthen the foundational SIREN
architecture by combining residual blocks and skip connections to
enhance the model’s learning capacity and ensure steady training of
the deep network. The input to our model is a d-dimensional coor-
dinate vector, which corresponds to an output scalar value. There-
fore, our implicit neural network learns a function F(θ) : Rd → R,
where θ represents the parameters of the neural network.

3.3 Uncertainty Quantification Using MCDropout
Method

The architecture implemented for the MCDropout method is de-
picted in Fig. 1. At the last two residual blocks, a post-activation
dropout layer is added to make our model dropout-enabled. This
is done to conveniently calculate the prediction uncertainty during
inference for the MCDropout method. Additionally, during train-
ing, dropout layers also help with regularization. In principle, a
dropout layer should be incorporated for each residual block to ap-
proximate a fully Bayesian neural network [31]. However, Kendall
et al. [31] show that adding dropout at each residual block or after
each hidden layer can act as a strong regularizer, potentially reduc-
ing the overall prediction accuracy [31]. They further suggest that
incorporating dropout to the last layer or a small subset of layers
is sufficient to generate high-quality predictions along with reliable
uncertainty estimates. Hence, we use dropout layer only at the last
two residual blocks to approximate a partial Bayesian neural net-
work to produce accurate predictions as well as robust uncertainty
estimates. The impact of using different number of dropout layers
on the model performance has been further studied in Section 5.

As discussed previously, inference using the MCDropout
method involves generating a set of Monte Carlo samples by per-
forming multiple forward passes of the dropout-enabled trained net-
work. Hence, we generate m instances (realizations) of the scalar
field and then calculate the average scalar field, serving as the pre-
dicted (expected) scalar field. Typically, the number of samples
needed is decided by checking the convergence of the computed
expected (averaged) field, meaning that adding more Monte Carlo
samples does not improve the reconstruction quality. The uncer-
tainty associated with each grid point is calculated by measuring
the standard deviation among the m scalar values. Note that this
uncertainty is measured at each grid point in the spatial domain.
However, since our focus in this work is to estimate fine-grained un-
certainty in the volume rendered images, we further quantify uncer-



Figure 2: Volume visualization of Teardrop data set for three repre-
sentative MC-sampled fields from the MCDropout method (top row)
and three representative fields generated from three ensemble mem-
bers (bottom row) for the Ensemble method. The ground truth is
shown in Fig. 3. It is observed that individual MC sampled fields
produce inaccurate visualization at the thin central segment of the
Teardrop data, highlighted by red dotted circles for the MCDropout
method. In contrast, the visualization produced by individual ensem-
ble members are more accurate.

tainty in image space using the volume rendering. To estimate the
image space pixel-wise uncertainty for enabling uncertainty-aware
volume visualization, we compute the uncertainty of the pixel color
values after collecting outputs of ray casting algorithm when ap-
plied to each individual MC volume realization (100 in our exper-
iments). Details of this pixel-wise uncertainty calculation are pro-
vided in Section 4.1.

3.4 Uncertainty Quantification Using the Ensemble
Method

The model architecture for the Ensemble model is the same as
shown in Fig.1, except no dropout layers are used. Multiple in-
stances of this model are trained to produce a Deep Ensemble
model[34]. To create a robust ensemble model, we train n instances
of the SIREN model. The variability across each ensemble member
is ensured by randomly shuffling the order of data points at each it-
eration during training. Once training is completed, the averaged
prediction from all n member models at each grid point produces
the expected volume field. Note that the number of ensemble mem-
bers needed is decided by checking the convergence of the com-
puted expected (averaged) volume, meaning that adding more en-
semble member models does not improve the reconstruction qual-
ity. Similar to the MCDropout method, we compute the data space
uncertainty associated with each grid point. Subsequently, image
space pixel-wise uncertainty for the Ensemble method is then com-
puted following the same strategy as the MCDropout method, and
is further discussed in Section 4.1.

3.5 Loss Function and Hyperparameters
Our uncertainty-aware SIREN model uses 10 residual blocks for
MCDropout and Ensemble methods. We use 50 neurons in each
hidden layer to generate consistent and comparable results while
producing a compact uncertainty-aware representation of the vol-
ume data set. Conventional mean squared error loss (Lmse) is used
to train the network. We use empirical experimentation to identify a

Figure 3: Visualization of ground truth, expected (averaged) volume
visualization by the MCDropout method, and expected (averaged)
volume visualization by the Ensemble method of Teardrop data set.
We observe that both MCDropout and Ensemble methods produce
comparable and high-quality rendering results.

suitable learning rate and batch size combination that produces sta-
ble, consistent, and high-quality results across all data sets. We uti-
lize a batch size of 2048 with the Adam optimizer [32], setting the
learning rate at 0.00005 and the two Adam optimizer coefficients
β1 and β2 to their default values at 0.9 and 0.999, respectively. Fur-
thermore, a learning rate decay mechanism is adopted to optimize
the training process, with a decay factor of 0.8 and a step size of
15. All the models were trained for 300 epochs to ensure conver-
gence and robustness in performance evaluation. During training,
we use a low dropout rate (probability) of η = 0.001 for Hurricane
Isabel and Combustion data sets. This training dropout rate results
in a poorly performing MCDropout model for the Teardrop data
set. Hence, we use a higher dropout rate of η = 0.05, which pro-
duces a stable MCDropout model for the Teardrop data set. During
inference, we use a consistent dropout rate of η = 0.1 for all the
data sets to generate robust uncertainty estimates. No dropout is
used for training ensemble models. This consistent approach in
model design ensures a rigorous assessment of the effectiveness of
uncertainty-aware deep neural networks across various data sets.

Table 1: Description of data sets that are used in the experimentation.

Data set Dimensionality Spatial Resolution
Teardrop 3D 64 × 64 × 64

Isabel Pressure (T=25) 3D 250 × 250 × 50
Isabel Velocity (T=25) 3D 250 × 250 × 50

Combustion Mixfrac (T=41) 3D 240 × 360 × 60

4 UNCERTAINTY-AWARE VOLUME VISUALIZATION

We perform a comprehensive study of the uncertainty-aware INRs
using four volume data sets. The dimensionality and spatial resolu-
tion of these data sets are reported in Table 1. A GPU server with
NVIDIA GeForce GTX 1080Ti GPUs with 12GB GPU memory is
used for model training and volume reconstruction. The rendering
is done on a MacBook Pro with an Apple M1 Pro chip with 10
CPU and 16 GPU cores and 16GB memory. All the models are im-
plemented in PyTorch [41]. Teardrop data set is generated using a
mathematical function [33] sampled on a 64×64×64 uniform grid.
Hurricane Isabel data was produced by the Weather Research and
Forecast model, courtesy of NCAR and the U.S. National Science
Foundation (NSF). Turbulent Combustion data set is made available
by Dr. Jacqueline Chen at Sandia Laboratory through U.S. Depart-
ment of Energy’s SciDAC Institute for Ultrascale Visualization.

4.1 Computation of Pixel-wise Prediction Uncertainty
for Volume Visualization

We use the trained INRs to reconstruct the entire volume to com-
prehensively assess the model’s reconstruction quality, prediction



Figure 4: Prediction uncertainty and error maps of Teardrop data. Both methods produce high uncertainty and error at the thin central segment
(highlighted by red dotted circles). Such uncertainty information can readily help the users to identify regions where the model is under-
confident. We further observe that the teardrop’s boundary also shows higher uncertainty and error, indicating that both methods are also
unable to confidently predict the sharp boundary regions.

uncertainty, and error. Through empirical experimentation, we ob-
serve that 100 MC samples for the MCDropout method and 10 en-
semble members for the Ensemble method allow us to produce ro-
bust estimates of volume data. A study on how reconstruction qual-
ity changes given different numbers of MC samples for the MC-
Dropout method and a different number of ensemble members for
the Ensemble method is provided later in Section 5. Thus, unless
specified otherwise, we use 100 MC samples for MCDropout and
10 ensemble members for the Ensemble method in all experiments.

Our goal is to enable visualization and comprehension of fine-
grained prediction uncertainty when model-reconstructed scalar
data sets are visualized using volume rendering methods for any
user-specified transfer functions. As the rendered image depends
on transfer functions, the associated uncertainty map should also be
updated when the transfer function changes. Both uncertainty esti-
mation methods we use require multiple volume realizations (100
for the MCDropout method and 10 for the Ensemble method) to
generate the final volume-rendered image and the associated uncer-
tainty map. We utilize individual volume realizations to estimate
the fine-grained pixel-wise uncertainty from the model-predicted
results. Given a user-specified transfer function and view direc-
tion, our method applies the ray casting algorithm to each volume
realization (100 for the MCDropout method and 10 for the Ensem-
ble method) and collects the RGB pixel values for each instance.
Then, the final result is obtained by averaging the RGB pixel col-
ors, and the associated uncertainty is estimated by computing the
pixel-wise standard deviation. We first estimate each color chan-
nel’s uncertainty (standard deviation) from the volume rendering
results. Then, we compute the final mean pixel uncertainty by av-
eraging the individual color channel uncertainty values. The uncer-
tainty values are then normalized and stored as grayscale images,
where darker colors indicate higher uncertainty for the correspond-
ing pixel locations. As the transfer function changes, this process
is repeated so that the updated result and corresponding uncertainty
map can be generated for visualization.

4.2 Uncertainty-Informed Volume Visualization

In the following, we qualitatively and visually study the volume vi-
sualization results and the estimated uncertainty patterns for MC-
Dropout and Ensemble methods using several volume data sets.
Then, in Section 5, we provide a quantitative evaluation of volume
reconstruction quality and uncertainty estimates for both methods.
Next, we further comprehensively evaluate the proposed methods
under varying parameter configurations to assess their applicabil-
ity, usefulness, and implications.

4.3 Visual Analysis for Teardrop Data

Our first case study uses the Teardrop data set [33]. To study the
volume visualization results obtained from the two uncertainty es-
timation methods, we generate 100 Monte Carlo sample volume re-
constructions for the MCDropout method and 10 sample volume

Figure 5: Prediction uncertainty visualization of Teardrop data set
for individual RGB color channels. We observe that the prediction
uncertainty patterns are comparable across all three color channels
for the MCDropout and Ensemble methods.

reconstructions for the ensemble method (as 10 ensemble mem-
bers are used). In Fig. 2, the top row shows volume rendered re-
sults of three individual MC sample volumes for the MCDropout
method. Similarly, the bottom row depicts visualization generated
by three separate ensemble members. We observe that the individ-
ual ensemble members renders the thin central segment region (as
highlighted by red dotted circles) more accurately than the individ-
ual MCDropout sampled fields when compared against the ground
truth rendering shown in Fig. 3. All the volume visualization results
use fixed transfer functions, viewpoints, and all other rendering pa-
rameters to ensure fair comparison.

Next, in Fig. 3, we show the ground truth rendering, the ren-
dering of the expected (averaged) field constructed using 100 MC
sample fields for the MCDropout method and 10 ensemble member
reconstructed fields for the Ensemble method, respectively. We ob-
serve that the expected field generates accurate and visually similar
volume rendering results for both methods. Both MCDropout and
Ensemble methods accurately preserve the thin central segment, as
red dotted circles show.

In Fig.4, we present the pixel-wise prediction uncertainty and er-
ror maps for the Teardrop data set using both the MCDropout and
Ensemble methods. The uncertainty represents by the pixel-wise
standard deviation, averaged over all three color channels. To es-
timate the pixel-wise standard deviation, we perform ray casting
on 100 MC sampled volumes for the MCDropout method and on
10 ensemble member generated volumes for the Ensemble method.
The standard deviation for each color channel is computed from the
final pixel colors and then averaged to produce the final uncertainty



image shown in Fig.4. Darker pixels indicate higher uncertainty.
The image is generated by first computing pixel-wise average un-
certainty values, then mapping these values to a grayscale colormap
where darker colors reflect higher uncertainty. The error maps are
computed by estimating the channel-wise absolute error between
the ground truth pixel colors and the predicted pixel colors. Then
the average error is calculated and mapped to a grayscale colormap
where darker colors reflect higher error. All uncertainty and error
maps are visually comparable as they are generated using a consis-
tent grayscale colormap. Users can compare error and uncertainty
between the two uncertainty-estimation methods by comparing the
darkness of the pixel intensities. It is observed that both methods
exhibit higher prediction uncertainty as well as higher error at the
thin segment of the teardrop, indicating that the model is less con-
fident and more erroneous in predicting values in this region. Ad-
ditionally, higher uncertainty and error is noted at the boundary of
the teardrop structure, where a sharp change in color gradient is ob-
served, further indicating reduced confidence in boundary predic-
tions. The results indicate that the uncertainty and error are largely
correlated for this data set.

Prediction uncertainty maps for each individual color channel
are provided in Fig. 5. The top row displays the results for the
MCDropout method, while the bottom row shows the channel-wise
uncertainty maps for the Ensemble method. We observe that the
estimated uncertainty patterns are identical for each color channel,
indicating that each color channel incurs comparable uncertainty
estimates in similar spatial regions.

4.4 Visual Analysis for Isabel Pressure Field
Our next case study utilizes the Pressure field from the Hurricane
Isabel data set. Both the MCDropout and Ensemble methods pro-
duce highly accurate visualizations when compared to the ground
truth, as shown in Fig. 6. A close inspection of the uncertainty
map generated by the MCDropout method reveals high uncertainty
in the Hurricane eye feature region and moderate pixel uncertainty
in the surrounding area. In contrast, the Ensemble method pro-
duces a cleaner uncertainty map, with higher uncertainty confined
to only a few pixels in the land region (bottom right corner). These
uncertainty maps indicate that the Ensemble method yields more
robust predictions with high confidence, resulting in more reliable
volume visualization images compared to the MCDropout method.
When the two error maps from the two methods are investigated, it
is observed that the error and uncertainty maps convey different in-
formation about the models and the MCDropout method produces
fewer pixels with higher errors.

In Fig. 7, we present the channel-wise uncertainty maps for the
Isabel Pressure field using both the MCDropout (top row) and En-
semble (bottom row) methods. It is observed that the Hurricane eye
region exhibits high prediction uncertainty across all three color
channels for the MCDropout method, with moderate uncertainty
in the rest of the spatial domain. This indicates that model pre-
diction uncertainty can affect individual color channels differently,
and displaying channel-wise uncertainty maps allows for a detailed
investigation of the impact of uncertainty on each color channel
separately. For the Ensemble method, the overall uncertainty for all
three color channels is much lower, with minimal variation in the
uncertainty patterns among them.

4.5 Visual Analysis for Isabel Velocity Magnitude Field
Fig. 8 illustrates uncertainty-aware volume visualization results for
the Velocity Magnitude field of the Hurricane Isabel data set. As
with the Pressure field, both the MCDropout and Ensemble meth-
ods produce accurate volume visualizations. The uncertainty maps
reveal a similar pattern: the MCDropout method shows moderate
uncertainty over a broader area around the Hurricane eye feature,
while the Ensemble method exhibits higher uncertainty concen-

trated around the eye wall of the Hurricane. The error maps from
both methods display similar error patterns, with higher prediction
errors concentrated around the Hurricane eye. Examining the un-
certainty and error maps of the Ensemble method reveals that, while
it predicts the regions around the Hurricane eye with greater con-
fidence, it can still make errors in these areas. This indicates in-
stances where the model is making overconfident predictions.

4.6 Visual Analysis for Combustion Mixfrac Field
Finally, we present the visualization results for the Mixture Frac-
tion (Mixfrac) field of the Turbulent Combustion data set in Fig. 9.
Both methods produce visually identical volume rendering results
for the Mixfrac field when compared to the ground truth. How-
ever, a comparison of the two uncertainty maps, generated by the
MCDropout and Ensemble methods, reveals that the MCDropout
method produces a smoother uncertainty map, while the Ensem-
ble method yields a relatively noisier uncertainty map. Addition-
ally, the Ensemble method shows high uncertainty in the turbulent
flame regions, whereas the MCDropout method results in lower pre-
diction uncertainty, indicating more robust predictions for such re-
gions. A close examination of the two error maps reveals that both
methods produce similar patterns, with higher prediction errors pre-
dominantly occurring in the complex burning regions.

5 EVALUATION AND PARAMETER STUDY

5.1 Reconstruction Quality and Prediction Error in Vol-
ume Space

Table 2 presents a comparative study between the MCDropout
and Ensemble methods in terms of averaged (expected) volume
reconstruction quality measured using Peak signal-to-noise-ratio
(PSNR). We use predictions from 100 MC samples for MCDropout
and 10 ensemble members for Ensemble method to compute the fi-
nal averaged field. Besides PSNR, we also estimate the Root Mean
Squared Error (RMSE) between the reconstructed and ground truth
fields. We observe that the reconstruction quality and RMSE be-
tween the MCDropout method and a single model trained with-
out any dropout layer are comparable. However, the Ensemble
method consistently produces the best reconstruction quality (high-
est PSNR) with minimum RMSE for all the data sets.

Table 2: PSNR (dB) (↑) and RMSE (↓) values for different methods
(No Dropout, MCDropout with 100 samples, and Ensemble with 10
members) applied over data sets. We observe Ensemble method
gets higher PSNR and lower RMSE consistently, indicating better
performance in reconstruction.

Data set Method PSNR (dB) RMSE

Teardrop
No Dropout 72.009 0.040

MCDropout (100 MC samples) 71.694 0.042
Ensemble (10 members) 76.832 0.023

Isabel Pressure
No Dropout 56.935 10.683

MCDropout (100 MC samples) 56.922 11.116
Ensemble (10 members) 57.068 10.542

Isabel Velocity
No Dropout 44.324 0.469

MCDropout (100 MC samples) 44.178 0.475
Ensemble (10 members) 44.717 0.451

Combustion Mixfrac
No Dropout 48.779 0.004

MCDropout (100 MC samples) 48.475 0.004
Ensemble (10 members) 49.434 0.003

5.2 PSNR Study with Varying Number of Ensemble
Members

Table 3 illustrates the effect of varying the number of ensemble
members on PSNR. Notably, achieving robust predictions requires
fewer ensemble members compared to the MCDropout method.
The data shows that increasing the number of ensemble members
slowly improves the PSNR and essentially leading the PSNR value
to become saturated for 10 ensemble members. Nevertheless, for



Figure 6: Volume visualization of the Pressure field of Hurricane Isabel data set. We observe that both MCDropout and Ensemble methods
produce visually identical volume rendering results when compared against the ground truth. The uncertainty maps indicate higher uncertainty
is produced by the MCDropout method at the Hurricane eye region, with moderate uncertainty away from the eye region. However, the Ensemble
method produces very confident visualization results with only fewer pixels incurring higher uncertainty near the land region (bottom right corner).
The error maps show pixel errors when the predicted image is compared against ground truth. We observe that uncertainty and error maps are
not correlated.

Figure 7: Prediction uncertainty visualization of the Pressure field
of Hurricane Isabel data set for individual RGB color channels. We
observe that the three channels exhibit different uncertainty patterns,
with the higher uncertain regions being concentrated around the Hur-
ricane eye region for the MCDropout method. The uncertainty for all
three channels for the Ensemble method is comparatively lower, in-
dicating a more robust prediction.

consistency and robustness across our experiments, we utilize 10
ensemble members.

Table 3: PSNR (dB) (↑) when the varying number of Ensemble mem-
bers are used for computation in the Ensemble method.

Data set #Ens mem
= 2

#Ens mem
= 5

#Ens mem
= 7

#Ens mem
= 10

Teardrop 76.321 76.682 76.738 76.778
Isabel Pressure 57.838 58.176 58.321 58.425
Isabel Velocity 44.812 45.174 45.275 45.372

Combustion Mixfrac 49.931 51.723 51.997 52.401

5.3 PSNR Study with Varying Number of MC Samples

Table 4 shows the PSNR values of the scalar obtained by averaging
different numbers of MC samples. Increasing the number of MC
samples up to 100 results in a slight PSNR improvement. Beyond
this point, the PSNR gains become marginal, making it impractical
to consider more samples. Therefore, to balance computation time
and prediction quality, we use 100 MC samples for all experiments
involving the MCDropout method.

Table 4: PSNR (dB) (↑) when the varying number of MC samples are
used for computation in the MCDropout method.

Data set #MCSamp
=10

#MCSamp
=25

#MCSamp
=50

#MCSamp
=75

#MCSamp
=100

Teardrop 69.264 70.749 71.425 71.663 71.782
Isabel Pressure 54.679 55.869 56.356 56.530 56.922
Isabel Velocity 43.671 43.975 44.081 44.117 44.135

Combustion Mixfrac 47.165 47.967 48.270 48.375 48.428

5.4 Impact of Different Number of Ensemble Members
on Average Pixel-wise Image space Uncertainty

Table 5 illustrates the impact of varying the number of ensemble
members on the average pixel-wise uncertainty value computed in
the image space using the volume rendered pixel color values. This
value reflects the normalized estimated uncertainty (standard devi-
ation) calculated from the RGB color channels using the Ensemble
method. We observe that the uncertainty value gradually saturates
as the number of ensemble members increases up to 10.

Table 5: Image space uncertainty values with different number of en-
semble members. We observe that by increasing the number of en-
semble members, the uncertainty value tends to become saturated.

Data set #Ens mem
= 2

#Ens mem
= 5

#Ens mem
= 7

#Ens mem
= 10

Teardrop 0.018 0.014 0.012 0.010
Isabel Pressure 0.038 0.067 0.073 0.078
Isabel Velocity 0.091 0.155 0.169 0.179

Combustion Mixfrac 0.209 0.329 0.351 0.365

5.5 Impact of Different Number of Dropout Layers on
MCDropout Model Performance

We conduct experiments on the Isabel Pressure and Teardrop data
sets to assess the detailed impact of varying the number of dropout
layers on model performance and prediction accuracy. We present
results of averaged volume reconstruction quality results using
models with dropout added at the (1) last two residual blocks, (2)
last half of the blocks, and (3) all the residual blocks. The results,
shown in Table 6, show that with an increased number of dropout
layers, the PSNR value drops slowly, as was reported by Kendall
et al. [31] since an increased number of dropout layers can act as a
strong regularizer. Hence, in our work, we use dropout at the last
two residual blocks to produce high-quality volume reconstruction
and robust uncertainty estimates.

5.6 Reconstruction with Different Dropout Probabilities
Table 7 presents a study assessing the quality of volume data re-
construction, measured by PSNR, averaged over 100 MC samples
across different test time dropout probabilities. We observe that



Figure 8: Volume visualization of the Velocity Magnitude field of Hurricane Isabel data set. We observe that both MCDropout and Ensemble
methods produce visually identical volume rendering results when compared against the ground truth. The uncertainty map indicates moderate
uncertainty in the region surrounding the Hurricane eye feature for the MCDropout method. In contrast, the Ensemble method produces an
uncertainty map where fewer pixels show high uncertainty compared to the MCDropout method. The error maps show pixel errors when the
predicted image is compared against ground truth. We observe similar error maps for both methods while also note that uncertainty and error
maps are not correlated.

Figure 9: Uncertainty-informed volume visualization of the Mixfrac field of Turbulent Combustion data set. We observe that both MCDropout
and Ensemble methods produce visually identical volume rendering results when compared against the ground truth. The uncertainty maps
show that while the MCDropout method produces smoother and moderate to low uncertainty, the Ensemble method results in noisier and higher
uncertainty inside and around the burning flame region. The two error maps indicate that the MCDropout method incurs more error in pixel
values as compared to the Ensemble method.

Table 6: We report how the reconstruction quality (PSNR (↑))
changes when different numbers of Dropout layers are used for the
MCDropout method. Three configurations are studied: Dropout used
(1) at the last two residual blocks; (2) at the last half of the residual
blocks; (3) at all the residual blocks.

Data Set Last two
Res. Block

Last half
Res. Block

All
Res. Block

Teardrop 71.694 68.048 62.158
Isabel Pressure 56.922 56.784 56.189

PSNR mostly remains stable up to the dropout probability of 0.2,
and as the dropout probability is further increased, expectedly, the
PSNR value gradually drops. In their work, Gal et al. [14] suggest
that using a small test time dropout probability is sufficient to esti-
mate the model uncertainty robustly. Therefore, in our experiments,
we use a dropout probability of 0.1 consistently for all the data sets
to generate robust and meaningful uncertainty estimates.

5.7 Impact of Different Number of MC Samples on Aver-
age Pixel-wise Image space Uncertainty

Table 8 presents the impact of varying the number of MC sam-
ples on the average pixel-wise uncertainty value computed in the
image space using the volume rendered pixel color values. This
value indicates the normalized estimated uncertainty (standard de-
viation) calculated from the RGB color channels using the MC-
Dropout method. It is seen that the uncertainty value gradually sat-
urates as the number of MC samples reach 100.

Table 7: PSNR (dB) (↑) of 100 MC samples with different test time
dropout probabilities during inference.

Data Set Different Test Time Dropout Probability
0.05 0.1 0.2 0.3 0.4 0.5

Teardrop 71.878 71.694 71.282 70.567 69.649 68.437
Isabel

Pressure 56.789 56.922 56.084 55.295 54.23 52.728

Isabel
Velocity 44.268 44.178 43.924 43.45 42.788 41.843

Combustion
Mixfrac 48.658 48.474 47.855 46.848 45.45 43.674

5.8 Reconstruction Quality and Error in Image Space

Table 9 provides the PSNR and RMSE values computed using the
averaged volume-rendered images for both the methods. The PSNR
value reflects the reconstruction quality, while the RMSE indicates
the error when the ground truth image pixel values are compared
against the averaged image for both methods. The detailed com-
putation of these averaged volume-rendered images has been dis-
cussed in Section 4.1. A close inspection of Table 9 reveals that
the Ensemble method generally produces higher quality volume-
rendered images with lower RMSE values.

5.9 Comparison of Training and Inference Time Be-
tween MCDropout and Ensemble Methods

Table 10 presents the training and inference times for both meth-
ods. For inference, we report both the volume reconstruction time



Table 8: Image space uncertainty values with different number of MC
samples. We observe that by increasing the number of MC samples
up to 100, the uncertainty values tend to become saturated.

Data Set #MCSamp
=10

#MCSamp
=25

#MCSamp
=50

#MCSamp
=75

#MCSamp
=100

Teardrop 0.213 0.231 0.239 0.239 0.24
Isabel

Pressure 0.199 0.213 0.217 0.219 0.22

Isabel
Velocity 0.245 0.261 0.266 0.268 0.269

Combustion
Mixfrac 0.637 0.671 0.681 0.685 0.686

Table 9: Image space PSNR(dB) (↑) and RMSE (↓) values for MC-
Dropout (100 samples) and Ensemble method (10 members). We
observe that the Ensemble method generally produce higher PSNR
and lower RMSE values.

Data set Method PSNR (dB) RMSE

Teardrop MC-Dropout (100 MC samples) 48.68 0.882

Ensemble (10 members) 49.238 0.822

Isabel Pressure MC-Dropout (100 MC samples) 53.344 0.384

Ensemble (10 members) 56.050 0.525

Isabel Velocity MC-Dropout (100 MC samples) 48.122 0.824

Ensemble (10 members) 49.072 0.739

Combustion Mixfrac MC-Dropout (100 MC samples) 48.394 0.959

Ensemble (10 members) 51.431 0.676

and the ray casting time for each method. The Ensemble approach
has faster inference times since it uses predictions from only 10
members, whereas MCDropout generates 100 MC samples, result-
ing in longer inference times. Training a dropout-enabled MC-
Dropout model and a single ensemble member takes a comparable
amount of time. However, since we train 10 ensemble members to
build a robust Ensemble model, the total training time is 10 times
greater, making the Ensemble method computationally more ex-
pensive than the MCDropout method. Additionally, storing model
checkpoints for the Ensemble method requires 10 times more stor-
age than for the MCDropout method. This significant difference
in training time often makes MCDropout preferable for achieving
timely results with robust uncertainty estimates.

5.10 Model vs. Raw Data Size

As Implicit Neural Representations (INRs) like ours have
proven effective for compactly representing large-scale volumetric
data [36], Table 11 compares the sizes of the models and the raw
data. As expected, MCDropout requires approximately ten times
less storage than the Ensemble method, which consists of ten in-
dividual models, whereas MCDropout is a single model-based ap-
proach. Thus, when both data compression and uncertainty esti-
mation are required, the MCDropout method offers a significantly
higher compression ratio.

Table 10: Training and inference timings for MCDropout and Ensem-
ble Methods. During reconstruction, we use 100 MC samples for the
MCDropout method and 10 ensemble member outputs for the En-
semble method.

Data Set
Training Time (Hours) Inference time (Seconds)

Reconstruction time Rendering time
MCD ENS MCD ENS MCD ENS

Teardrop 0.42 0.43 28.95 2.58 49.902 0.838
Isabel

Pressure 5.24 5.36 328.14 31.86 24.586 0.779

Isabel
Velocity 5.18 5.18 330.91 31.64 38.554 0.945

Combustion
Mixfrac 8.71 8.54 545.56 31.63 40.403 1.183

Table 11: Comparison of model size and raw data size.

Data Set Raw Data Size (KB) MCDropout Model
Size (KB)

Ensemble Model Size
(10 members) (KB)

Teardrop 2048 216 2160
Isabel Pressure 12208 220 2200
Isabel Velocity 12208 220 2200

Combustion Mixfrac 20252 220 2200

6 DISCUSSION

Uncertainty-agnostic vs. Uncertainty-aware DNNs. In this
work, we advocate the use of deep neural networks (DNNs) that
can quantify their prediction uncertainty when employed to per-
form scientific volumetric data visualization tasks. As demon-
strated here, these uncertainty-aware neural networks provide im-
portant insights into the reliability of their predictions. By effec-
tively communicating this uncertainty to experts, they can make
more informed decisions regarding the data features from the visu-
alization results. Integrating uncertainty is also essential for foster-
ing trust in DNN-predicted results used in scientific visualization
research.

MCDropout vs. Ensemble Method. Our research explores two
approaches for estimating uncertainty using Implicit Neural Rep-
resentations (INRs) as the base DNN architecture to visualize vol-
ume data sets. Despite its long training times, we employ Deep
Ensemble, a well-recognized standard, and investigate the single-
model-based MCDropout method to address computational chal-
lenges. MCDropout is selected for its theoretical elegance and ease
of integration into existing DNN models with minimal modifica-
tions. Our results indicate that both methods can offer meaningful
prediction uncertainty, while the Ensemble method generally pro-
duces more accurate and robust predictions with higher confidence
compared to the MCDropout method. It is also observed that the
uncertainty maps generated by these two methods could be similar
(for the Teardrop data set) as well as different and vary across dif-
ferent data sets. However, considering the extremely high training
time required to build a robust ensemble model, MCDropout can
be a reliable alternative to the Ensemble method when computa-
tional resources are constrained, and prompt uncertainty estimation
is essential.

Error vs. Uncertainty. Implicit neural models like ours have
been proven to be highly effective in generating compressed repre-
sentations of large-scale volume data sets [36]. It has been demon-
strated that efficient volume visualization can be achieved using
only the compressed INR model-reconstructed data, eliminating the
need to access the raw volume data. In these applications, quan-
tifying error becomes challenging when the entire visual analysis
relies on model-generated data, as the raw data may not be avail-
able. Our uncertainty-aware INRs can enhance the trustworthiness
of these model-generated results by offering prediction uncertainty
and model confidence information to domain experts.

7 CONCLUSIONS AND FUTURE WORK

This paper underscores the significance of understanding uncer-
tainty by applying two deep uncertainty estimation methods. We
investigate how prediction uncertainty can benefit DNN-based vol-
ume data modeling and visualization tasks. Looking ahead, our
research aims to extend to time-varying and multivariate volumet-
ric data sets. Additionally, we plan to explore alternative single-
model-based deep uncertainty estimation techniques that are com-
putationally efficient for interactive uncertainty-aware volume visu-
alization. The insights gained from uncertainty estimates can pin-
point areas that require targeted training and highlight model limita-
tions in specific data regions. In critical scenarios, the confidence a
model has in its predictions is vital, as acknowledging uncertainties
fosters greater trust in the model.
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