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Abstract—We present a framework to provide privacy preserv-
ing (PP) federating learning (FL) across multiple computational
and experimental facilities. This work joins the compute capabil-
ities of National Energy Research Scientific Computing Center
(NERSC) and Oak Ridge National Laboratory Research Cloud
(ORC) with simulated experimental data, such as those produced
at the SLAC National Accelerator Laboratory and Spallation
Neutron Source (SNS). We describe the software infrastructure
developed to provide privacy for computational and experimental
networks. We developed algorithmic privacy across the federated
system by embedding database security, computation, and com-
munication into the federation architecture, utilizing scientific
tools developed by the experimental community.

Index Terms—Federated Machine Learning, Distributed Data,
Privacy, Security, Scientific Ecosystems

I. INTRODUCTION

The DOE has maintained leadership in computational and
physical science over its history by continually building and
upgrading leadership facilities that the world uses to further
our scientific understanding. Figure 1 displays the locations of
just a few of the large experimental scattering facilities run by
the DOE. Traditionally, these facilities operated independently
of each other because pushing the edge of scientific and
computing facilities requires a focused approach. Over the last
two decades the Scientific Discovery through Advanced Com-
puting (SciDAC) program at the DOE [1] has been successful
in bringing together diverse disciplines through partnerships of
applied mathematicians, computer scientists, and scientists to
deliver breakthrough scientific results. Recently, there has been
an active drive to extend this collaborative approach to the
facilities level. The Integrated Research Infrastructure (IRI) is
a concerted effort by the DOE to seamlessly integrate research
facilities across the DOE complex to create next generation
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super facilities [2]. This program is in the development phase,
with an initial focus on developing the infrastructure for
a connected scientific ecosystem. The diverse partnerships
enabled by integrated scientific facilities will generate a new
set of security and privacy challenges that must be solved to
realize the full potential of this new paradigm.

Fig. 1. DOE large experimental scattering facilities are distributed across the
nation, with examples shown here. Movement of raw experimental data for
co-analysis is expensive and there are security concerns.

There has been explosive growth in the volume of computa-
tional and scientific experiments performed at ever-increasing
precision and resolution. Concurrently, similar growth is taking
place in computing and networking, providing new oppor-
tunities to analyze large complex data sets using machine
learning and artificial intelligence. Science is at unique cross-
roads, where integration of these advances with fundamental
computer science and mathematical research has the potential
to accelerate scientific discovery. Here, we specifically focus
on the problem of securely linking large experimental facilities
to large computational facilities that reside at different labora-
tories. Figure 2 depicts the PP-FL connecting three different
large experimental scattering facilities discussed herein. The
facilities provide three different scattering techniques, namely
Electron, Neutron, X-ray scattering. Each of these probes pro-
duces complementary information about material properties.
Methods that can synthesize the various results are needed to
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take full advantage of all the data produced at these facilities.
We assume that experimental data can come in two different
flavors, open science and secure science. The latter refers
to science that may be classified for national security, be
proprietary information, or require strong privacy protections
for other reasons. This project integrates the control and
data plane of INTERSECT [3], [4] for orchestrating the FL,
uses security standards for authentication to ensure private
access of data, includes network security for shared derivative
information between FL sites, and embeds algorithmic security
into the federated learning method used to learn and analyze
distributed experimental data.

Fig. 2. Secure and privacy preserving demonstration on multimodal scattering
data from three different facilities. Data at each facility is never moved and
can be either open science or secure/private science information.

The paper describes a computer science and mathematical
solution to enhance PP-FL across distributed experimental
facilities. This paper also demonstrates the additional benefits
that come from the design of our infrastructure. First, this
framework can securely operate on any combination of dis-
tributed, secure, and open data. This framework is generaliz-
able to arbitrary data formats and hardware setups. Second,
this framework allows for dynamically adding / removing
data sources during federated learning. Third, our algorithmic
security does not move the experimental data from its original
location or generation point. Instead, it only moves sparse,
encrypted information derived from the data. By using such
sparse information, there is an algorithmic benefit to privacy
provided by the ability to encrypt the sparsity pattern. The
subsequent reduction of network communications improves
energy efficiency as well. Currently, this energy efficiency is
bounded by the compression ratio of the lossless compression

of ML parameters. On going work is being done to fully iden-
tify benefits, both to computation and communication of more
advance scientific compresion methods in this framework.

II. FEDERATED PRIVACY PRESERVING FRAMEWORK

The DOE’s AI for Science reports [5], [6] outline the
need for intelligent systems, instruments, and facilities to
enable scientific breakthroughs with autonomous experiments,
self-driving laboratories, smart manufacturing, and AI-driven
design, discovery, and evaluation. The DOE’s Computational
Facilities Research Workshop report [7] identifies intelligent
systems/facilities as a challenge with enabling automation
and eliminating human-in-the-loop needs as a crosscutting
theme. The national science and technology council of the
president released a report outlining the national strategy
to advance Privacy-Preserving Data Sharing and Analytics
(PPDSA), where they identify FL as one of eight PPDSA
technology [8]. Together, these reports affirm that PP-FL will
play an important role in the future of the DOE complex.

Fig. 3. Leftmost boxes are an abstraction of the distributed locations in a
FL architecture. Individual machine learners at each location operating on
local data, where only machine learning parameters are transferred during the
training phase to centralized location or aggregator. Privacy preservation can
be increased through encryption of both data and communicated parameters.

To achieve the goals of enhancing Federate Learning abil-
ities as a PPDSA technology, we will bolster through com-
puter science and mathematical advancements into a com-
mon framework for scientific discovery. To this end, we
considered the privacy preserving methods in both the sci-
entific/computational ecosystems and embedded in algorithms
below.

Scientific/Computational Ecosystems.

• Build on the successes of ORNL’s Interconnected Sci-
ence Ecosystem (INTERSECT) federated software for
securely and efficiently executing computation on remote
resources distributed across facilities.



• Co-design our ML algorithms to seamlessly interface
with INTERSECT using algorithms that balance com-
putational loads across networked computing resources,
providing users with direct access to information and
methods developed in the greater scientific community.

Algorithmic Security and Privacy.

• Algorithmically enhance FL by embedding other key
PPDSA technologies into the learning architecture.

• Develop algorithmic database security across the different
FL locations by using the technologies of differential
privacy, synthetic data, and homomorphic reduction en-
cryption.

The framework of the FL used is presented in Figure 3.
FL arose from the need to train machine learning algorithms
on data distributed across multiple locations without moving
all of the data to a single physical location. FL is a PPDSA
technology because analysis can occur on distributed data
without having to risk transmitting data. FL only transmits
the machine learning parameters derived from the data across
the network, which provides a layer of security that has
clear limits. If an adversary intercepts the transmitted data,
there are known methods for reverse engineering the training
data from the machine learning parameters know as model
inversion attacks [12]. The goal of our developed approach was
to strengthen the security and privacy of FL by algorithmic
privacy protection on each dataset locally and then adding
algorithmic security across the network. The accuracy of our
proposed FL algorithm was tested against the gold standard
for testing FL algorithms, which is to compare against a single
learner with access to all distributed data. The details of our
INTERSECT solution are given schematically in Figure 4.

The PP methods employed, specifically synthetic data,
homomorphic computing, and their costs are listed in Table
I. Users are informed on the cost of each PP method and
can opt for any combination of these methods. A schematic
of the integration of these methods with network encryption
is displayed in Figure 3. This approach makes synthetic
data techniques straightforward and effective. Since our data
is generated by SasView simulation [13], it is possible to
generate completely new data using the same statistical dis-
tributions to achieve synthetic PP in our FL framework. We
achieve homomorphic computing using the privacy preserving
package CrypTen (version 0.4.0) [14], [15], where we perform
machine learning and prediction on encrypted data, producing
an encrypted answerer. Only users with the encryption key
and encryption method are able to use the machine learn-
ing algorithm to produce viable results. The last type of
PP methods used is network encryption, where the package
pyAesCrypt (version 6.1.1) is used to encrypt and decrypt
network parameter streams in the AES encryption format [16].
We use the federated algorithm proposed in [17], with out
low rank approximation, that has been demonstrated to be
robust and accelerated method for FL training. The focus of
this manuscript is to present PP-FL in advanced scientific
ecosystems, for a recent review of advances in FL and PP

we refer the reader to the review article [18].

III. NUMERICAL RESULTS

The implementation of PP-FL presented here was demon-
strated with small angle scattering (SAS) data, which is a
widely-employed materials characterization technique imple-
mented at the DOE X-ray and neutron scattering facilities
and elsewhere. SAS probes structures at length scales ranging
from 1 to 100 nanometers. The SAS community has produced
Sasview [13] a data analysis software tool adopted throughout
the international user community. Here, Sasview (version
5.0.6) was used to simulate a large distributed database of
SAS data. Simulated SAS data was generated for forty dif-
ferent models used in SAS data analysis [13], which covers
most of the models implemented but excludes those that are
computationally expensive. Models in Sasview are mathe-
matical functions that describe the SAS signal that would
be observed from the incredibly diverse kinds of material
structures that can be characterized by the technique. Each
model is parameterized through a set of physical parameters
that can take on a wide range of values. Data were generated
for each model 6K times from a random uniform sampling
over the physically relevant parameter space, as described in
previous work [19]. Once generated, the data were split into
six equally-sized, distributed databases for the FL based on
clustering the values in the parameter space. The approach
creates heterogeneous databases that mimic the heterogeneity
of the databases of measured experimental data found in the
facilities across the DOE complex, akin to diversity of data
indicated in Figure 2. We split the distributed databases into
90% training, 9% testing, and 1% validation sets. Note that
only the training data have the heterogeneous distribution
introduced by clustering, whereas the testing and validation
sets maintain a homogeneous distribution across the whole
sampled modeled space of SasView.

A standard convolutional auto encoder was implemented
for local learners, as shown in Figure 5. We note our FL
framework is agnostic to the particular ML methods utilized
as long as each datasite ML method is similar. There are
three convolutional/pooling steps, denoted by CN and a two
layer fully-connected network, denoted by FCN. These are
followed by three deconvolutional steps, denoted by DN. In
SAS, the two-dimensional intensity function, I , is measured.
The data can be provided as a two dimensional function in
cylindrical coordinates of the angle around the beam direction,
ϕ, and the angle from the beam direction that is measured
as the radius away from the center of the pattern, r. Given
this I(r, ϕ) as the ground truth, the data are then convoluted
with the pinhole smearing function accessible in Sasview to
represent instrumental effects in a real measurement and add
Poisson noise to approximate the measurement uncertainty.
The autoencoder is trained to learn the decovolution and
denoising transformation that takes our simulated instrument
measurements to simulated ground truth.

In order to facilitate the training of this data across multiple
locations, the INTERSECT-SDK framework [4] is utilized to



Fig. 4. Design for performing FL across LBNL and ORNL using INTERSECT. The INTERSECT proxy connects two separate INTERSECT ecosystems
where the data sites are distributed between both. These INTERSECT ecosystems were run at LBNL NERSC’s Spin [9], [10] and ORNL’s ORC. The FL
hub is shown at LBNL (equally could be at ORNL). Domain names are shown for the INTERSECT proxies that are used for current developments. Icons
used created by Juicy Fish Flaticon [11]

Fig. 5. Convolutional autoencoder architecture that deconvolves and denoises SAS data. There are three convolutional and decovolutional layers with a fully
connected network of size Nfc in between. Here, Nr is the number of radial points, Nθ is the number of angular points, CN denotes a convolutional layer,
FCN a fully connected layer, and DN a deconvolutional layer.

provide an ecosystem to connect the various locations and
enable the sharing of data parameters. Each individual location
supports a “FedSite”, an Intersect service that houses the
execution of the FL algorithms. Each FedSite has access to its
location’s training data and has externally available endpoints
to start and end the training process. To connect all of the sites,
a “FedHub” is created and hosted on one of the locations. The
FedHub can “register” FedSites, allowing the hub to manage
the training processes of each site. In the future, multiple
FedHubs could potentially be set up to communicate with
different subsets of locations, each of which could individually
manage different rounds of learning.

Figure 6 showcases a demonstration of the INTERSECT
FL ecosystem and how communication between the sites and
the hub occurs. Initially, for a given FedHub, the sites used
for a federated model training are registered with the FedHub,
represented by blue arrows. The FedHub then begins training
by sending a message to each site to commence training, and
then waits for response from each site. Once all sites have
responded with their updated parameters, the FedHub selects
the data with the lowest error, and then sends those parameters
back to each site for the next iteration of training. After each
iteration of the training the FedHub also sends out a status
update in the form of an INTERSECT-SDK event, with the



Fig. 6. Implementation of multi-site workflow for dynamically adding data sites to federated learning via INTERSECT. 1) the client / orchestration agent
registers multiple data sites with the hub, as represented by the blue arrows. 2) Hub initiates training to the hub, which sends the initial training parameters
to the registered data sites. After local training at the data sites is complete, 3) the data sites send back their results to the hub; after the hub receives all
registered data sites’ results, it outputs an event with the training status. The cycle of 2) and 3) will continue as long as the training is active. During this
cycle of training, 4) the client / orchestration agent may add a new data site dynamically into the workflow with the hub, as represented by the green arrow,
which will send the current parameter set to the new data site and 5) await for all registered sites to return their results, where the cycle of 2) and 3) can
contiune with the new data site. Eventually, 6) the training is stopped via a command to the hub (initiated by a client or an orchestration agent due to the
objective being achieved).

latest parameters.

A FedHub also has the capability to register and remove
sites while in the middle of training. This enables the adding
of a site to begin training after other sites have already
started, represented by the green arrow. The hub sends the
latest parameters to that new site, and the site begins training
immediately. The hub will then monitor that site for its data
and treat it the same as the rest of the sites. Removing a site
behaves in the opposite manner. The site to be removed will
stop training and FedHub will no longer collect the parameters
from that site.

This framework was demonstrated using an orchestrator
written to communicate with a FedHub running on a local
machine. The orchestrator’s workflow registers five FedSites
also running locally and begins training via the FedHub. Each
time an iteration of learning passes, FedHub emits an event
detailing the current parameters that it is keeping track of. The
orchestrator listens for this event and manages the lifecycle
of the training based on how many status messages it has
received. After some iterations have passed, the orchestrator
registers another FedSite with the FedHub, bringing the total
number of sites to six. The new site then begins the training
process. After several more iterations, one of the originally

registered sites is removed and the FedHub no longer oversees
that site’s training. Finally, after the orchestrator has received
a configured amount of status messages, it communicates with
the hub to stop the training.

Figure 7 displays a representative result for our FL meth-
ods. It can be seen that FL provides a 1.37e−03/4.68e−04 ≈
3 times improvement in error and is within 100 ×
(4.68e−04−4.63e−04)/4.63e−04 ≈ 1% relative difference in error
with the gold standard, where the same method is trained on
the data in a universal location.

Table I displays the computation cost for including dif-
ferent PP methods in FL. Note that the PP methods did
not significantly affect the accuracy of the prediction, and
so the results are not reported. Importantly, the cost of the
PP methods are negligible for all but the prediction using
homomorphic computation. The relative cost of homomorphic
computing PP in prediction is high because, homomorphic
computing incurs a major cost when the data is encrypted and
decrypted. This cost is small compared to the cost of training
but running the prediction on the test data is on the order of
cost in comparison to the encryption. Both are relatively fast
in comparison to the training, but could become burdensome
for large numbers of predictions. Finally, synthetic data is not



Fig. 7. Representation of accuracy of federated learning on SAS data. Bottom
left is a representative testing sample of the cylinder model from SasView
depicting the measured intensity. The top left includes pinhole smearing and
Poisson noise, and then the next three pictures depict the best result across
all distributed databases without federated learning, the result with federated
learning, and finally the gold-standard result of training a single convolution
auto encoder on all data from every database. The bottom rows below the
predicted results show the error in the prediction.

needed to be generated for prediction, so cost is not a factor for
this category. Similarly, the required prediction is done locally
so network encryption is not needed for prediction and is not
a factor in the overall cost.

TABLE I
COST IN TRAINING AND PREDICTION OF PP METHODS IN FL.

PPDSA Method Training Prediction
Synthetic Data 1.2± 3% –

Homomorphic Computing 2.8± 0.2% 226± 9%
Network Encryption 1.2± 0.1% –

IV. CONCLUSION

The project’s primary goal was to develop a PP-FL frame-
work for connecting facilities to enable researchers to leverage
the potential of integrated scientific ecosystems. By enabling
a seamless and PP sharing of scientific data among distributed
facilities, we have demonstrated that the denoising and decon-
volution of SAS data can improve. The development can foster
a more collaborative research environment, supporting the
DOE’s transition toward an integrated network of smart lab-
oratories. In addition, the energy-efficient and scalable nature
of the proposed federated learning framework underscores its
potential for broad applicability and sustainability within the
scientific community, paving the way for future advancements
in secure and efficient data analysis.
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