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SUMMARY

Lithium-ion batteries remain at rest for extended periods and experience calendar aging. Although lithium-
ion batteries are expected to perform for over 10 years at room temperature, long-term calendar aging
data are seldom reported over such timescales.We present a dataset from 232 commercial cells across eight
cell types and five manufacturers that underwent calendar aging across various temperatures and states of
charge (SOCs) for up to 13 years. We analyze calendar aging across these conditions by tracking capacity
loss and resistance growth as the cells degrade. This dataset is used to validate simple models, primarily
the Arrhenius law and the power law, which explain the temperature and storage time on calendar aging.
Certain applications of Arrhenius and power law fail to describe the dependence of capacity loss on temper-
ature and resistance growth on storage time. Through this dataset, we demonstrate the complexity of calen-
dar aging and the challenges in reducing trends into phenomenological models.

INTRODUCTION

Lithium-ion batteries are crucial for a wide range of applications,

including powering portable electronics, electrifying transporta-

tion, and decarbonizing the electricity grid.1–3 In many instances,

however, lithium-ion batteries only spend a small portion of their

lifetime in operation, with the majority of their life spent under no

applied load.4 For example, electric vehicles spend about 90%

of their time parked.5,6 When lithium-ion batteries are under

these conditions, they experience degradation due to calendar

aging, where they lose capacity and become more resistive

due to parasitic reactions.7,8 Understanding calendar aging is

critical to improve battery utilization in real-world scenarios

and to prolong battery lifetime.

One of the greatest challenges in understanding calendar ag-

ing is that appreciable degradation at room temperature takes

many years to collect. To address this challenge, calendar aging

data are typically either collected at higher temperatures or at

lower temperatures for a limited duration (see Figures S1 and

S2 for a summary of calendar aging data from the literature

collected at various temperatures and end-of-testing [EOT] con-

ditions). These data are then used to develop accelerated aging

models that extrapolate high-temperature data to low-tempera-

ture scenarios, short-term to long-term calendar aging, or data

from one chemistry to batteries of similar chemistry.9–11 In all

of these cases, low-temperature validation data that span real-

istic operating timelines are necessary to validate the modeling

efforts. The accuracy of these models relies on precise

CONTEXT & SCALE Calendar aging (capacity and power loss that occurs when the battery is at rest with no
current) is a critical aspect of lithium-ion battery degradation, especially with the growing demand for electric
transportation. The rate of calendar degradation depends on factors such as temperature and state of charge
(SOC), with trends varying across cell types and chemistries.
This paper presents the capacity fade and resistance growth of various cells that underwent long-term cal-
endar aging across a variety of storage temperatures and SOCs. The data reveal that commonly accepted
laws for capacity fade do not apply across all cell types and operating conditions and that significant cell-
to-cell variability in degradation exists even for the same operating conditions and cell type. These chal-
lenges must be accounted for when simulating or predicting cell aging for accelerated aging studies, real-
time remaining useful-life prediction, or other applications.
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predictions and modeling of the temperature and time depen-

dencies. Most models focus on capturing the solid-electrolyte

interphase (SEI) layer growth on the graphite anode because

this has been widely accepted as the primary mechanism that

contributes to calendar aging in lithium-ion batteries.12–15 The

baseline time-dependence model for the SEI layer growth is

rooted in standard chemical kinetics, namely, the semi-infinite

diffusion-limited growth of layers, resulting in a t0:5 dependence

on time.16 Meanwhile, the temperature dependence of calendar

aging is prevailingly described with Arrhenius-type expres-

sions.17–19 Together, the Arrhenius temperature dependence

and the t0:5 time dependence form the baseline of standard

models used for calendar aging prediction and extrapolation.

Several calendar aging studies oncommercial lithium-ionbatte-

ries with graphite anodes and various cathode chemistries have

been conducted to establish the validity of conventional models,

as summarized in Table S3. Keil et al. revealed that the capacity

loss from calendar aging depends strongly on the graphite anode

potential, the driving force for SEI layer growth, and identified that,

overall, a self-passivating t0:5 time dependence is observed

across three different cell types.7 Bischof et al. identified that cal-

endar aging in nickel-manganese-cobalt (NMC) cells follows t0:5

and Arrhenius temperature behavior for graphite-based anodes

with varying fractions of silicon.20 Similarly, others have observed

that cells with lithium-iron-phosphate (LFP) cathodes follow the

t0:5 behavior of capacity fade across different temperatures and

states of charge (SOC).21–23 However, because several theories

exist to explain the mechanisms of the SEI layer growth, devia-

tions from simple diffusion-limited growth models are expected.

Research has shown that SEI growth deviates from the t0:5 time

dependence, and instead, general power-law models (tb) should

be used to better capture the time dependence.24 Others have

found that commercial cells with NMC and nickel-cobalt-

aluminum (NCA) cathodes deviate from the t0:5 time dependence

of capacity fade but adhere to the Arrhenius law for temperature

dependence.19,25,26 Departures from both time and temperature

ideality can also result from other non-SEI degradation mecha-

nisms, such as cathode electrolyte interface (CEI) growth, transi-

tionmetal dissolution, and copper current collector dissolution, as

well as different temperature-dependent dominant degradation

modes.27–32 Additionally, different electrode manufacturing, elec-

trolyte formulation, and cell form factors can contribute to differ-

ences among similar chemistries.33 To account for these discrep-

ancies, models that describe and predict the time dependence of

calendar aging have been evolving, moving from diffusion-limited

square root (t0:5) law models to more sophisticated machine

learning models.8,11,16,24,34,35 However, these models still need

long-time calendar aging validation because errors in model

parameter identification can lead to amplified errors when extrap-

olating to distant times.33 Additionally, combining data across in-

dividual chemistries and cells from the literature is challenging

because aging experiments were conducted under unique char-

acterization protocols and operating conditions.9,36,37

Calendar aging studies span from a few months to 5 years;

however, realistic ambient temperature calendar lifetimes are

in the order of 10 years. Table S3 summarizes the EOT condi-

tions reported in different studies across the literature. The liter-

ature demonstrates that the calendar aging trends shift with

time.34,38–40 For instance, a recent study captured higher tem-

perature calendar-aging data for 5 years on Ni-rich 18650 cells

with silicon/graphite anodes and found that passive anode over-

hang had a transitory effect on calendar aging for a year of stor-

age, after which a linear aging trend emerged.39 Krupp et al.

showed that the value of the exponent in the power law (b in

tb) changes when longer times of calendar aging are considered,

going from an exponent close to 0.5 within 220 days to a drasti-

cally higher exponent (from 0.581 to 0.781) by 420 days, similar

to ‘‘knees’’ observed in cycling aging.38 Additionally, Lewerenz

et al. observed deviations from the Arrhenius dependence on ca-

pacity loss only at long timescales.41 These studies indicate that

models validated with short-term aging data may not accurately

represent the true degradation effects over long timescales.

In this work, we present long-term calendar aging data consist-

ing of 232 cells across eight different cell types, four chemistries,

and five manufacturers, collected for a period for up to 13 years,

as shown in Table 1. The dataset used in this work is compared

with data in the literature, summarized in Figures S1 and S2. Using

these data, we systematically evaluate the validity of simple

models and assumptions. We first examine the calendar aging

data between 25�Cand 60�C to assess the Arrhenius temperature

dependence. Under certain assumptions, we observe significant

deviation from the expected Arrhenius trends, which can result

in inaccurate estimates of room temperature degradation trends

by several years. This temperature dependence varies signifi-

cantly even among seemingly similar chemistry cells from the

same manufacturer. Next, by analyzing the time dependence of

degradation, we observe deviation from the ideal diffusion-limited

growth t0:5 toward less self-passivating values, alongwith a signif-

icant spread in ambient temperature degradation trends across

chemistries. Furthermore, capacity and power fade exhibit

distinct trends that are not well correlated. Finally, we show that

cell-to-cell variability can account for a significant portion of

degradation, highlighting the importance of understanding indi-

vidual cell trajectories alongside population trends. These obser-

vations underscore the necessity to revisit calendar aging mech-

anisms and predictions concerning accelerated aging, early

forecasting, and transfer learning studies.

RESULTS

Calendar aging data analysis
Calendar aging data were collected from 232 cells over 13 years,

for eight distinct cell types from five manufacturers (Table 1).

These batteries were stored at four temperatures (24�C, 45�C,
60�C, or 85�C) and two SOC values (50% and 100%, see

methods for SOC definition). For each storage condition, at least

three replicates were tested, allowing for an analysis of variability

over the cells’ lifetimes. To probe the battery capacity and resis-

tance, a diagnostic cycle consisting of three C/5 cycles and three

high-rate cycles (the high-rate C rate is variable per chemistry,

see Table S2 for values) is performed at regular intervals of

time during calendar aging (see methods).

In this work, we track normalized degradation for all cells, ex-

pressed as relative capacity (QrelðtÞ½%� = QðtÞ
Qð0Þ3 100%) and

resistance (RrelðtÞ½%� = RðtÞ
Rð0Þ3 100%) metrics (see methods for
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calculation details). For each cell, relative capacity QrelðtÞ
(Figures 1A and 1B) and relative resistance RrelðtÞ (Figures 1C

and 1D) are plotted as a function of calendar time. To better visu-

alize the underlying trend, the data plotted in Figure 1 are

smoothed (see methods for smoothing/filtering details).

Although several cells have data continuing to deeper degrada-

tion (Figures S12–S15), the data are plotted only up to 80% rela-

tive capacity to emphasize the normal operational regime of bat-

teries. To include a significant portion of the 24�C data, 90%

relative capacity (indicated by a horizontal gray line) is defined

as the end-of-life (EOL) condition in this paper. The variation,

duration, and non-linearities observed in the degradation trends

underscore the richness of the calendar aging information

captured in the dataset.

Assessing Arrhenius rate dependence
TheArrhenius equation iswidely used in the literature formodeling

temperature dependence.19,22,38,41 However, deviations from this

dependency can lead to improper estimation of degradation at

lower temperatures. At higher temperatures (>60�C), electrolyte
decomposition and structural degradation of the cathode are ex-

pected.42,43 These degradation mechanisms lead to deviations

from the typical Arrhenius relationship for temperature depen-

dence on capacity fade from calendar aging. To assess the valid-

ity of the Arrhenius equation applied to this dataset, we first

examine an example cell type (Panasonic NCR18650B) stored

across different temperatures (Figure 2A).

Although it is challenging to assess the validity of the Arrhenius

rate dependence for arbitrary functional forms, we assess its

applicability under certain assumptions. We start by defining rela-

tive capacity loss (Qrel lossðtÞ½%� = 100% � QrelðtÞ). We then as-

sume that the temperature, SOC, and time dependence of degra-

dation are separable such that Qrel lossðT ; SOC; tÞ = AðTÞ3
FðSOCÞ3 GðtÞ, where F(SOC) is a non-linear function of SOC.

Assuming an Arrhenius dependence of the temperature function

(AðTÞfa0 exp
�
�Ea

kbT

�
, where Ea is the activation energy, and kb is

the Boltzmann constant) result in a linear relationship between

lnðQrel lossðtÞÞ and lnð1 =TÞ for arbitrary time functions (GðtÞ) at
fixed times, regardless of SOC (see Equation S10, for further der-

ivations and explanations of this approach in Section S1.2).22,41

We use this relationship to generate an Arrhenius plot at four

degradation time points (35, 70, 105, and 140 weeks), as shown

in Figure 2B. These time points are indicated by vertical

dashed lines in Figure 2A. If the Arrhenius equation holds under

these assumptions, the traces should be linear with the same

slope (activation energy) at all time points. Instead, we

observe a significant deviation in the data (solid line) from the ex-

pected ideal behavior (dashed line) (in Figure 2B). Although

the data seem to follow Arrhenius behavior at the middle time

points, (70 and 105 weeks), significant deviations are observed

at the beginning and end of the dataset (35 and 140 weeks)

when examining the full lifetime (35 and 140 weeks). To highlight

the deviation, we refit the Arrhenius equation at each time point

using the 45�C and 60�C data and then extrapolate to 24�C to

generate the Arrhenius-predicted degradation curve for 24�C.
This prediction (shown in Figure 2A) estimates the calendar life

at EOL to be 128 weeks. Experimentally, however, the observed

calendar life is 231 weeks, representing a nearly 2-year discrep-

ancy. The Arrhenius-predicted degradation curve for 24�C is

also shown for other cell chemistries and testing conditions in

Figures 2C–2E. Although the predicted trend aligns best with K2

Energy LFP18650P cells, significant deviations are observed un-

der most conditions.

One could attribute this deviation to the breaking of the tem-

perature and time separability assumption. Indeed, tempera-

ture-dependent time dependencies are observable in Figure 2A.

In particular, any cells exhibiting knees, such as the NCA cells in

Figures 2A and 2E, significantly violate the separability assump-

tions. Because testing the Arrhenius approximation for

completely arbitrary functional forms is not feasible, we instead

assume standard semi-empirical power laws as the functional

form and parameterize individual battery degradation curves

without assuming any dependence. Using this framework, we

analyze the dependence of the coefficients directly. The po-

wer-law equations used for relative capacity and relative resis-

tance growth are as follows:

QrelðtÞ½%� = 100% � aQt
bQ (Equation 1)

RrelðtÞ½%� = 100%+ aRt
bR (Equation 2)

where the exponential parameter (bQ or bR, dimensionless

units) captures the time-dependent behavior of degradation

Table 1. Cell chemistry summary

Manufacturer Cell type Form factor Chemistry Temperatures (�C) SOC (%) Total cells Aging years

K2 Energy LFP18650E 18650 LFP/Gr 24, 45, 60, 85 50, 100 40 7.8

K2 Energy LFP18650P 18650 LFP/Gr 24, 45, 60, 85 50, 100 40 7.8

Panasonic NCR18650B 18650 NCA/Gr 24, 45, 60, 85 50, 100 28 7.8

Panasonic NCR18650GA 18650 NCA/Gr 24, 60, 85 50, 100 36 5.9

Sony-Murata US18650VTC6 18650 NMC/Gr 24, 60, 85 100 18 5.3

Tenergy 302030 pouch LCO/Gr 24, 60, 85 50, 100 32 9.1

Ultralife 502030 pouch LCO/Gr 24 50, 100 20 13.7

Ultralife UBP001 prismatic LCO/Gr 24, 60, 85 100 18 1.0

Table summarizing the information of each of the cell types in this dataset. Aging years is themaximum time that a battery has been tested for. Cathode

abbreviations used here are LFP (LiFePO4), NCA (LiðNi;Co;AlÞO2), NMC (LiðNi;Mn;CoÞO2), and LCO (LiCoO2). For further details on the cell capacities

and testing, see Table S2.
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and the pre-exponential parameter (aQ or aR, units of %=

weeksb) encodes the rate of degradation (see Section S1.1

for definitions in terms of capacity loss and resistance

growth). We fit these equations to capacity and resistance

data up to the 90% capacity EOL condition (see methods

for fitting details). Although we do not expect this

simple semi-empirical equation to fully capture the complex-

ities of calendar aging degradation (see Figure S3 for

time-dependent non-linearity of fitting), we use this framework

to quantitatively evaluate trends of a and b parameters of ca-

pacity loss and resistance growth across temperature, SOC,

and cell type. Because the accuracy of the results depends

on the quality of fit, we report the mean absolute errors in

Figure S9.

After fitting all the degradation curves, we revisit the Arrhenius

dependence by applying it to the a parameters aQ and aR
(afa0 exp

�
�Ea

kbT

�
). For cell types with three or more temperature

data points, the fits are shown in an Arrhenius plot (Figure 3).

Once again, we see that the data do not align with a straight

line of constant activation energy (Ea) for either capacity or

resistance for all cell types. Deviation from this linearity

violates the Arrhenius assumption and likely indicates tempera-

ture-dependent activation energy, simultaneous degradation

mechanisms, complex reaction pathways, and/or changing

A B

C D

Figure 1. Overview of relative capacity and relative resistance calendar aging trends

(A) Relative C/5 discharge capacity (Qrel ) trends. A gray line is shown at the 90% capacity loss EOL condition.

(B) Zoom-in view of the black box highlighted in (A) to better visualize the higher temperature data.

(C) The trajectory of relative resistance (Rrel ).

(D) Zoom-in view of the box in (C) to show the higher temperature trends. All trajectories shown here are smoothed (see methods). For individual unfiltered

trajectories see Figures S12–S15).
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degradation modes. These results highlight the need for caution

when applying the Arrhenius assumption to extrapolate lifetimes

at different temperatures, particularly in use cases such as

accelerated aging studies, where prediction of ambient temper-

ature calendar aging is critical to save resources and time.

Capacity and resistance degradation dependence on
operating conditions
Although we have shown that the Arrhenius approximation may

not always hold, we still compute the average activation energies

by fitting a line of best fit using the %60� C data shown for cell

types with more than two tested temperatures in Figure 3 (data

for all cell types, as well as fitting details, are shown in

Figures S5–S7 and Section S1.3). This analysis allows us to

compare the severity of the temperature influence across

different cell chemistries (Figure 4). In general, the activation en-

ergy for capacity decreases with increasing SOC, whereas this

trend is largely reversed for resistance. In general, the resistance

growth has larger activation energies compared with capacity

fade. Ultralife UBP001 cells seem to be the exception, with the

A B

C D E

Figure 2. Temperature dependence of degradation

An example of temperature-dependent degradation is shown for Panasonic NCR18650B at 50% SOC.

(A) Relative capacity (Qrel ) vs. time curve with dashed lines showing the calendar times at which capacity is extracted across different temperatures and plotted in

(B). The purple curve is the degradation trend extrapolated from 45�C and 60�C using the Arrhenius plot in (B). (B) Relative capacity loss (Qrel loss) points taken

from the dashed lines in (A) are plotted on an Arrhenius plot.41 The increasing transparency indicates increasing time. The dashed line shows the line of best fit

representing ideal Arrhenius behavior, whereas the solid line connects the means (the means of the relative capacities losses from each cell at a given tem-

perature). The discrepancy between these two lines demonstrates the deviation from the Arrhenius dependence on calendar aging. Fitting a line through the 45�C
and 60�C points and extrapolating to 24�C at all time points gives the predicted 24�C degradation curve shown in (A). This degradation curve predicted from the

Arrhenius law is additionally compared with the 24�C experimental data for (C) K2 Energy LFP18650E, (D) K2 Energy LFP18650P, and (E) Panasonic NCR18650B

cells for both 50% and 100% SOC. To see plots including the higher temperature data, see Figure S4.
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largest capacity calendar aging activation energy and one of the

lowest resistance calendar aging activation energies. Interest-

ingly, cells of similar chemistry from the same manufacturer

can exhibit significantly different temperature dependencies.

Although the K2 Energy LFP cells (LFP18650E vs. LFP18650P)

have nearly identical relative-capacity temperature dependence

at 50% SOC, at 100% SOC, and for relative resistance, they

have vastly different temperature dependencies. Additionally,

the Panasonic NCA cells (NCR18650B vs. NCR18650GA) have

different temperature dependencies for all conditions. This

observation underscores the challenges associated with transfer

learning approaches, where data from similar cell chemistries

may not reliably predict each other’s behavior.

Next, we focus on the time dependence of degradation

by analyzing the exponential parameter b for the relative

capacity and the relative resistance across all testing condi-

tions (Figure 5). The majority of the relative capacity time

dependence across testing conditions and cell types show

significant deviations from the semi-infinite, diffusion-limited

growth t0:5 dependence (Figure 5A).24 Although most cell

types do experience varying degrees of self-passivating

capacity time dependence (bQ % 1), some LCO (LiCoO2)

cells (namely, Tenergy 302030, and Ultralife UBP001) experi-

ence linear to super-linear capacity degradation. Notably,

despite all cells having a graphite-based anode, there is

no single b value that accurately describes degradation

across testing conditions and temperatures. This is further

illustrated in the histogram, where bQ and bR values at 24�C
are highlighted in blue, showing a broad distribution across

cell types (Figure 5). Additionally, within individual cell types,

there is no evident temperature dependence of the bQ and

bR values.

To further explore the relationship between resistance growth

and capacity loss due to calendar aging, we directly compare

the fitted parameters aQ vs. aR, andbQ vs. bR (Figure 6; Figure S10

analyzes the correlation on a per-cell-type basis).While the aQ and

aR show a clear dependence on temperature and exhibit reason-

able correlations, the bQ and bR, on the other hand, display no

obvious temperature dependence and show weaker correlations.

These results suggest that capacity and power loss trajectories in

batteries are generally decoupled with each exhibiting different

temperature dependencies. These differences can stem from

non-linearities in SEI thickness vs. resistivity, cathode electrolyte

interphase growth, and other phenomena.

Finally, we use the replicates in the dataset to assess the influ-

ence of cell-to-cell variability on the degradation trends of cells

undergoing the same storage conditions. To quantify the extent

of this cell-to-cell variability in the dataset, the coefficient of vari-

ation (CoV), defined as the standard deviation divided by the

mean at a given time is plotted against the relativemean capacity

loss (Figure 7). The CoV is interpolated at 1% increments of rela-

tive mean capacity loss reaching either EOL or EOT for capacity

(Figures 7A–7D) and resistance (Figures 7E–7H). Some storage

conditions exhibit several percent of variation within just the first

10% relative capacity loss, indicating a significant portion of the

degradation. This variation takes several different shapes

dictated by the individual underlying battery degradation trends.

Examples of cells exhibiting growing variability are shown in

Figures 7I and 7K, whereas those with shrinking variability are

presented in Figures 7J and 7L.

A B

Figure 3. Arrhenius plot of semi-empirical modeling

The parameters (A) aQ and (B) aR are plotted on an Arrhenius plot. A slope is shown for an activation energy equal to 1 eV for reference. Only cell typeswith three or

more temperatures tested are plotted here to showcase deviation from linear trends. For all cell types including those with only two temperatures, see Figure S5.
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From these plots it is evident that individual degradation

trends can vary significantly from one another. Therefore, it is

critical for calendar aging models to accurately capture the

different battery trend lines resulting from cell-to-cell variability,

otherwise the population behavior of batteries under given

storage conditions can be misrepresented by significant

percentages.44

Extrapolating calendar aging data is an effective way to signif-

icantly reduce the time required for data collection. To confi-

dently perform this extrapolation, it is essential to understand

the amount of data needed for an accurate forecast of the bat-

tery’s EOL. To quantify this, we analyze the relative-capacity po-

wer-law fit using an increasing number of data points up to the

EOL time, observing how the error changes over time (see

methods for a full description). The power-law function well char-

acterizes the trajectory, motivating our use of this simple func-

tional form for testing early prediction. This methodology is illus-

trated with an example cell (C00214, K2 Energy LFP18650E,

24�C, 100% SOC) in Figures 8A and 8B. In general, using data

closer to EOL leads to better estimations of the EOL, but the tra-

jectory of the error is not monotonic. In Figure 8B, the power-law

model initially underpredicts calendar life by over 2 years, then

overpredicts by 4 years before converging on the correct EOL

as more data are included.

The trajectory of the error is plotted for all 24�C cells in terms of

both the absolute calendar time (Figure 8C) and the fraction of

time until EOL (Figure 8D). Purple-shaded areas represent error

boundaries predicting the EOL within ±2, 1, 0.5, and 0.25 years.

To summarize these plots, the fraction of cells predicted within

these four error boundaries are shown in Figures 8E and 8F.

From this, we see that to predict 90%of all cells within ±0.5 years

takes almost 5 years or 90%of the time until EOL. This amount of

data is not conducive to reducing the data collection time of cal-

endar aging studies and highlights the poor extrapolation capa-

bilities of power-law models. Instead, advanced data-driven or

electrochemical models are needed to properly utilize a smaller

fraction of data to extrapolate cell performance to EOL and

perform accelerated aging studies.

Developing accurate models that capture long-term calendar

aging are crucial for predicting cell performance till EOL. This can

take up to 15 years for electric vehicles (EVs).45 However, as we

demonstrated in this work, long-term calendar aging studies

require significant time for experimentation and validation while

ensuring versatility across different storage conditions and cell

chemistries and accounting for the cell-to-cell variability. The de-

viation from expected trends observed with this dataset may be

attributed to the accelerated lithium-ion loss or loss of activema-

terial. Various models can be used to simulate and predict

A

B

Figure 4. Activation energy dependence on chemistry and SOC

Bar plot of the activation energy in units of meV for (A) relative capacity and (B) relative resistance. These values are extracted from the slope on an Arrhenius plot

using temperatures %60�C (see Figures 3 and S5–S7 and Section S1.3 for further details). The error bar plotted is the 90% confidence interval of the extracted

slope. If data are only present for one temperature, the activation energy is not extracted. In the case of the Tenergy 302030 cells, the 24�C resistance growth is

very flat, leading to an aR close to 0 that could not properly be transformed into a log space and thus cannot be used.
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calendar aging and can be validated using the dataset presented

in this work. Electrochemical models are well suited for capturing

individual degradation mechanisms to simulate and predict cal-

endar aging from physics. The underlying mechanisms that

cause calendar aging at specific SOCs and temperatures over

long storage periods need to be understood to incorporate

them into these models. Several efforts have been made to

develop electrochemical models for calendar aging, focusing

on the growth of the SEI layer as the dominant mecha-

nism.13,17,46,47 However, accurately capturing the degradation

mechanisms models requires experimental validation during

long-term calendar aging. Performing cell disassembly and em-

ploying advanced characterization techniques are useful for un-

derstanding degradation trends and to obtain model parameters

that are influenced by calendar aging. Typical semi-empirical

models for calendar aging employ the Arrhenius relationship

and the power law for temperature and time dependence on

capacity loss. There have been several efforts to enhance these

models using advanced techniques such as symbolic regres-

sion, bi-level optimization, and data-driven approaches from

machine learning tools. Symbolic regression utilizes algorithms

to identify the optimal combination of functions that explain the

dependence on temperature and SOC. For example, Gasper

et al. employed symbolic regression to derive expressions for

calendar aging, uncovering relationships that enhanced the ac-

curacy of the aging models.48 On the other hand, data-driven

models, such as Gaussian process regression (GPR) and neural

networks such as gated recurrent units (GRU) or long short-term

memory (LSTM) for predicting the remaining useful life (RUL) or

the capacity fade trajectories are gaining traction for calendar

aging predictions.10,40 Finally, stochastic models can be used

over deterministic agingmodels to address cell-to-cell variability

observed in this dataset, and several efforts have been made

in literature to use stochastic models for predicting cycling

A

B

Figure 5. Exponential parameter dependence on aging conditions

Bar plots of the exponential parameter for (A) relative capacity and (B) relative resistance. A dashed line is shown at a parameter value of 0.5 for diffusion-limited

growth for bQ and 1 for the borderline of self-passivating vs. accelerating degradation for both bQ and bR. The error bar shown on the bar plot is the standard

deviation of the bQ and bR values fit on replicates. Both bar plots have a histogram on the same x axis scale shown on the side for all bQ or bR values present in the

dataset. The 24�C data contribution to the histogram is emphasized in blue. bQ and bR have a standard deviation value of 0.19 and 0.39, respectively. See

Figure S8 for the pre-exponential parameter bar plot and Figure S9 for the mean absolute error of these fits.
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aging.44,49,50 These models can be extended to be used for cal-

endar aging lifetime predictions. Numerous tools andmethods in

the literature can address the shortcomings of traditional models

regarding the temperature and time dependence of calendar ag-

ing, and we encourage the community to utilize the dataset pre-

sented in this work to develop accurate and robust models for

long-term calendar aging.

Conclusion
In this work, we analyzed eight different cell types with calendar

aging data collected over a time frame of up to 13 years, allowing

for a systematic analysis that reveals general observations appli-

cable across various cell types. First, we challenge the applica-

bility of the Arrhenius equation under specific assumptions and

reveal significant deviations from ideal behavior that result in

years of inaccuracy when predicting low-temperature calendar

aging. Next, we analyzed the activation energy and showcased

that even among seemingly similar cell chemistries from the

samemanufacturer, the influence of temperature on degradation

varies significantly. By analyzing the time dependence of degra-

dation using the power-law exponential (b), we demonstrate that

the majority of cells regardless of testing conditions deviate

significantly from the ideal diffusion-limited t0:5 SEI layer growth.

This time dependence differs drastically across cell types and

between capacity vs. resistance trends. By analyzing the repli-

cates present in this work, we observe substantial cell-to-cell

variability in degradation trends under identical storage condi-

tions. Finally, we show that simple power-law extrapolation of

room temperature calendar aging data requires nearly 90% of

the data prior to the EOL time to accurately predict 90% of cells’

EOL within ±0.5 years. Collectively, these observations under-

score the challenges in performing accelerated aging studies

and highlight the need for long-term ambient temperature calen-

dar aging data to validate calendar aging models. This work ad-

vocates for the creation of rigorously developed models that

accurately account for these findings to bolster the understand-

ing and prediction of calendar aging degradation. In addition,

this work can be further improved by incorporating more finely

spaced SOCs, temperatures, and other stress factors to improve

the model accuracy to better understand its effect on long-term

calendar aging.

METHODS

Experimental setup
The batteries were stored in open circuit conditions in Cincinnati

Sub Zero temperature chambers at set points of 24�C, 45�C,
60�C, and 85�C. Cylindrical cells had nickel tabs resistance

spot welded on to them. Pouch cells and prismatic cells were

already present with tabs. During the diagnostic cycle, the

A B

Figure 6. Relative capacity loss vs. relative resistance growth

(A) Scatterplot of the pre-exponential parameters aQ vs. aR.

(B) Scatterplot of the exponential parameters bQ vs. bR. A gray dotted line is used to show the one-to-one line. The error bar is the standard deviation of repeats.

The histograms shown on the sides of the scatterplots are taken from themean a and b values for each testing condition and cell type. The contribution of the 24�C
data to the histogram is emphasized in blue.
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batteries were taken out of the chambers and placed in open air

of a controlled temperature lab space (24�C ± 4�C). Maccor 4000

potentiostats (calibrated annually) were then connected to the

batteries via Mueller BU-75k Kelvin clips with separate voltage

sense and current carrying wire to perform the diagnostic cycle

(Figure 9A). The diagnostic cycle consists of an initial discharge,

A B C D

E F G H

I J

K L

Figure 7. Effect of degradation on cell-to-cell variability

(A–H) For unique cell chemistries and testing conditions, the coefficient of variation (CoV) is calculated for relative capacity and relative resistance as the standard

deviation divided by the mean as a function of the relative mean capacity fade. The relative capacities used here are normalized by the mean initial capacity of all

repeats instead of their individual initial capacity to represent initial variability properly. The CoV is calculated for every 1% relative mean capacity loss until either

10% fade or data have ended. These data are plotted for capacity at (A) 24�C, (B) 45�C, (C) 60�C, and (D) 85�C. Similarly, for resistance at (E) 24�C, (F) 45�C, (G)

60�C, and (H) 85�C.
(I–L) Examples showing variability growing and shrinking for relative capacity and relative resistance.
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three C/5 low-rate cycles, three high-rate cycles, a C/5 capacity

check cycle to observe any damage done by high-rate cycles,

and a final charge to storage SOC. The 50% storage SOC is a

charge from the lower voltage cutoff to 50% of the nominal ca-

pacity, and the 100% storage SOC is a charge from the lower

cutoff voltage to the upper voltage cutoff. The full details of the

diagnostic cycle are described in Table S1. Some of the appa-

ratus and testing conditions used in these experiments can

cause slight variations in the capacity and resistance measure-

ments, the effects of which are not further studied in this work.

For instance, the tabs may oxidize at higher temperatures and

cause an increase in resistance. Minor variations in the force

A B

C

E F

D

Figure 8. Incremental power-law EOL extrapolation

(A) An example of themethodology of incrementally fitting the power-law on increasing data for a sample cell (C00214, K2 Energy LFP18650E, 24�C, 100%SOC).

The data are shown as blue markers, and the incrementally fit power law is shown as solid lines colored from light to dark blue based on howmuch data from the

beginning of life (BOL) to EOL is used. The 90% relative capacity EOL condition is shown as a gray dashed line, and where the fitted power laws cross this

condition are shown with gray markers. An additional red dot is included for the true EOL time extracted from the smoothed data.

(B–F) (B) The error trajectory of the fits shown in (A). The error trajectories are then plotted for all 24�Ccells against (C) the calendar time in years and (D) the fraction

of time until EOL. The y axis is limited to ±5 years to better show error trajectories (for full versions of these plots and separation of cell types see Figure S11). Error

boundaries of ±2, 1, 0.5, and 0.25 years are shown in different shades of purple. The fraction of the cells that are within the error boundaries shown in (C) and

(D) are shown with their corresponding colors against (E) the calendar time in years, and (F) the fraction of time until EOL. A gray dashed line at 0.9 is included for

reference.
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applied to the cells by the Kelvin clips influence resistance

measurements. Additionally, there exists temperature-control-

induced performance variations from testing the batteries in an

open-air controlled temperature lab space during the diagnostic,

as well as non-uniform temperature control within storage tem-

perature chambers.

Capacity and resistance extraction
The capacity and resistance metrics are extracted from the pe-

riodic diagnostic test. The capacity used to determine Qrel is

extracted from the constant current discharge portion of the

third C/5 low-rate cycle (Figure 9). The resistance used in Rrel

is not a DC pulse resistance. Instead, it is a steady-state resis-

tance taken across the whole operating window using informa-

tion from both the constant current discharge portion of the

third C/5 low-rate (Clowrate) cycle and the third high-rate

(Chighrate) cycle. A voltage difference is taken as the difference

of the C/5 discharge average voltage (Vlowrate) and the high-

rate discharge (Chighrate) average voltage (Vhighrate). This

voltage difference is then divided by the difference in C rates

to get the resistance metric used (Figure 9B, for Chighrate, see

Table S2).

R½U 3 Ah� =
Vhighrate � Vlowrate

Chighrate � Clowrate

: (Equation 3)

This choice of resistancemetricmeasures howmuch energy is

lost by going to higher rates, taking into account average kinetic

effects across the whole discharge curve. By using the C rate

instead of the absolute current value, this metric is normalized

to the capacity of the cell type, allowing different capacity cell

types to be properly compared. This metric can also be

seen as an electrode area normalized resistance under the

A

B

Figure 9. Extracting capacity and resistance

(A) Voltage and current traces for the diagnostic cycle of an example cell (Tenergy 302030 stored at 100% SOC). The diagnostic test consists of three C/5 cycles,

three high-rate (1C in this case, see Table S2 for other cell type values) cycles, a C/5 capacity check cycle, and a charge to storage SOC. The highlighted portions

represent the discharge curves where the capacity and resistance metrics are extracted from. We chose the third C/5 and high-rate discharge curves.

(B) Traces of the low-rate and high-rate voltage vs. capacity curve. The capacity is extracted from the third low-rate discharge curve. The resistance is extracted

from high-rate average voltage (Vhighrate) and the C/5 low-rate average voltage (Vlowrate ) along with the C rates according to Equation 3. The average voltages are

calculated by dividing the discharge energy by the capacity for a given discharge curve.

12 Joule 9, 101796, January 15, 2025

Article
ll

OPEN ACCESS



assumption that nominal capacity (Qnominal) is proportional to the

active area that current passes through on the electrodematerial

(see Equation S9).

Data smoothing
The resistance and capacity data contain measurement noise

that can obscure the general trend in the data (Figures S12–

S15). To counteract this issue, when the data are plotted directly,

local polynomial regression with a nominal window size of 14

data points is used to smooth the data points. This type of

smoothing performs poorly at the edges of the data; therefore,

to better capture the trends at the beginning of testing and

EOT, the window size is continuously decreased to half the nom-

inal window size (seven data points). The initial smoothed data

point is set to be the same as the raw data for easy comparison.

If the total number of data points is less than or equal to 10,

smoothing is not applied, and the data are used directly. The

smoothed data are used when the data are plotted directly,

such as in Figures 1, 2A, and 7, as well as for determining the

EOL time. The unsmoothed data, however, is used in fitting

the power laws to not introduce any biases induced by the

smoothing.

Power-law fitting
The power-law equations (Equations 1 and 2) are fit on the non-

smoothed data capacity and time data. The time is input in

weeks, and the capacity is input as the relative capacity (%).

The data points used are specifically taken from values up until

the EOL time. The EOL time is determined from the smoothed

data, and if there are not enough total data points (R 3) to

perform the smoothing procedure, the fitting is not performed.

If there is less than three data points after dropping all data

past the EOL time, the fit is not performed leading to the

exclusion of several 85�C data. If a cell has not reached EOL,

all available data points were used until current EOT. To see

the data that the power-law equations were fit on, see

Figures S16–S19).

A SciPy differential evolution algorithm with a mean absolute

error objective function was used to fit the a and b coefficients.

The possible values of the prefactor a are constrained between

0 and 1,000, whereas the possible values of b are constrained

between 0 and 10. The fit values are constrained to be positive,

but the upper bounds are chosen to be large enough to allow

effectively unconstrained fittings.

Power-law prediction
To understand the influence of increasing the amount of data on

the prediction of EOL time, we employ an incremental fitting

approach on the data using a power law. We begin fitting the po-

wer law with at least four data points, and we incrementally add

the following data one at a time until the final data point before

the EOL time. At each time point, we calculate the predicted

EOL time from the power-law fit and compare it with the true

EOL time obtained from the smoothed version of the capacity

data (Figures 8A and 8B). To obtain Figures 8E and 8F, the error

trajectory is linearly interpolated vs. calendar time or fraction

time until EOL, respectively. Beyond the EOL time of a battery,

the predicted EOL continues to be the value using the data up

until the last data point before the EOL time.
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41. Lewerenz, M., Käbitz, S., Knips, M., M€unnix, J., Schmalstieg, J., War-

necke, A., and Sauer, D.U. (2017). New method evaluating currents keep-

ing the voltage constant for fast and highly resolved measurement of ar-

rhenius relation and capacity fade. J. Power Sources 353, 144–151.

https://doi.org/10.1016/j.jpowsour.2017.03.136.

42. Ecker, M., Gerschler, J.B., Vogel, J., Käbitz, S., Hust, F., Dechent, P., and
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