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We share a dataset of commercial cells that endured calendar
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We test the Arrhenius law for explaining temperature
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We present the error in capacity fade predictions using these
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In brief

We share a long-term dataset comprising
eight commercial cells from five
manufacturers, calendar aged over
extended periods. We assess common
principles used to model calendar aging,
validating them over long timescales, with
a focus on the Arrhenius law for
temperature dependence and the power
law for storage-time dependence. We
observe that at long storage times,
capacity fade predictions deviate from
these principles and emphasize the need
for more sophisticated models to
accurately represent long-term calendar

aging.
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CONTEXT & SCALE Calendar aging (capacity and power loss that occurs when the battery is at rest with no
current) is a critical aspect of lithium-ion battery degradation, especially with the growing demand for electric
transportation. The rate of calendar degradation depends on factors such as temperature and state of charge
(SOC), with trends varying across cell types and chemistries.

This paper presents the capacity fade and resistance growth of various cells that underwent long-term cal-
endar aging across a variety of storage temperatures and SOCs. The data reveal that commonly accepted
laws for capacity fade do not apply across all cell types and operating conditions and that significant cell-
to-cell variability in degradation exists even for the same operating conditions and cell type. These chal-
lenges must be accounted for when simulating or predicting cell aging for accelerated aging studies, real-
time remaining useful-life prediction, or other applications.

SUMMARY

Lithium-ion batteries remain at rest for extended periods and experience calendar aging. Although lithium-
ion batteries are expected to perform for over 10 years at room temperature, long-term calendar aging
data are seldom reported over such timescales. We present a dataset from 232 commercial cells across eight
cell types and five manufacturers that underwent calendar aging across various temperatures and states of
charge (SOCs) for up to 13 years. We analyze calendar aging across these conditions by tracking capacity
loss and resistance growth as the cells degrade. This dataset is used to validate simple models, primarily
the Arrhenius law and the power law, which explain the temperature and storage time on calendar aging.
Certain applications of Arrhenius and power law fail to describe the dependence of capacity loss on temper-
ature and resistance growth on storage time. Through this dataset, we demonstrate the complexity of calen-

dar aging and the challenges in reducing trends into phenomenological models.

INTRODUCTION

Lithium-ion batteries are crucial for a wide range of applications,
including powering portable electronics, electrifying transporta-
tion, and decarbonizing the electricity grid." In many instances,
however, lithium-ion batteries only spend a small portion of their
lifetime in operation, with the majority of their life spent under no
applied load.* For example, electric vehicles spend about 90%
of their time parked.®® When lithium-ion batteries are under
these conditions, they experience degradation due to calendar
aging, where they lose capacity and become more resistive
due to parasitic reactions.”® Understanding calendar aging is
critical to improve battery utilization in real-world scenarios
and to prolong battery lifetime.

Gheck for
Updates

One of the greatest challenges in understanding calendar ag-
ing is that appreciable degradation at room temperature takes
many years to collect. To address this challenge, calendar aging
data are typically either collected at higher temperatures or at
lower temperatures for a limited duration (see Figures S1 and
S2 for a summary of calendar aging data from the literature
collected at various temperatures and end-of-testing [EOT] con-
ditions). These data are then used to develop accelerated aging
models that extrapolate high-temperature data to low-tempera-
ture scenarios, short-term to long-term calendar aging, or data
from one chemistry to batteries of similar chemistry.®'" In all
of these cases, low-temperature validation data that span real-
istic operating timelines are necessary to validate the modeling
efforts. The accuracy of these models relies on precise
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predictions and modeling of the temperature and time depen-
dencies. Most models focus on capturing the solid-electrolyte
interphase (SEI) layer growth on the graphite anode because
this has been widely accepted as the primary mechanism that
contributes to calendar aging in lithium-ion batteries.”®'® The
baseline time-dependence model for the SEI layer growth is
rooted in standard chemical kinetics, namely, the semi-infinite
diffusion-limited growth of layers, resulting in a t>® dependence
on time.'® Meanwhile, the temperature dependence of calendar
aging is prevailingly described with Arrhenius-type expres-
sions.'”'° Together, the Arrhenius temperature dependence
and the t%® time dependence form the baseline of standard
models used for calendar aging prediction and extrapolation.

Several calendar aging studies on commercial lithium-ion batte-
ries with graphite anodes and various cathode chemistries have
been conducted to establish the validity of conventional models,
as summarized in Table S3. Keil et al. revealed that the capacity
loss from calendar aging depends strongly on the graphite anode
potential, the driving force for SEl layer growth, and identified that,
overall, a self-passivating t®° time dependence is observed
across three different cell types.” Bischof et al. identified that cal-
endar aging in nickel-manganese-cobalt (NMC) cells follows t°°
and Arrhenius temperature behavior for graphite-based anodes
with varying fractions of silicon.”® Similarly, others have observed
that cells with lithium-iron-phosphate (LFP) cathodes follow the
t%5 behavior of capacity fade across different temperatures and
states of charge (SOC).>""*®* However, because several theories
exist to explain the mechanisms of the SEI layer growth, devia-
tions from simple diffusion-limited growth models are expected.
Research has shown that SEI growth deviates from the t%° time
dependence, and instead, general power-law models () should
be used to better capture the time dependence.?* Others have
found that commercial cells with NMC and nickel-cobalt-
aluminum (NCA) cathodes deviate from the t%° time dependence
of capacity fade but adhere to the Arrhenius law for temperature
dependence.' 2% Departures from both time and temperature
ideality can also result from other non-SEl degradation mecha-
nisms, such as cathode electrolyte interface (CEl) growth, transi-
tion metal dissolution, and copper current collector dissolution, as
well as different temperature-dependent dominant degradation
modes.?’"*? Additionally, different electrode manufacturing, elec-
trolyte formulation, and cell form factors can contribute to differ-
ences among similar chemistries.*® To account for these discrep-
ancies, models that describe and predict the time dependence of
calendar aging have been evolving, moving from diffusion-limited
square root (t°%) law models to more sophisticated machine
learning models.® " 16243435 However, these models still need
long-time calendar aging validation because errors in model
parameter identification can lead to amplified errors when extrap-
olating to distant times.** Additionally, combining data across in-
dividual chemistries and cells from the literature is challenging
because aging experiments were conducted under unique char-
acterization protocols and operating conditions.®*¢%"

Calendar aging studies span from a few months to 5 years;
however, realistic ambient temperature calendar lifetimes are
in the order of 10 years. Table S3 summarizes the EOT condi-
tions reported in different studies across the literature. The liter-
ature demonstrates that the calendar aging trends shift with
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time.®**¢~%0 For instance, a recent study captured higher tem-
perature calendar-aging data for 5 years on Ni-rich 18650 cells
with silicon/graphite anodes and found that passive anode over-
hang had a transitory effect on calendar aging for a year of stor-
age, after which a linear aging trend emerged.*® Krupp et al.
showed that the value of the exponent in the power law (b in
t?) changes when longer times of calendar aging are considered,
going from an exponent close to 0.5 within 220 days to a drasti-
cally higher exponent (from 0.581 to 0.781) by 420 days, similar
to “knees” observed in cycling aging.®® Additionally, Lewerenz
et al. observed deviations from the Arrhenius dependence on ca-
pacity loss only at long timescales.”' These studies indicate that
models validated with short-term aging data may not accurately
represent the true degradation effects over long timescales.

In this work, we present long-term calendar aging data consist-
ing of 232 cells across eight different cell types, four chemistries,
and five manufacturers, collected for a period for up to 13 years,
as shown in Table 1. The dataset used in this work is compared
with data in the literature, summarized in Figures S1 and S2. Using
these data, we systematically evaluate the validity of simple
models and assumptions. We first examine the calendar aging
data between 25°C and 60°C to assess the Arrhenius temperature
dependence. Under certain assumptions, we observe significant
deviation from the expected Arrhenius trends, which can result
in inaccurate estimates of room temperature degradation trends
by several years. This temperature dependence varies signifi-
cantly even among seemingly similar chemistry cells from the
same manufacturer. Next, by analyzing the time dependence of
degradation, we observe deviation from the ideal diffusion-limited
growth t%5 toward less self-passivating values, along with a signif-
icant spread in ambient temperature degradation trends across
chemistries. Furthermore, capacity and power fade exhibit
distinct trends that are not well correlated. Finally, we show that
cell-to-cell variability can account for a significant portion of
degradation, highlighting the importance of understanding indi-
vidual cell trajectories alongside population trends. These obser-
vations underscore the necessity to revisit calendar aging mech-
anisms and predictions concerning accelerated aging, early
forecasting, and transfer learning studies.

RESULTS

Calendar aging data analysis
Calendar aging data were collected from 232 cells over 13 years,
for eight distinct cell types from five manufacturers (Table 1).
These batteries were stored at four temperatures (24°C, 45°C,
60°C, or 85°C) and two SOC values (50% and 100%, see
methods for SOC definition). For each storage condition, at least
three replicates were tested, allowing for an analysis of variability
over the cells’ lifetimes. To probe the battery capacity and resis-
tance, a diagnostic cycle consisting of three C/5 cycles and three
high-rate cycles (the high-rate C rate is variable per chemistry,
see Table S2 for values) is performed at regular intervals of
time during calendar aging (see methods).

In this work, we track normalized degradation for all cells, ex-
pressed as relative capacity (Qre(t)[%] = % x 100%) and

(0)
resistance (R (t)[%] = % X 100%) metrics (see methods for
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Table 1. Cell chemistry summary

Manufacturer Cell type Form factor Chemistry Temperatures (°C) SOC (%) Total cells Aging years
K2 Energy LFP18650E 18650 LFP/Gr 24, 45, 60, 85 50, 100 40 7.8

K2 Energy LFP18650P 18650 LFP/Gr 24, 45, 60, 85 50, 100 40 7.8
Panasonic NCR18650B 18650 NCA/Gr 24, 45, 60, 85 50, 100 28 7.8
Panasonic NCR18650GA 18650 NCA/Gr 24, 60, 85 50, 100 36 5.9
Sony-Murata US18650VTC6 18650 NMC/Gr 24, 60, 85 100 18 5.3

Tenergy 302030 pouch LCO/Gr 24, 60, 85 50, 100 32 9.1

Ultralife 502030 pouch LCO/Gr 24 50, 100 20 13.7
Ultralife UBP001 prismatic LCO/Gr 24, 60, 85 100 18 1.0

Table summarizing the information of each of the cell types in this dataset. Aging years is the maximum time that a battery has been tested for. Cathode
abbreviations used here are LFP (LiFePO,4), NCA (Li(Ni, Co, Al)O5), NMC (Li(Ni, Mn, Co)O5), and LCO (LiCo0O,). For further details on the cell capacities

and testing, see Table S2.

calculation details). For each cell, relative capacity Qy(t)
(Figures 1A and 1B) and relative resistance R (t) (Figures 1C
and 1D) are plotted as a function of calendar time. To better visu-
alize the underlying trend, the data plotted in Figure 1 are
smoothed (see methods for smoothing/filtering details).
Although several cells have data continuing to deeper degrada-
tion (Figures S12-515), the data are plotted only up to 80% rela-
tive capacity to emphasize the normal operational regime of bat-
teries. To include a significant portion of the 24°C data, 90%
relative capacity (indicated by a horizontal gray line) is defined
as the end-of-life (EOL) condition in this paper. The variation,
duration, and non-linearities observed in the degradation trends
underscore the richness of the calendar aging information
captured in the dataset.

Assessing Arrhenius rate dependence

The Arrhenius equation is widely used in the literature for modeling
temperature dependence.'%?>*%*" However, deviations from this
dependency can lead to improper estimation of degradation at
lower temperatures. At higher temperatures (>60°C), electrolyte
decomposition and structural degradation of the cathode are ex-
pected.*>*® These degradation mechanisms lead to deviations
from the typical Arrhenius relationship for temperature depen-
dence on capacity fade from calendar aging. To assess the valid-
ity of the Arrhenius equation applied to this dataset, we first
examine an example cell type (Panasonic NCR18650B) stored
across different temperatures (Figure 2A).

Although it is challenging to assess the validity of the Arrhenius
rate dependence for arbitrary functional forms, we assess its
applicability under certain assumptions. We start by defining rela-
tive capacity 10ss (Qre/_ioss(t)[%] = 100% — Q(t)). We then as-
sume that the temperature, SOC, and time dependence of degra-
dation are separable such that Qe _joss(T, SOC, t) = A(T) x
F(SOC) x G(t), where F(SOC) is a non-linear function of SOC.
Assuming an Arrhenius dependence of the temperature function
(A(T)xag exp ;b—E; , where E, is the activation energy, and k;, is
the Boltzmann constant) result in a linear relationship between
IN(Qrer_ioss(t)) and In(1/T) for arbitrary time functions (G(t)) at
fixed times, regardless of SOC (see Equation S10, for further der-
ivations and explanations of this approach in Section S1.2).224
We use this relationship to generate an Arrhenius plot at four
degradation time points (35, 70, 105, and 140 weeks), as shown

in Figure 2B. These time points are indicated by vertical
dashed lines in Figure 2A. If the Arrhenius equation holds under
these assumptions, the traces should be linear with the same
slope (activation energy) at all time points. Instead, we
observe a significant deviation in the data (solid line) from the ex-
pected ideal behavior (dashed line) (in Figure 2B). Although
the data seem to follow Arrhenius behavior at the middle time
points, (70 and 105 weeks), significant deviations are observed
at the beginning and end of the dataset (35 and 140 weeks)
when examining the full lifetime (35 and 140 weeks). To highlight
the deviation, we refit the Arrhenius equation at each time point
using the 45°C and 60°C data and then extrapolate to 24°C to
generate the Arrhenius-predicted degradation curve for 24°C.
This prediction (shown in Figure 2A) estimates the calendar life
at EOL to be 128 weeks. Experimentally, however, the observed
calendar life is 231 weeks, representing a nearly 2-year discrep-
ancy. The Arrhenius-predicted degradation curve for 24°C is
also shown for other cell chemistries and testing conditions in
Figures 2C-2E. Although the predicted trend aligns best with K2
Energy LFP18650P cells, significant deviations are observed un-
der most conditions.

One could attribute this deviation to the breaking of the tem-
perature and time separability assumption. Indeed, tempera-
ture-dependent time dependencies are observable in Figure 2A.
In particular, any cells exhibiting knees, such as the NCA cells in
Figures 2A and 2E, significantly violate the separability assump-
tions. Because testing the Arrhenius approximation for
completely arbitrary functional forms is not feasible, we instead
assume standard semi-empirical power laws as the functional
form and parameterize individual battery degradation curves
without assuming any dependence. Using this framework, we
analyze the dependence of the coefficients directly. The po-
wer-law equations used for relative capacity and relative resis-
tance growth are as follows:

Qe (1)[%] = 100% — agte (Equation 1)

Rei(t)[%] = 100% + agt®? (Equation 2)

where the exponential parameter (bq or bg, dimensionless
units) captures the time-dependent behavior of degradation
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Figure 1. Overview of relative capacity and relative resistance calendar aging trends
(A) Relative C/5 discharge capacity (Qr) trends. A gray line is shown at the 90% capacity loss EOL condition.
(B) Zoom-in view of the black box highlighted in (A) to better visualize the higher temperature data.

(C) The trajectory of relative resistance (Rye/).

(D) Zoom-in view of the box in (C) to show the higher temperature trends. All trajectories shown here are smoothed (see methods). For individual unfiltered

trajectories see Figures S12-515).

and the pre-exponential parameter (@q or ar, units of %/
weeksP) encodes the rate of degradation (see Section S1.1
for definitions in terms of capacity loss and resistance
growth). We fit these equations to capacity and resistance
data up to the 90% capacity EOL condition (see methods
for fitting details). Although we do not expect this
simple semi-empirical equation to fully capture the complex-
ities of calendar aging degradation (see Figure S3 for
time-dependent non-linearity of fitting), we use this framework
to quantitatively evaluate trends of a and b parameters of ca-
pacity loss and resistance growth across temperature, SOC,
and cell type. Because the accuracy of the results depends

4 Joule 9, 101796, January 15, 2025

on the quality of fit, we report the mean absolute errors in
Figure S9.

After fitting all the degradation curves, we revisit the Arrhenius
dependence by applying it to the a parameters aq and agr
(@axag exp ;bEa ). For cell types with three or more temperature
data points, the fits are shown in an Arrhenius plot (Figure 3).
Once again, we see that the data do not align with a straight
line of constant activation energy (E,) for either capacity or
resistance for all cell types. Deviation from this linearity
violates the Arrhenius assumption and likely indicates tempera-
ture-dependent activation energy, simultaneous degradation
mechanisms, complex reaction pathways, and/or changing




Joule

¢? CellPress

OPEN ACCESS

A Temperature B
—_— 24°C 45°C 60°C T(°C)
= 24°C Arrhenius Predicted 60.0 45.0 24.0
1 1 1
100 - P~
= 3.0 1 ;
X
;\? 95 ~ \g &\\\\
- o
O 2.5
290 - z
| 2.0
% 85 8
5 2
% 80 - Z 454 35 weeks
4 E —— 70 weeks
75 = 105 weeks
| ! 1.0 1 140 weeks
70 T T T T T T T T T
0 1 2 3 4 3.0 3.1 3.2 3.3
Calendar Time (years) 1000/T (K~1)
C .
K2 Energy LFP18650E K2 Energy LFP18650P Panasonic NCR18650B
S
2
‘©
(3]
Q.
@
(@]
[)]
=
©
[0]
o

0 2 4 6 8 0 2
Calendar Time (years)

24°C Experimental
50% SOC

50% SOC

Figure 2. Temperature dependence of degradation

Calendar Time (years)

24°C Predicted

o+

4 6 8 2 4 6 8

Calendar Time (years)

24°C Predicted
100% SOC

24°C Experimental

100% SOC

An example of temperature-dependent degradation is shown for Panasonic NCR18650B at 50% SOC.

(A) Relative capacity (Qre/) vs. time curve with dashed lines showing the calendar times at which capacity is extracted across different temperatures and plotted in
(B). The purple curve is the degradation trend extrapolated from 45°C and 60°C using the Arrhenius plot in (B). (B) Relative capacity loss (Qre/_ioss) POints taken
from the dashed lines in (A) are plotted on an Arrhenius plot.*’ The increasing transparency indicates increasing time. The dashed line shows the line of best it
representing ideal Arrhenius behavior, whereas the solid line connects the means (the means of the relative capacities losses from each cell at a given tem-
perature). The discrepancy between these two lines demonstrates the deviation from the Arrhenius dependence on calendar aging. Fitting a line through the 45°C
and 60°C points and extrapolating to 24°C at all time points gives the predicted 24°C degradation curve shown in (A). This degradation curve predicted from the
Arrhenius law is additionally compared with the 24°C experimental data for (C) K2 Energy LFP18650E, (D) K2 Energy LFP18650P, and (E) Panasonic NCR18650B
cells for both 50% and 100% SOC. To see plots including the higher temperature data, see Figure S4.

degradation modes. These results highlight the need for caution
when applying the Arrhenius assumption to extrapolate lifetimes
at different temperatures, particularly in use cases such as
accelerated aging studies, where prediction of ambient temper-
ature calendar aging is critical to save resources and time.

Capacity and resistance degradation dependence on
operating conditions

Although we have shown that the Arrhenius approximation may
not always hold, we still compute the average activation energies

by fitting a line of best fit using the <60° C data shown for cell
types with more than two tested temperatures in Figure 3 (data
for all cell types, as well as fitting details, are shown in
Figures S5-S7 and Section S1.3). This analysis allows us to
compare the severity of the temperature influence across
different cell chemistries (Figure 4). In general, the activation en-
ergy for capacity decreases with increasing SOC, whereas this
trend is largely reversed for resistance. In general, the resistance
growth has larger activation energies compared with capacity
fade. Ultralife UBP0O1 cells seem to be the exception, with the
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The parameters (A) ag and (B) ag are plotted on an Arrhenius plot. A slope is shown for an activation energy equal to 1 eV for reference. Only cell types with three or
more temperatures tested are plotted here to showcase deviation from linear trends. For all cell types including those with only two temperatures, see Figure S5.

largest capacity calendar aging activation energy and one of the
lowest resistance calendar aging activation energies. Interest-
ingly, cells of similar chemistry from the same manufacturer
can exhibit significantly different temperature dependencies.
Although the K2 Energy LFP cells (LFP18650E vs. LFP18650P)
have nearly identical relative-capacity temperature dependence
at 50% SOC, at 100% SOC, and for relative resistance, they
have vastly different temperature dependencies. Additionally,
the Panasonic NCA cells (NCR18650B vs. NCR18650GA) have
different temperature dependencies for all conditions. This
observation underscores the challenges associated with transfer
learning approaches, where data from similar cell chemistries
may not reliably predict each other’s behavior.

Next, we focus on the time dependence of degradation
by analyzing the exponential parameter b for the relative
capacity and the relative resistance across all testing condi-
tions (Figure 5). The majority of the relative capacity time
dependence across testing conditions and cell types show
significant deviations from the semi-infinite, diffusion-limited
growth t°° dependence (Figure 5A).>* Although most cell
types do experience varying degrees of self-passivating
capacity time dependence (bq < 1), some LCO (LiCoOy)
cells (namely, Tenergy 302030, and Ultralife UBP001) experi-
ence linear to super-linear capacity degradation. Notably,
despite all cells having a graphite-based anode, there is
no single b value that accurately describes degradation
across testing conditions and temperatures. This is further
illustrated in the histogram, where bg and bgr values at 24°C
are highlighted in blue, showing a broad distribution across
cell types (Figure 5). Additionally, within individual cell types,

6 Joule 9, 101796, January 15, 2025

there is no evident temperature dependence of the bg and
bg values.

To further explore the relationship between resistance growth
and capacity loss due to calendar aging, we directly compare
the fitted parameters aq vs. agr, and bq vs. bg (Figure 6; Figure S10
analyzes the correlation on a per-cell-type basis). While the ag and
ag show a clear dependence on temperature and exhibit reason-
able correlations, the bg and bg, on the other hand, display no
obvious temperature dependence and show weaker correlations.
These results suggest that capacity and power loss trajectories in
batteries are generally decoupled with each exhibiting different
temperature dependencies. These differences can stem from
non-linearities in SEI thickness vs. resistivity, cathode electrolyte
interphase growth, and other phenomena.

Finally, we use the replicates in the dataset to assess the influ-
ence of cell-to-cell variability on the degradation trends of cells
undergoing the same storage conditions. To quantify the extent
of this cell-to-cell variability in the dataset, the coefficient of vari-
ation (CoV), defined as the standard deviation divided by the
mean at a given time is plotted against the relative mean capacity
loss (Figure 7). The CoV is interpolated at 1% increments of rela-
tive mean capacity loss reaching either EOL or EOT for capacity
(Figures 7A-7D) and resistance (Figures 7E-7H). Some storage
conditions exhibit several percent of variation within just the first
10% relative capacity loss, indicating a significant portion of the
degradation. This variation takes several different shapes
dictated by the individual underlying battery degradation trends.
Examples of cells exhibiting growing variability are shown in
Figures 71 and 7K, whereas those with shrinking variability are
presented in Figures 7J and 7L.
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Figure 4. Activation energy dependence on chemistry and SOC

Bar plot of the activation energy in units of meV for (A) relative capacity and (B) relative resistance. These values are extracted from the slope on an Arrhenius plot
using temperatures <60°C (see Figures 3 and S5-S7 and Section S1.3 for further details). The error bar plotted is the 90% confidence interval of the extracted
slope. If data are only present for one temperature, the activation energy is not extracted. In the case of the Tenergy 302030 cells, the 24°C resistance growth is
very flat, leading to an ag close to 0 that could not properly be transformed into a log space and thus cannot be used.

From these plots it is evident that individual degradation
trends can vary significantly from one another. Therefore, it is
critical for calendar aging models to accurately capture the
different battery trend lines resulting from cell-to-cell variability,
otherwise the population behavior of batteries under given
storage conditions can be misrepresented by significant
percentages.*

Extrapolating calendar aging data is an effective way to signif-
icantly reduce the time required for data collection. To confi-
dently perform this extrapolation, it is essential to understand
the amount of data needed for an accurate forecast of the bat-
tery’s EOL. To quantify this, we analyze the relative-capacity po-
wer-law fit using an increasing number of data points up to the
EOL time, observing how the error changes over time (see
methods for a full description). The power-law function well char-
acterizes the trajectory, motivating our use of this simple func-
tional form for testing early prediction. This methodology is illus-
trated with an example cell (C00214, K2 Energy LFP18650E,
24°C, 100% SOC) in Figures 8A and 8B. In general, using data
closer to EOL leads to better estimations of the EOL, but the tra-
jectory of the error is not monotonic. In Figure 8B, the power-law
model initially underpredicts calendar life by over 2 years, then
overpredicts by 4 years before converging on the correct EOL
as more data are included.

The trajectory of the error is plotted for all 24°C cells in terms of
both the absolute calendar time (Figure 8C) and the fraction of
time until EOL (Figure 8D). Purple-shaded areas represent error
boundaries predicting the EOL within +2, 1, 0.5, and 0.25 years.
To summarize these plots, the fraction of cells predicted within
these four error boundaries are shown in Figures 8E and 8F.
From this, we see that to predict 90% of all cells within 0.5 years
takes almost 5 years or 90% of the time until EOL. This amount of
data is not conducive to reducing the data collection time of cal-
endar aging studies and highlights the poor extrapolation capa-
bilities of power-law models. Instead, advanced data-driven or
electrochemical models are needed to properly utilize a smaller
fraction of data to extrapolate cell performance to EOL and
perform accelerated aging studies.

Developing accurate models that capture long-term calendar
aging are crucial for predicting cell performance till EOL. This can
take up to 15 years for electric vehicles (EVs).*® However, as we
demonstrated in this work, long-term calendar aging studies
require significant time for experimentation and validation while
ensuring versatility across different storage conditions and cell
chemistries and accounting for the cell-to-cell variability. The de-
viation from expected trends observed with this dataset may be
attributed to the accelerated lithium-ion loss or loss of active ma-
terial. Various models can be used to simulate and predict
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Figure 5. Exponential parameter dependence on aging conditions

Bar plots of the exponential parameter for (A) relative capacity and (B) relative resistance. A dashed line is shown at a parameter value of 0.5 for diffusion-limited
growth for bg and 1 for the borderline of self-passivating vs. accelerating degradation for both bg and bg. The error bar shown on the bar plot is the standard
deviation of the bq and bg values fit on replicates. Both bar plots have a histogram on the same x axis scale shown on the side for all bg or b values present in the
dataset. The 24°C data contribution to the histogram is emphasized in blue. bq and bg have a standard deviation value of 0.19 and 0.39, respectively. See
Figure S8 for the pre-exponential parameter bar plot and Figure S9 for the mean absolute error of these fits.

calendar aging and can be validated using the dataset presented
in this work. Electrochemical models are well suited for capturing
individual degradation mechanisms to simulate and predict cal-
endar aging from physics. The underlying mechanisms that
cause calendar aging at specific SOCs and temperatures over
long storage periods need to be understood to incorporate
them into these models. Several efforts have been made to
develop electrochemical models for calendar aging, focusing
on the growth of the SEl layer as the dominant mecha-
nism."%174547 However, accurately capturing the degradation
mechanisms models requires experimental validation during
long-term calendar aging. Performing cell disassembly and em-
ploying advanced characterization techniques are useful for un-
derstanding degradation trends and to obtain model parameters
that are influenced by calendar aging. Typical semi-empirical
models for calendar aging employ the Arrhenius relationship
and the power law for temperature and time dependence on

8 Joule 9, 101796, January 15, 2025

capacity loss. There have been several efforts to enhance these
models using advanced techniques such as symbolic regres-
sion, bi-level optimization, and data-driven approaches from
machine learning tools. Symbolic regression utilizes algorithms
to identify the optimal combination of functions that explain the
dependence on temperature and SOC. For example, Gasper
et al. employed symbolic regression to derive expressions for
calendar aging, uncovering relationships that enhanced the ac-
curacy of the aging models.*® On the other hand, data-driven
models, such as Gaussian process regression (GPR) and neural
networks such as gated recurrent units (GRU) or long short-term
memory (LSTM) for predicting the remaining useful life (RUL) or
the capacity fade trajectories are gaining traction for calendar
aging predictions.'®*° Finally, stochastic models can be used
over deterministic aging models to address cell-to-cell variability
observed in this dataset, and several efforts have been made
in literature to use stochastic models for predicting cycling
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Figure 6. Relative capacity loss vs. relative resistance growth
(A) Scatterplot of the pre-exponential parameters aq vs. ag.

(B) Scatterplot of the exponential parameters bq vs. bg. A gray dotted line is used to show the one-to-one line. The error bar is the standard deviation of repeats.
The histograms shown on the sides of the scatterplots are taken from the mean a and b values for each testing condition and cell type. The contribution of the 24°C

data to the histogram is emphasized in blue.

aging.***9*° These models can be extended to be used for cal-
endar aging lifetime predictions. Numerous tools and methods in
the literature can address the shortcomings of traditional models
regarding the temperature and time dependence of calendar ag-
ing, and we encourage the community to utilize the dataset pre-
sented in this work to develop accurate and robust models for
long-term calendar aging.

Conclusion

In this work, we analyzed eight different cell types with calendar
aging data collected over a time frame of up to 13 years, allowing
for a systematic analysis that reveals general observations appli-
cable across various cell types. First, we challenge the applica-
bility of the Arrhenius equation under specific assumptions and
reveal significant deviations from ideal behavior that result in
years of inaccuracy when predicting low-temperature calendar
aging. Next, we analyzed the activation energy and showcased
that even among seemingly similar cell chemistries from the
same manufacturer, the influence of temperature on degradation
varies significantly. By analyzing the time dependence of degra-
dation using the power-law exponential (b), we demonstrate that
the majority of cells regardless of testing conditions deviate
significantly from the ideal diffusion-limited t®® SEI layer growth.
This time dependence differs drastically across cell types and
between capacity vs. resistance trends. By analyzing the repli-

cates present in this work, we observe substantial cell-to-cell
variability in degradation trends under identical storage condi-
tions. Finally, we show that simple power-law extrapolation of
room temperature calendar aging data requires nearly 90% of
the data prior to the EOL time to accurately predict 90% of cells’
EOL within +0.5 years. Collectively, these observations under-
score the challenges in performing accelerated aging studies
and highlight the need for long-term ambient temperature calen-
dar aging data to validate calendar aging models. This work ad-
vocates for the creation of rigorously developed models that
accurately account for these findings to bolster the understand-
ing and prediction of calendar aging degradation. In addition,
this work can be further improved by incorporating more finely
spaced SOCs, temperatures, and other stress factors to improve
the model accuracy to better understand its effect on long-term
calendar aging.

METHODS

Experimental setup

The batteries were stored in open circuit conditions in Cincinnati
Sub Zero temperature chambers at set points of 24°C, 45°C,
60°C, and 85°C. Cylindrical cells had nickel tabs resistance
spot welded on to them. Pouch cells and prismatic cells were
already present with tabs. During the diagnostic cycle, the
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Figure 7. Effect of degradation on cell-to-cell variability

(A-H) For unique cell chemistries and testing conditions, the coefficient of variation (CoV) is calculated for relative capacity and relative resistance as the standard
deviation divided by the mean as a function of the relative mean capacity fade. The relative capacities used here are normalized by the mean initial capacity of all
repeats instead of their individual initial capacity to represent initial variability properly. The CoV is calculated for every 1% relative mean capacity loss until either
10% fade or data have ended. These data are plotted for capacity at (A) 24°C, (B) 45°C, (C) 60°C, and (D) 85°C. Similarly, for resistance at (E) 24°C, (F) 45°C, (G)
60°C, and (H) 85°C.

(I-L) Examples showing variability growing and shrinking for relative capacity and relative resistance.

batteries were taken out of the chambers and placed in open air
of a controlled temperature lab space (24°C + 4°C). Maccor 4000
potentiostats (calibrated annually) were then connected to the

batteries via Mueller BU-75k Kelvin clips with separate voltage
sense and current carrying wire to perform the diagnostic cycle
(Figure 9A). The diagnostic cycle consists of an initial discharge,
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The data are shown as blue markers, and the incrementally fit power law is shown as solid lines colored from light to dark blue based on how much data from the
beginning of life (BOL) to EOL is used. The 90% relative capacity EOL condition is shown as a gray dashed line, and where the fitted power laws cross this
condition are shown with gray markers. An additional red dot is included for the true EOL time extracted from the smoothed data.

(B-F) (B) The error trajectory of the fits shown in (A). The error trajectories are then plotted for all 24°C cells against (C) the calendar time in years and (D) the fraction
of time until EOL. The y axis is limited to +5 years to better show error trajectories (for full versions of these plots and separation of cell types see Figure S11). Error
boundaries of +2, 1, 0.5, and 0.25 years are shown in different shades of purple. The fraction of the cells that are within the error boundaries shown in (C) and
(D) are shown with their corresponding colors against (E) the calendar time in years, and (F) the fraction of time until EOL. A gray dashed line at 0.9 is included for

reference.

three C/5 low-rate cycles, three high-rate cycles, a C/5 capacity
check cycle to observe any damage done by high-rate cycles,
and a final charge to storage SOC. The 50% storage SOC is a
charge from the lower voltage cutoff to 50% of the nominal ca-
pacity, and the 100% storage SOC is a charge from the lower
cutoff voltage to the upper voltage cutoff. The full details of the

diagnostic cycle are described in Table S1. Some of the appa-
ratus and testing conditions used in these experiments can
cause slight variations in the capacity and resistance measure-
ments, the effects of which are not further studied in this work.
For instance, the tabs may oxidize at higher temperatures and
cause an increase in resistance. Minor variations in the force

Joule 9, 101796, January 15,2025 11




¢? CellPress

OPEN ACCESS

Joule

4.0

3.5

Voltage (V)

3.0 1

Current
(C-Rate)

—7

40 60 80

Test Time (hrs)

\_/highrate -

Clowrate Discharge

Resistance (R) =

4.0

3.8

3.6 - \_/highrate

Voltage (V)

3.4 1

3.2

3.0

" Chighrate -

—— Chighrate Discharge

0.04

T
0.06

T
0.08 0.10 0.12

Discharge Capacity (Ah)

Figure 9. Extracting capacity and resistance

(A) Voltage and current traces for the diagnostic cycle of an example cell (Tenergy 302030 stored at 100% SOC). The diagnostic test consists of three C/5 cycles,
three high-rate (1C in this case, see Table S2 for other cell type values) cycles, a C/5 capacity check cycle, and a charge to storage SOC. The highlighted portions
represent the discharge curves where the capacity and resistance metrics are extracted from. We chose the third C/5 and high-rate discharge curves.

(B) Traces of the low-rate and high-rate voltage vs. capacity curve. The capacity is extracted from the third low-rate discharge curve. The resistance is extracted
from high-rate average voltage (V,,,g,,,a[e) and the C/5 low-rate average voltage (V/owrate) along with the C rates according to Equation 3. The average voltages are
calculated by dividing the discharge energy by the capacity for a given discharge curve.

applied to the cells by the Kelvin clips influence resistance
measurements. Additionally, there exists temperature-control-
induced performance variations from testing the batteries in an
open-air controlled temperature lab space during the diagnostic,
as well as non-uniform temperature control within storage tem-
perature chambers.

Capacity and resistance extraction

The capacity and resistance metrics are extracted from the pe-
riodic diagnostic test. The capacity used to determine Qg is
extracted from the constant current discharge portion of the
third C/5 low-rate cycle (Figure 9). The resistance used in Ry
is not a DC pulse resistance. Instead, it is a steady-state resis-
tance taken across the whole operating window using informa-
tion from both the constant current discharge portion of the
third C/5 low-rate (Cipwrate) cycle and the third high-rate

12 Joule 9, 101796, January 15, 2025

(Chignrate) cycle. A voltage difference is taken as the difference
of the C/5 discharge average voltage (Vjowrate) and the high-
rate discharge (Chignrate) average voltage (Vhigprate). This
voltage difference is then divided by the difference in C rates
to get the resistance metric used (Figure 9B, for Chignrate, S€€
Table S2).

RIQ x Ah] = Vigrrato = Yiowrato (Equation 3)

highrate — C/owrate

This choice of resistance metric measures how much energy is
lost by going to higher rates, taking into account average kinetic
effects across the whole discharge curve. By using the C rate
instead of the absolute current value, this metric is normalized
to the capacity of the cell type, allowing different capacity cell
types to be properly compared. This metric can also be
seen as an electrode area normalized resistance under the
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assumption that nominal capacity (Qnominar) is proportional to the
active area that current passes through on the electrode material
(see Equation S9).

Data smoothing

The resistance and capacity data contain measurement noise
that can obscure the general trend in the data (Figures S12-
S15). To counteract this issue, when the data are plotted directly,
local polynomial regression with a nominal window size of 14
data points is used to smooth the data points. This type of
smoothing performs poorly at the edges of the data; therefore,
to better capture the trends at the beginning of testing and
EOT, the window size is continuously decreased to half the nom-
inal window size (seven data points). The initial smoothed data
point is set to be the same as the raw data for easy comparison.
If the total number of data points is less than or equal to 10,
smoothing is not applied, and the data are used directly. The
smoothed data are used when the data are plotted directly,
such as in Figures 1, 2A, and 7, as well as for determining the
EOL time. The unsmoothed data, however, is used in fitting
the power laws to not introduce any biases induced by the
smoothing.

Power-law fitting

The power-law equations (Equations 1 and 2) are fit on the non-
smoothed data capacity and time data. The time is input in
weeks, and the capacity is input as the relative capacity (%).
The data points used are specifically taken from values up until
the EOL time. The EOL time is determined from the smoothed
data, and if there are not enough total data points (> 3) to
perform the smoothing procedure, the fitting is not performed.
If there is less than three data points after dropping all data
past the EOL time, the fit is not performed leading to the
exclusion of several 85°C data. If a cell has not reached EOL,
all available data points were used until current EOT. To see
the data that the power-law equations were fit on, see
Figures S16-S19).

A SciPy differential evolution algorithm with a mean absolute
error objective function was used to fit the a and b coefficients.
The possible values of the prefactor a are constrained between
0 and 1,000, whereas the possible values of b are constrained
between 0 and 10. The fit values are constrained to be positive,
but the upper bounds are chosen to be large enough to allow
effectively unconstrained fittings.

Power-law prediction

To understand the influence of increasing the amount of data on
the prediction of EOL time, we employ an incremental fitting
approach on the data using a power law. We begin fitting the po-
wer law with at least four data points, and we incrementally add
the following data one at a time until the final data point before
the EOL time. At each time point, we calculate the predicted
EOL time from the power-law fit and compare it with the true
EOL time obtained from the smoothed version of the capacity
data (Figures 8A and 8B). To obtain Figures 8E and 8F, the error
trajectory is linearly interpolated vs. calendar time or fraction
time until EOL, respectively. Beyond the EOL time of a battery,
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the predicted EOL continues to be the value using the data up
until the last data point before the EOL time.

RESOURCE AVAILABILITY

Lead contact
Inquiries regarding the data associated with this paper should be directed to
the lead contact, Will Chueh (wchueh@stanford.edu).

Materials availability
This study did not generate new materials.

Data and code availability

Calendar aging data and code including raw data, processed data, fitting re-
sults, and figure generating code are included at the following Open Science
Framework repository: https://osf.io/ju325/.

ACKNOWLEDGMENTS

This effort was sponsored in whole or in part by the United States Government
(USG). The U.S. Government is authorized to reproduce and distribute original
submissions for publication for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of the United
States Government (USG).

AUTHOR CONTRIBUTIONS

V.N.L,, X.C., and F.S., contributed to data analysis, cleaning, and manage-
ment. V.N.L. generated the figures. V.N.L. and M.U. wrote and revised the
manuscript. S.0. and W.C.C. supervised the work and acquired funding for
the project. All authors contributed to editing the manuscript.

DECLARATION OF INTERESTS

X.C. is with the Department of Electrical and Computer Engineering, University
of California, Los Angeles, California, USA. F.S. is with the Institute for Sustain-
able Energy systems, University of Applied Science HM, Munich, Germany.
They were both affiliated with Stanford University at the time the research
was conducted.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
joule.2024.11.013.

Received: July 3, 2024
Revised: October 22, 2024
Accepted: November 22, 2024
Published: December 18, 2024

REFERENCES

1. Jaiswal, A. (2017). Lithium-ion battery based renewable energy solution for
off-grid electricity: A techno-economic analysis. Renew. Sustain. Energy
Rev. 72, 922-934. https://doi.org/10.1016/j.rser.2017.01.049.

2. Stampatori, D., Raimondi, P.P., and Noussan, M. (2020). Li-ion batteries: a
review of a key technology for transport decarbonization. Energies 13,
2638. https://doi.org/10.3390/en13102638.

3. Chen, T., Jin, Y., Lv, H, Yang, A., Liu, M., Chen, B, Xie, Y., and Chen, Q.
(2020). Applications of lithium-ion batteries in grid-scale energy storage
systems. Trans. Tianjin Univ. 26, 208-217. https://doi.org/10.1007/
$12209-020-00236-w.

4. Kucevic, D., Tepe, B., Englberger, S., Parlikar, A., Muhlbauer, M., Bohlen,
0., Jossen, A., and Hesse, H. (2020). Standard battery energy storage

Joule 9, 101796, January 15, 2025 13



mailto:wchueh@stanford.edu
https://osf.io/ju325/
https://doi.org/10.1016/j.joule.2024.11.013
https://doi.org/10.1016/j.joule.2024.11.013
https://doi.org/10.1016/j.rser.2017.01.049
https://doi.org/10.3390/en13102638
https://doi.org/10.1007/s12209-020-00236-w
https://doi.org/10.1007/s12209-020-00236-w

¢? CellPress

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

14

OPEN ACCESS

system profiles: analysis of various applications for stationary energy stor-
age systems using a holistic simulation framework. J. Energy Storage 28,
101077. https://doi.org/10.1016/j.est.2019.101077.

. Christophersen, J.P. (2015). Battery test manual for electric vehicles, revi-

sion 3. Idaho National Lab. https://doi.org/10.2172/1186745.

. Moody, J., Farr, E., Papagelis, M., and Keith, D.R. (2021). The value of car

ownership and use in the United States. Nature Sustainability 4, 769-774.
https://doi.org/10.1038/s41893-021-00731-5.

. Keil, P., Schuster, S.F., Wilhelm, J., Travi, J., Hauser, A., Karl, R.C., and Jos-

sen, A. (2016). Calendar aging of lithium-ion batteries. J. Electrochem. Soc.
163, A1872-A1880. https://doi.org/10.1149/2.0411609jes.

. Dufek, E.J., Tanim, T.R., Chen, B.R., and Sangwook, K. (2022). Battery

calendar aging and machine learning. Joule 6, 1363-1367. hitps://doi.
org/10.1016/j.joule.2022.06.007.

. Geisbauer, C., Wohrl, K., Koch, D., Wilhelm, G., Schneider, G., and

Schweiger, H.G. (2021). Comparative study on the calendar aging
behavior of six different lithium-ion cell chemistries in terms of parameter
variation. Energies 74, 3358. https://doi.org/10.3390/en14113358.

Liu, K., Li, Y., Hu, X., Lucu, M., and Widanage, W.D. (2020). Gaussian pro-
cess regression with automatic relevance determination kernel for calen-
dar aging prediction of lithium-ion batteries. IEEE Trans. Ind. Inf. 16, 3767-
3777. https://doi.org/10.1109/1ii.2019.2941747.

Azkue, M., Lucu, M., Martinez-Laserna, E., and Aizpuru, I. (2021). Calendar
ageing model for li-ion batteries using transfer learning methods. World
Electr. Veh. J. 12, 145. https://doi.org/10.3390/wevj12030145.

Ramadass, P., Haran, B., Gomadam, P.M., White, R., and Popov, B.N.
(2004). Development of first principles capacity fade model for li-ion cells.
J. Electrochem. Soc. 157, A196. https://doi.org/10.1149/1.1634273.

Safari, M., Morcrette, M., Teyssot, A., and Delacourt, C. (2009). Multi-
modal physics-based aging model for life prediction of li-ion batteries.
J. Electrochem. Soc. 156, A145. https://doi.org/10.1149/1.3043429.

Storch, M., Hahn, S.L., Stadler, J., Swaminathan, R., Vrankovic, D., Krupp, C.,
and Riedel, R. (2019). Post-mortem analysis of calendar aged large-format
lithium-ion cells: investigation of the solid electrolyte interphase. J. Power
Sources 443, 227243. https://doi.org/10.1016/].jpowsour.2019.227243.

Zhu, W., Zhou, P., Ren, D., Yang, M., Rui, X., Jin, C., Shen, T., Han, X.,
Zheng, Y., Lu, L., et al. (2022). A mechanistic calendar aging model of
lithium-ion battery considering solid electrolyte interface growth. Int. J. En-
ergy Res. 46, 15521-15534. https://doi.org/10.1002/er.8249.

Ploehn, H.J., Ramadass, P., and White, R.E. (2004). Solvent diffusion
model for aging of lithium-ion battery cells. J. Electrochem. Soc. 7157,
A456. https://doi.org/10.1149/1.1644601.

Broussely, M., Herreyre, S., Biensan, P., Kasztejna, P., Nechev, K., and
Staniewicz, R.J. (2001). Aging mechanism in li ion cells and calendar life
predictions. J. Power Sources 97, 13-21. https://doi.org/10.1016/
S0378-7753(01)00722-4.

Schimpe, M., von Kuepach, M.E., Naumann, M., Hesse, H.C., Smith, K.,
and Jossen, A. (2018). Comprehensive modeling of temperature-depen-
dent degradation mechanisms in lithium iron phosphate batteries.
J. Electrochem. Soc. 165, A181-A193. https://doi.org/10.1149/2.
1181714jes.

Ecker, M., Nieto, N., Kabitz, S., Schmalstieg, J., Blanke, H., Warnecke, A.,
and Sauer, D.U. (2014). Calendar and cycle life study of linimnco)o2-
based 18650 lithium-ion batteries. J. Power Sources 248, 839-851.
https://doi.org/10.1016/j.jpowsour.2013.09.143.

Bischof, K., Fliigel, M., Hélzle, M., Wohlfahrt-Mehrens, M., and Waldmann,
T. (2024). Aging mechanism for calendar aging of li-ion cells with si/
graphite anodes. J. Electrochem. Soc. 7171, 10510. https://doi.org/10.
1149/1945-7111/ad1b7c.

Sarasketa-Zabala, E., Gandiaga, |., Rodriguez-Martinez, L.M., and Villar-
real, I. (2014). Calendar ageing analysis of a lifepo4/graphite cell with dy-
namic model validations: towards realistic lifetime predictions. J. Power
Sources 272, 45-57. https://doi.org/10.1016/j.jpowsour.2014.08.051.

Joule 9, 101796, January 15, 2025

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Joule

Naumann, M., Schimpe, M., Keil, P., Hesse, H.C., and Jossen, A. (2018).
Analysis and modeling of calendar aging of a commercial lifepo4/graphite
cell. J. Energy Storage 17, 153-169. https://doi.org/10.1016/j.est.2018.
01.019.

Hayder, A., Beltran, H., Lindsey, N.J., and Pecht, M. (2023). Assessment of
the calendar aging of lithium-ion batteries for a long-term—space mis-

sions. Front. Energy Res. 771. https://doi.org/10.3389/fenrg.2023.
1108269.
Attia, P.M., Chueh, W.C., and Harris, S.J. (2020). Revisiting the t0.5 depen-

dence of SEI growth. J. Electrochem. Soc. 167, 090535. https://doi.org/
10.1149/1945-7111/ab8ce4.

Hahn, S.L., Storch, M., Swaminathan, R., Obry, B., Bandlow, J., and Birke,
K.P. (2018). Quantitative validation of calendar aging models for lithium-
ion batteries. J. Power Sources 400, 402-414. https://doi.org/10.1016/].
jpowsour.2018.08.019.

Karger, A., Schmitt, J., Kirst, C., Singer, J.P., Wildfeuer, L., and Jossen, A.
(2023). Mechanistic calendar aging model for lithium-ion batteries.
J. Power Sources 578, 233208. https://doi.org/10.1016/].jpowsour.2023.
233208.

Broussely, M., Biensan, P., Bonhomme, F., Blanchard, P., Herreyre, S.,
Nechev, K., and Staniewicz, R.J. (2005). Main aging mechanisms in li ion
batteries. Journal of Power Sources 746, 90-96. https://doi.org/10.1016/
j-jpowsour.2005.03.172.

Hendricks, C.E., Mansour, A.N., Fuentevilla, D.A., Waller, G.H., Ko, J.K.,
and Pecht, M.G. (2020). Copper dissolution in overdischarged lithium-
ion cells: X-ray photoelectron spectroscopy and x-ray absorption fine
structure analysis. J. Electrochem. Soc. 167, 90501. https://doi.org/10.
1149/1945-7111/ab697a.

Lee, Y.K. (2021). Effect of transition metal ions on solid electrolyte inter-
phase layer on the graphite electrode in lithium ion battery. J. Power Sour-
ces 484, 229270. https://doi.org/10.1016/j.jpowsour.2020.229270.

Joshi, T., Eom, K., Yushin, G., and Fuller, T.F. (2014). Effects of dissolved
transition metals on the electrochemical performance and sei growth in
lithium-ion batteries. J. Electrochem. Soc. 167, A1915-A1921. https://
doi.org/10.1149/2.0861412jes.

Schmalstieg, J., Kébitz, S., Ecker, M., and Sauer, D.U. (2014). A holistic
aging model for li(nimnco)o2 based 18650 lithium-ion batteries. J. Power
Sources 257, 325-334. https://doi.org/10.1016/j.jpowsour.2014.02.012.

Gewald, T., Lienkamp, M., Lehmkuhl, D., and Hahn, A. (2019). Accelerated
aging characterization of lithium-ion cells: Limitation of arrhenius depen-
dency. IEEE, 1-10. https://doi.org/10.1109/EVER.2019.8813534.

Gasper, P., Saxon, A., Shi, Y., Endler, E., Smith, K., and Thakkar, F.M.
(2023). Degradation and modeling of large-format commercial lithium-
jon cells as a function of chemistry, design, and aging conditions.
J. Energy Storage 73, 109042. https://doi.org/10.1016/j.est.2023.109042.

Gasper, P., Gering, K., Dufek, E., and Smith, K. (2021). Challenging prac-
tices of algebraic battery life models through statistical validation and
model identification via machine-learning. J. Electrochem. Soc. 168,
20502. https://doi.org/10.1149/1945-7111/abdde1.

Gauthier, R., Luscombe, A., Bond, T., Bauer, M., Johnson, M., Harlow, J.,
Louli, A., and Dahn, J.R. (2022). How do depth of discharge, c-rate and
calendar age affect capacity retention, impedance growth, the electrodes,
and the electrolyte in li-ion cells? J. Electrochem. Soc. 169, 20518. https://
doi.org/10.1149/1945-7111/ac4b82.

Eddahech, A., Briat, O., and Vinassa, J.-M. (2015). Performance compar-
ison of four lithium—-ion battery technologies under calendar aging. Energy
84, 542-550. https://doi.org/10.1016/j.energy.2015.03.

Dubarry, M., and Devie, A. (2018). Battery durability and reliability under elec-
tric utility grid operations: representative usage aging and calendar aging.
J. Energy Storage 18, 185-195. https://doi.org/10.1016/j.est.2018.04.004.

Krupp, A., Beckmann, R., Diekmann, T., Ferg, E., Schuldt, F., and Agert, C.
(2022). Calendar aging model for lithium-ion batteries considering the


https://doi.org/10.1016/j.est.2019.101077
https://doi.org/10.2172/1186745
https://doi.org/10.1038/s41893-021-00731-5
https://doi.org/10.1149/2.0411609jes
https://doi.org/10.1016/j.joule.2022.06.007
https://doi.org/10.1016/j.joule.2022.06.007
https://doi.org/10.3390/en14113358
https://doi.org/10.1109/tii.2019.2941747
https://doi.org/10.3390/wevj12030145
https://doi.org/10.1149/1.1634273
https://doi.org/10.1149/1.3043429
https://doi.org/10.1016/j.jpowsour.2019.227243
https://doi.org/10.1002/er.8249
https://doi.org/10.1149/1.1644601
https://doi.org/10.1016/S0378-7753(01)00722-4
https://doi.org/10.1016/S0378-7753(01)00722-4
https://doi.org/10.1149/2.1181714jes
https://doi.org/10.1149/2.1181714jes
https://doi.org/10.1016/j.jpowsour.2013.09.143
https://doi.org/10.1149/1945-7111/ad1b7c
https://doi.org/10.1149/1945-7111/ad1b7c
https://doi.org/10.1016/j.jpowsour.2014.08.051
https://doi.org/10.1016/j.est.2018.01.019
https://doi.org/10.1016/j.est.2018.01.019
https://doi.org/10.3389/fenrg.2023.1108269
https://doi.org/10.3389/fenrg.2023.1108269
https://doi.org/10.1149/1945-7111/ab8ce4
https://doi.org/10.1149/1945-7111/ab8ce4
https://doi.org/10.1016/j.jpowsour.2018.08.019
https://doi.org/10.1016/j.jpowsour.2018.08.019
https://doi.org/10.1016/j.jpowsour.2023.233208
https://doi.org/10.1016/j.jpowsour.2023.233208
https://doi.org/10.1016/j.jpowsour.2005.03.172
https://doi.org/10.1016/j.jpowsour.2005.03.172
https://doi.org/10.1149/1945-7111/ab697a
https://doi.org/10.1149/1945-7111/ab697a
https://doi.org/10.1016/j.jpowsour.2020.229270
https://doi.org/10.1149/2.0861412jes
https://doi.org/10.1149/2.0861412jes
https://doi.org/10.1016/j.jpowsour.2014.02.012
https://doi.org/10.1109/EVER.2019.8813534
https://doi.org/10.1016/j.est.2023.109042
https://doi.org/10.1149/1945-7111/abdde1
https://doi.org/10.1149/1945-7111/ac4b82
https://doi.org/10.1149/1945-7111/ac4b82
https://doi.org/10.1016/j.energy.2015.03
https://doi.org/10.1016/j.est.2018.04.004

Joule

39.

40.

41,

42,

43.

influence of cell characterization. J. Energy Storage 45, 103506. https://
doi.org/10.1016/j.est.2021.103506.

Frie, F., Ditler, H., Klick, S., Stahl, G., Rahe, C., Ghaddar, T., and Sauer,
D.U. (2024). An analysis of calendaric aging over 5 years of Ni-rich
18650-cells with Si/C anodes. ChemElectroChem 202400020. ChemElec-
troChem 171, €202400020. https://doi.org/10.1002/celc.202400020.

Lucu, M., Martinez-Laserna, E., Gandiaga, I., Liu, K., Camblong, H., Wi-
danage, W.D., and Marco, J. (2020). Data-driven nonparametric Li-ion bat-
tery ageing model aiming at learning from real operation data — part A: stor-
age operation. J. Energy Storage 30, 101409. https://doi.org/10.1016/j.
est.2020.101409.

Lewerenz, M., Kébitz, S., Knips, M., Minnix, J., Schmalstieg, J., War-
necke, A., and Sauer, D.U. (2017). New method evaluating currents keep-
ing the voltage constant for fast and highly resolved measurement of ar-
rhenius relation and capacity fade. J. Power Sources 353, 144-151.
https://doi.org/10.1016/j.jpowsour.2017.03.136.

Ecker, M., Gerschler, J.B., Vogel, J., Kabitz, S., Hust, F., Dechent, P., and
Sauer, D.U. (2012). Development of a lifetime prediction model for lithium-
ion batteries based on extended accelerated aging test data. J. Power
Sources 215, 248-257. https://doi.org/10.1016/j.jpowsour.2012.05.012.

Waldmann, T., Wilka, M., Kasper, M., Fleischhammer, M., and Wohlfahrt-
Mehrens, M. (2014). Temperature dependent ageing mechanisms in
lithium-ion batteries - a post-mortem study. J. Power Sources 262,
129-135. https://doi.org/10.1016/j.jpowsour.2014.03.112.

44,

45.

46.

47.

48.

49.

50.

¢? CellPress

OPEN ACCESS

Alghalayini, M., Harris, S.J., Harris, S., and Noack, M.M. (2024). Early pre-
diction of the failure probability distribution for energy storage technolo-
gies driven by domain-knowledge-informed machine learning. https://
doi.org/10.21203/rs.3.rs-3871499/v1.

Christophersen, J.P. (2012). Battery technology life verification test
manual revision 1. https://doi.org/10.2172/1064046.

Kamyab, N., Weidner, J.W., and White, R.E. (2019). Mixed mode growth
model for the solid electrolyte interface (SEIl). J. Electrochem. Soc. 7166,
A334-A341. https://doi.org/10.1149/2.1101902jes.

Khaleghi Rahimian, S., Forouzan, M.M., Han, S., and Tang, Y. (2020). A
generalized physics-based calendar life model for Li-ion cells. Electro-
chim. Acta 348. https://doi.org/10.1016/j.electacta.2020.136343.

Gasper, P., Collath, N., Hesse, H.C., Jossen, A., and Smith, K. (2022). Ma-
chine-learning assisted identification of accurate battery lifetime models
with uncertainty. J. Electrochem. Soc. 769, 80518. https://doi.org/10.
1149/1945-7111/ac86a8.

Chu, A., Allam, A., Cordoba Arenas, A., Rizzoni, G., and Onori, S. (2020).
Stochastic capacity loss and remaining useful life models for lithium-ion
batteries in plug-in hybrid electric vehicles. J. Power Sources 478,
228991. https://doi.org/10.1016/j.jpowsour.2020.228991.

Barbers, E., Hust, F.E., Hildenbrand, F.E.A., Frie, F., Quade, K.L., Bihn, S.,
Sauer, D.U., and Dechent, P. (2024). Exploring the effects of cell-to-cell
variability on battery aging through stochastic simulation techniques.
J. Energy Storage 84, 110851. https://doi.org/10.1016/j.est.2024.110851.

Joule 9, 101796, January 15, 2025 15



https://doi.org/10.1016/j.est.2021.103506
https://doi.org/10.1016/j.est.2021.103506
https://doi.org/10.1002/celc.202400020
https://doi.org/10.1016/j.est.2020.101409
https://doi.org/10.1016/j.est.2020.101409
https://doi.org/10.1016/j.jpowsour.2017.03.136
https://doi.org/10.1016/j.jpowsour.2012.05.012
https://doi.org/10.1016/j.jpowsour.2014.03.112
https://doi.org/10.21203/rs.3.rs-3871499/v1
https://doi.org/10.21203/rs.3.rs-3871499/v1
https://doi.org/10.2172/1064046
https://doi.org/10.1149/2.1101902jes
https://doi.org/10.1016/j.electacta.2020.136343
https://doi.org/10.1149/1945-7111/ac86a8
https://doi.org/10.1149/1945-7111/ac86a8
https://doi.org/10.1016/j.jpowsour.2020.228991
https://doi.org/10.1016/j.est.2024.110851

	A decade of insights: Delving into calendar aging trends and implications
	Introduction
	Results
	Calendar aging data analysis
	Assessing Arrhenius rate dependence
	Capacity and resistance degradation dependence on operating conditions
	Conclusion

	Methods
	Experimental setup
	Capacity and resistance extraction
	Data smoothing
	Power-law fitting
	Power-law prediction

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	Supplemental information
	References


