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Deep learning models are being widely used in the field of combustion. Given the black-box nature of typical
neural network based models, uncertainty quantification (UQ) is critical to ensure the reliability of predictions as
well as the training datasets, and for a principled quantification of noise and its various sources. Deep learning
surrogate models for predicting properties of chemical compounds and mixtures have been recently shown to be
promising for enabling data-driven fuel design and optimization, with the ultimate goal of improving efficiency
and lowering emissions from combustion engines. In this study, UQ is performed for a multi-task deep learning
model that simultaneously predicts the research octane number (RON), Motor Octane Number (MON), and Yield
Sooting Index (YSI) of pure components and multicomponent blends. The deep learning model is comprised of
three smaller networks: Extractor 1, Extractor 2, and Predictor, and a mixing operator. The molecular finger-
prints of individual components are encoded via Extractor 1 and Extractor 2, the mixing operator generates
fingerprints for mixtures/blends based on linear mixing operation, and the predictor maps the fingerprint to the
target properties. Two different classes of UQ methods, Monte Carlo ensemble methods and Bayesian neural
networks (BNNs), are employed for quantifying the epistemic uncertainty. Combinations of Bernoulli and
Gaussian distributions with DropConnect and DropOut techniques are explored as ensemble methods. All the
DropConnect, DropOut and Bayesian layers are applied to the predictor network. Aleatoric uncertainty is
modeled by assuming that each data point has an independent uncertainty associated with it. The results of the
UQ study are further analyzed to compare the performance of BNN and ensemble methods. Although this study is
confined to UQ of fuel property prediction, the methodologies are applicable to other deep learning frameworks
that are being widely used in the combustion community.

Introduction While it can be straightforward to quantify uncertainties in traditional

physics-based models and simpler ML models to a certain extent, it is not

The continuous development of fundamental databases and data
acquisition from reacting flow experiments and simulations has, in
recent years, been complemented with machine learning (ML) in the
field of combustion [1]. With the growing amount of data available in
the field, deep learning (DL), a subfield of machine learning that uses
deep neural networks to train on large datasets, is being widely used.
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the same case with complex models such as deep learning models.
Quantifying the uncertainties by identifying sources of uncertainties in
its predictions can make the predictions robust. Deep learning models
with no uncertainty quantification (UQ) can lead to poor outcomes
when these models are deployed in the decision-making process. This
directly translates to lack of reliability of the deep learning model
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estimates. This can be undesirable and potentially hazardous when
dealing with critical combustion applications. However, UQ for DL
models incurs an additional computation cost. The added cost to the
already computationally expensive DL models is one of the reasons that
have hindered incorporation of UQ in most of the DL models developed
in the combustion literature.

In this work, UQ of a deep learning-based fuel quantitative structure-
property/activity relationship (QSPR/QSAR) model is performed. A
QSPR model builds a relationship between the structural parameters of
molecules and their chemical (and/or physical) properties. These
models are used in several fields for predicting the properties of mole-
cules and for designing new molecules. There have been several QSPR
models developed over the years in the field of combustion. Benson’s
group additivity [2] is one of the simplest and widely used QSPR models
for estimating thermodynamic properties using linear regression over
the chemical groups present in the molecules. Over the years, the QSPR
models moved from simple models such as linear and polynomial
regression models to complex non-linear models such as k-nearest
neighbors, support vector machine [3] and random forest regression [4].
This is driven by the effort to accurately fit the non-linearity in the data
to better estimate the properties of the chemical molecules. However,
the increasing dataset sizes and complexity in the data structures have
made artificial neural networks a wider choice for developing QSPR
models.

The neural network based QSPR models are developed to estimate
several properties of fuel species, such as octane/cetane number [5-8],
vapor pressure [9,10], heating values [11-13], flammability limits [14],
and toxicity [15]. The input features to these models use either the
molecular structure directly or descriptors generated from the structure.
The improved accuracy with neural network models [16] along with
their flexibility in handling several types of inputs such as
multi-dimensional data for convolution neural networks and graph
neural networks [17] has led to wider adaptation of neural networks for
developing QSPR models. Recently, a fuel design workflow with a DL
model to predict the properties of pure fuel components and mixtures of
fuel components was developed by Kuzhagaliyeva et al. [18]. The DL
model has shown improved accuracy over previous data-driven models,
especially for fuel blends. The predictor network was combined with
robust search algorithm to demonstrate inverse design of fuel formula-
tions that yield high engine efficiency with lower emissions.

UQ has been used in the field of combustion for modeling un-
certainties of chemical kinetic models [19,20] and reacting flow systems
[21], among many other applications. There have been a lot of advances
recently in UQ of deep learning models [22] and for DL based QSPR
models [23-27]. However, the uncertainties in these QSPR models are
often not investigated. This work aims to adapt the best principles from
recent advancements in the field of deep learning to quantify un-
certainties for fuel property prediction in the context of fuel design. By
quantifying the degree of uncertainty in the predictions, it can be
identified when the model is likely unreliable for a given fuel formula-
tion, thereby supporting an informed decision making. Uncertainties
from any estimation model can be broadly classified into two types. First
is the uncertainty that is propagated from the underlying training data
itself, which is known as aleatoric uncertainty. Second is the uncertainty
induced by the model, which is known as epistemic or model uncer-
tainty. Several combinations of model structure, hyperparameters and
model parameters might be able to give a similar prediction accuracy;
and this choices of parameters induces the epistemic uncertainty. In this
work, quantification of both the aleatoric and epistemic uncertainties for
DL models is discussed using multiple methods with different compu-
tational costs. It is noted that epistemic and aleatoric uncertainties are
sometimes referred to as reducible and irreducible uncertainties
respectively. However in this work, these terms are used in context of
model and data uncertainties, respectively.

Bayesian neural network (BNN) is a type of deep learning model that
provides uncertainty estimates for its predictions. BNNs offer UQ by
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means of a probabilistic interpretation of deep learning. In this proba-
bilistic interpretation, the DL model weights are inferred as distributions
rather than single values. Although BNNs are robust in providing UQ,
training BNNs can be computationally expensive. The other approach to
UQ for DL models is to use stochastic techniques, such as DropOut and
DropConnect, that are widely used as regularization techniques. These
regularization techniques combined with monte-Carlo sampling from
different distributions offer a cheaper approach to UQ. It is also shown
that these methods can theoretically be equivalent to BNNs; optimizing
any neural network with these regularization techniques is equivalent to
a form of approximate inference in a probabilistic interpretation of the
model using BNN [28]. Both these approaches are employed in the
current work and discussed in detail in subsequent sections.

The paper is organized as follows. First, the dataset used and the
baseline DL model developed by Kuzhagaliyeva et al. [18] is discussed
briefly. Next, the UQ models used in this study for quantifying epistemic
and aleatoric uncertainties are described. Application of these UQ
methods to the DL model is subsequently discussed. Thereafter, analysis
of the results from these models with hyperparameter optimization is
presented. Lastly, the main findings from the study are summarized in
the Conclusions section.

Deep learning fuel property prediction model

A brief overview of the dataset and the baseline deep learning model
used in this work for uncertainty quantification is discussed in this
section; detailed description of the dataset and the DL model can be
found in Kuzhagaliyeva et al. [18]. The database comprises single hy-
drocarbons as well as mixtures/blends, and was curated from a number
of literature sources [29-33]. This consists of experimentally obtained
measurements for three combustion-related properties, research octane
number (RON), motor octane number (MON), and yield sooting index
(YSI). Both RON and MON are standard measures of a fuel’s resistance to
knocking relative to n-heptane and isooctane reference fuels. Both these
properties are experimentally measured in a cooperative fuel research
(CFR) engine at operating conditions corresponding to ASTM standards
[34,35]. YSI quantifies sooting propensity of a fuel based on the
maximum soot volume fraction measured at the centerline of a coflow
methane/air non-premixed flame doped with 400 ppm test fuel. This
value is then converted to an apparatus-independent YSI using two
selected reference compounds and scaling the volume fractions linearly
within the assigned YSIs of reference compounds. In the curated data-
base with 1159 data points, only 141 data points have all three mea-
surements of RON, MON and YSI available, and the remaining 1018
observations have at least one missing property. Therefore, a customized
stratified sampling was used to split the dataset to ensure that obser-
vations from all relevant subpopulations w.r.t. properties and pure
components/mixtures were included in the training, validation, and test
datasets.

The DL model consists of three smaller networks: Extractor 1,
Extractor 2, and Predictor, and a mixing operator. The architecture of
the DL model is shown in Fig. 1. Molecular fingerprints, that transform
molecular structures into numerical strings, are first encoded through
the use of Extractor 1 and Extractor 2. The Extractor 1 architecture has
three stacked long short-term memory (LSTM) layers with descending
dimensionality of output features (256, 64, and 16 neurons, respec-
tively) and a fully connected layer with 12 neurons to transform the
LSTM output. This Extractor 1 extracts a vector “SMILES fingerprint”
from the one hot encoding of the SMILES (Simplified Molecular-Input
Line-Entry System) representation of a species. Extractor 2 has three
sequential fully connected (FC) layers with [1048, 512, 12] neurons in
each layer sequentially and maps the Mordred descriptor of a species to a
vector “Mordred fingerprint”. Mordred descriptors were normalized
using a min-max scaler before passing through the Extractor 2. In the
next step, both the SMILES and Mordred fingerprints are concatenated to
give one vector, referred to as latent space representation of pure
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Fig. 1. Architecture of the baseline DL model [18] used in this work: (a) SMILES fingerprint and (b) Mordred fingerprint are concatenated to generate the (c) latent
space representation of pure species. Latent space representation for a mixture is then obtained by weighted averaging of the latent space representations of indvidual

species with corresponding volume fractions using the linear mixing operator.

components. In case of a mixture/blend, the Mixing Operator (MO)
combines the latent space representations of pure components through
linear weighted averaging. Subsequently, the predictor network,
comprised of three FC layers with [128, 24, 12] neurons in each layer
sequentially and with rectified linear unit (ReLU) activation function,
and a final linear layer uses this combined latent space representation to
predict the target properties of the blend. Since several numerical scales
were used in the curated YSI database, their assigned YSI values are also
provided as inputs to the predictor network.

Uncertainty quantification methods
Epistemic uncertainty: Bayesian neural networks

BNNs are a class of neural networks that incorporate Bayesian
inference into the network architecture. Unlike traditional neural net-
works that produce point estimates for the model parameters, BNNs
represent the parameters as probability distributions, allowing them to
capture uncertainty in their predictions. This means that rather than
simply outputting a single prediction for a given input, a BNN can
provide a distribution of possible predictions and their associated
probabilities [36]. BNNs are composed of Bayesian layers that incor-
porate Bayesian inference by specifying a prior distribution over the
layers’ weights and biases, and then estimating a posterior distribution
over these parameters using variational inference [37]. In the context of
the present study, while an architecture full of Bayesian layers for all of
Extractor 1, Extractor 2, and Predictor networks can be better at
modeling the uncertainties, this can be complex and computationally
expensive.

Non-Bayesian layers typically use a fixed set of weights and biases
that are learned through standard backpropagation during training.
These layers are computationally inexpensive to train relative to that of
Bayesian counterparts and are commonly used in deep learning appli-
cations. In a hybrid network, Bayesian layers can be placed at the end of
the network thereby using variational inference only for the weights of
the last layers, along with non-Bayesian layers for other layers [38]. The
combination of Bayesian and non-Bayesian layers can allow a neural
network to take advantage of the strengths of both types of layers [39].
This can provide uncertainty estimates, while still maintaining compu-
tational efficiency during training and inference. Therefore, in this

study, Bayesian layers are added to the predictor network only, while
keeping the layers of Extractor 1 and Extractor 2 networks
non-Bayesian.

Epistemic uncertainty: stochastic techniques

Stochastic techniques that are widely used for regularization in ANNs
have recently emerged as powerful tools for quantifying uncertainty in
deep learning models. These techniques are based on generating random
samples for the posterior distribution over the model’s weights and
biases, which can be used to estimate model uncertainty. Stochastic
techniques are increasingly being used in the UQ of deep learning
models for a range of applications, providing model uncertainties
without a large increment in computational cost. In this work, two
stochastic techniques, DropOut and its variant DropConnect, are
explored for UQ in the deep learning model. DropOut involves randomly
dropping out a fraction of the neurons in a network during training. Post
training, DropOut generates multiple models with different architec-
tures for inference. These models generate multiple predictions, the
combination of which are then used to estimate model prediction and its
uncertainty during inference. Similarly, DropConnect involves
randomly dropping out connections between neurons in a network
during training and generating multiple models for uncertainty esti-
mation post training. The distribution from which the neurons or con-
nections are dropped out (using Monte Carlo technique) determines the
method. In this work, Monte Carlo- Bernoulli DropOut, Bernoulli
DropConnect, Gaussian DropOut and Gaussian DropConnect methods
are explored. Fig. 2 depicts these stochastic methods. Gal et al. [28]
showed that these stochastic techniques are theoretically equivalent to
BNNs with a specific choice of approximating distributions for varia-
tional inference; for additional details of this proof, readers are directed
to Gal et al. [28].

Aleatoric uncertainty

Both the aforementioned Bayesian neural networks and stochastic
techniques can estimate only the uncertainties induced by the deep
learning model. This does not include the uncertainty that might be
induced from the underlying training dataset. The type of uncertainty
that arises from the inherent randomness in the data itself is referred to
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Fig. 2. Stochastic techniques used in this work for UQ - (a) Baseline model (b) Bernoulli DropConnect (c¢) Bernoulli DropOut (d) Gaussian DropConnect and (e)

Gaussian DropOut.

as Aleatoric uncertainty. Modeling aleatoric uncertainty is particularly
useful if the data has high variability. In the context of deep learning,
aleatoric uncertainty can be modeled by modifying the loss function to
include the data uncertainty or optimize the uncertainties of each data
point independently. In this work, since there are no prior uncertainties
for the data available, we will adopt the latter to model aleatoric un-
certainty. For this, it is assumed that for each property and data point,
the uncertainty value corresponds to the value that is obtained from
treating it as Gaussian random variable. The aleatoric uncertainty
modeling can be further divided into two types. Homoscedastic uncer-
tainty modeling assumes that uncertainty in the three properties RON,
MON, and YSI, does not vary within each property and only differs be-
tween properties. Heteroscedastic uncertainty modeling, on the other
hand, assumes that each property prediction for a data point has an
independent uncertainty associated with it.
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Where i is a data point and o(x;) is corresponding standard deviation
for that data point.

Eq. (1) corresponds to the loss function for modeling homoscedastic
uncertainty with the three properties, viz RON, MON, and YSL. y is the
experimental value of a property for a data point and "(x) is the pre-
dicted value from the model. The uncertainty for each of the three
properties (o1, 02, 03) in the equation are independently varied to
optimize the loss function. Eq. (2) shows the loss function for modeling
heteroscedastic uncertainty. In Eq. (2), uncertainty corresponding to
each data point (6(x;) for data point i) is an additional output to the
model and is learned by minimizing the loss function. In both the cases,
the loss function is modified from the mean squared loss function by
scaling each mean squared difference between prediction and target by

the corresponding uncertainty. Furthermore, a regularization term on
uncertainties to contain their values to lowest possible values is added.
This is also known as the Gaussian negative log likelihood (GNLL) loss
that reflects the deviation of targets from their means and variances, as
per the stated assumption of treating the targets as Gaussian random
variables. In this work, only heteroscedastic aleatoric uncertainty is
considered. Incorporation of homoscedastic aleatoric uncertainty within
the UQ framework will be part of future work.

Results and discussion
Stochastic techniques over optimized network

Stochastic techniques can be readily applied over any optimized
deterministic deep learning model network. However, optimization of
the drop probabilities and re-optimization of the deep learning model
architecture for optimal hyperparameters is required when stochastic
techniques are applied for UQ of DL models. The optimal architecture
could be different when the stochastic methods are applied to DL models
and this warrants re-optimization of architecture. The optimization
study and corresponding results are discussed in the next section. In this
section, stochastic techniques are applied over the deep learning model
without any hyperparameter optimization, keeping the model archi-
tecture same as that of baseline model described in Section 2. The
dropout/drop-connection probabilities of the first layer of predictor
network in the original model are set to 0.01 and the results are
generated from training with different stochastic methods. The training,
validation and test datasets are same as the ones used for the original
model and the results are discussed for the test set. Table 1 shows the
comparison of results from four different methods discussed in previous
sections, viz., Monte Carlo- Bernoulli DropOut, Bernoulli DropConnect,
Gaussian DropOut and Gaussian DropConnect. In particular, Table 1
provides the mean absolute error (MAE), confidence intervals (1-, 2- and
3- 0 ) and gaussian negative log likelihood loss for the three properties
RON, MON and YSI corresponding to the four stochastic methods
considered. The confidence intervals in the Table 1 indicate the per-
centage of test data values that are within the 1-, 2- and 3- ¢ of the test
set predictions. For the fixed drop probabilities, it is observed that the
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Table 1

Comparison of the results from four different stochastic methods without
hyperparameter optimization (MAE — Mean Absolute Error (the values in pa-
rentheses indicate MAE for each of the three properties), CI — Confidence In-
terval (the three values indicate the percentage of data in 1-, 2-, 3- ¢ CI,
respectively), GNLL — Gaussian Negative Log Likelihood (the values in paren-
theses indicate GNLL for each of the three properties)).

Model MAE RON CI MON CI YSI CI GNLL
Description (RON/ 1,23 a-, 2, (1-,2-,3- (RON/
MON/YSI) c) 3-0) c) MON/
YSD
MC Bernoulli 13.34 27%, 26%, 8%, 2113
DropOut (3.66, 45%, 45%, 13%, (17, 20,
3.29, 6.3) 59% 55% 16% 2075)
MC Bernoulli 14.22 25%, 22%, 4%, 741
DropConnect (3.1, 3.0, 45%, 43%, 13%, (23, 26,
8.01) 56% 55% 16% 691)
MC Gaussian 13.24 26%, 32%, 2.7%, 394
DropOut (4.02, 50%, 51%, 10%, (19, 15,
3.18,6.02) 62% 67% 16% 358)
MC Gaussian 12.06 29%, 28%, 9%, 167
DropConnect (3.37, 53%, 48%, 19%, (11, 16,
3.20, 5.4) 68% 67% 26% 140)

GNLL is lower for DropConnect compared to DropOut. Among the four
methods, Gaussian DropConnect shows better performance in most of
the metrics. Note that this however may not be reflective of the per-
formance of each of the methods since the probabilities and architecture
are not optimized. However, due to the computational cost, only the
Gaussian DropConnect method is selected for the final UQ studies with
hyperparameter optimization.

Hyperparameter optimization

The optimal architecture of a neural network can change when the
stochastic and Bayesian methods are applied to a deep learning model.
In this section, hyperparameter optimization of the modified DL models
for uncertainty quantification is discussed. As mentioned in the previous
section, only the predictor network of the original model is modified and
both the extractor networks are kept the same. However, note that
during training for optimal hyperparameters of the predictor network,
all the weights including those of both the extractor networks are
retrained. In view of the computational cost, hyperparameter optimi-
zation is conducted only for Gaussian DropConnect model among the
stochastic models. Moreover, hyperparameter optimization is also done
for the BNN model.

Table 2 shows the ranges of the hyperparameters varied for each of
the two models. Note that for the BNN model, the probability range only
corresponds to the probability used in the last layer of predictor network
as the Bayesian layer is only applied for the last layer. In addition, the
loss functions of both the Gaussian DropConnect and BNN are modified
to include heteroscedastic aleatoric uncertainty.

The hyperparameter optimization is performed using k-fold cross
validation (k-fold CV). k-fold CV is performed by splitting the entire
training data (which is the entire dataset minus the test set) in k sets and
using each one of them as the validation set while the remaining are used

Table 2
Hyperparameter ranges used for hyperparameter optimization (HPO) of the
predictor network.

Model Number of Neurons in each Probabilities
layers layer
Gaussian DropConnect + 1-6 16-2000 0-1
Aleatoric
Bayesian Neural Network + 1-6 16-1500 (first 107*-0.1
Aleatoric layer)

16-512 (other
layers)
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for training the model, in a loop until all the k sets are used as validation
set once. The validation errors over all the k sets are averaged and used
as the metric to choose the best hyperparameter combination. In this
study, k is set to be 5 based on an ablation study, after considering the
computational cost of training models for higher k values. For the
hyperparameter search, an open source Bayesian optimization package,
bayes_opt package [40], is used. This method starts with building initial
runs over certain random hyperparameter combinations within the
considered hyperparameter space. After the initial trials, at each sub-
sequent trial, the gaussian process is fitted and posterior distribution
along with exploration strategy is used to determine which combination
of parameters to try next, until the total number of iterations reaches a
user-specified limit.

The optimal architectures and probabilities of the Gaussian Drop-
Connect and BNN models found from hyperparameter search are listed
in Table 3. Both the models show optimal performance with three layers
and decreasing number of neurons in the successive layers. Additionally,
for Gaussian DropConnect model, the optimal probabilities increase
with the successive layers. The optimal hyperparameter combinations
are subsequently used to train a model with the entire training data and
produce the outputs on test set. The test results are discussed in detail in
the next section.

Model performance

The Gaussian DropConnect and BNN models with modified loss
functions to include heteroscedastic aleatoric uncertainty are trained
with the optimal hyperparameters obtained from 5-fold CV. The pre-
dictions with these two models for the test set provides the predictions
with their uncertainties. Fig. 3 shows the comparison between the actual
values and predictions from the Gaussian DropConnect model along
with standard deviations of the predictions corresponding to the test set
for RON, MON and YSI. In general, it can be observed that the predicted
uncertainty is higher in regions of the property space where data is
sparse. Although the true values seem to be within the predicted un-
certainty, exceptions can also be observed mainly for RON and MON.
Fig. 4 shows the comparison between the actual values and predictions
from the BNN model along with the prediction standard deviations for
the test set. The same observations as above are also hold true for BNN
model. Fig. 5 shows variation of standard deviation with respect to the
property’s actual values for all the three properties and for both the
models. Also shown in Fig. 5 are the plots of data density with respect to
the property values. The inverse relationship of the data density and
uncertainty is more evident in Fig. 5, for all the three properties. It can
be observed from Fig. 5 that the major difference between both the
models is that the BNN model tends to estimate lower uncertainty
compared to Gaussian DropConnect model in regions of the property
space where the data is clustered, for RON and MON. Furthermore, a
separate analysis of the UQ results indicates that the aromatic species
have higher estimated uncertainties relative to the other classes of
compounds in the dataset.

Table 4 provides a comprehensive comparison of the performance of
Gaussian DropConnect and BNN models for the test set. The mean ab-
solute errors for both the models are similar and are also close to that of
the original model from Kuzhagaliyeva et al. [18], which is 11.74 (3.05

Table 3
The optimal architectures obtained from hyperparameter optimization of the DL
models used in this study.

Model Number of Neurons in each Probabilities
layers layer
Gaussian DropConnect + 3 1310/457/140 0.005/0.05/
Aleatoric 0.2
Bayesian Neural Network + 3 1214/213/98 0.001
Aleatoric
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Fig. 3. Comparison of predicted values with true values for the three properties with their predicted uncertainties from Gaussian DropConnect model.

for RON, 2.79 for MON, 5.89 for YSI). This shows that the GNLL loss is
optimized without significant impact on mean absolute error. In com-
parison with the Table 1 with the non-optimized architecture and drop
probabilities, the GNLL for the optimal Gaussian DropConnect model is
significantly improved. Also shown in Table 4 are the confidence in-
tervals for all the three property predictions from both the models. The
lower confidence intervals for RON and MON in case of BNN compared
to Gaussian DropConnect model can be linked to the prior observation
that the BNN model tends to estimate lower uncertainty relative to
Gaussian DropConnect model in regions of the property space where the
data is clustered. Nevertheless, this does not have significant impact on
GNLL as GNLL of both the models is similar for both RON and MON. On a
different note, it is also found (not shown in Table 4) that for both
models, the epistemic uncertainty component is much smaller than the
aleatoric component in the final predicted uncertainties, with the

difference between the two components being more pronounced for
Gaussian DropConnect.

Training for both BNN and Gaussian DropConnect were performed
on a single NVIDIA A100 GPU. The computational cost of UQ with
Gaussian DropConnect was similar to that of the baseline model since
there was no increment in the trainable parameters during training. The
marginal increment in cost during inference was insignificant relative to
training time. Approximately 30 minutes of training time was required
for each run of hyperparameter combination for Gaussian DropConnect.
On the other hand, the BNN takes approximately twice as many epochs
as the Gaussian DropConnect model to converge during training.
Therefore, this doubled the computational cost of hyperparameter
optimization for BNN relative to Gaussian DropConnect. However, since
the hyperparameter space was limited for BNN to small hyperparameter
ranges with only the last layer considered to be Bayesian, it took
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Fig. 4. Comparison of predicted values with true values for the three properties with their predicted uncertainties from BNN model.

approximately 45 min for each run of hyperparameter combination.
Conclusions

In the present work, UQ of a deep learning fuel property prediction
model is performed. Gaussian DropConnect and BNN are used for
modeling epistemic uncertainty. For both these models, the loss func-
tions are further modified to take into account the uncertainty that arises
from the data itself, known as aleatoric uncertainty. Hyperparameter
optimization is conducted for both the models with 5-fold CV. The final
optimized models are tested on the same test set that was used by the
baseline fuel property prediction model. The following is a summary of
the major outcomes from this work.

e The GNLL loss for the test set is quite reasonable and similar, without
significant deterioration of mean absolute error, for both Gaussian
DropConnect and BNN models.

e The computational cost is higher for BNN relative to Gaussian
DropConnect with no significant advantage w.r.t. accuracy, making
Gaussian DropConnect a better option for UQ.

e The quantified uncertainties can be used downstream in the fuel
design process to make informed choice for exploration vs
exploitation.
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ranges on x-axis. Gray points and gray trend line correspond to the BNN model, and black points and black trend line correspond to the Gaussian DropConnect model.

Table 4

Comparison of the performance of Gaussian DropConnect and BNN models for
the test set. (MAE — Mean Absolute Error (the values in parentheses indicate
MAE for each of the three properties), CI - Confidence Interval (the three values
indicate the percentage of data in 1-, 2-, 3- 6 CI, respectively), GNLL — Gaussian
Negative Log Likelihood (the values in parentheses indicate GNLL for each of the
three properties)).

Model Description MAE RON CI MONCI  YSICI GNLL
(RON/ a-, 2, -, 2-, a- 2, (RON/
MON/ 3-0) 3-0) 3-0) MON/
YSI) YSI)
MC Gaussian 12.08 75%, 82%, 53%, 6.99
DropConnect+ (3.41, 93%, 95%, 80%, (2.12,
Aleatoric 2.61, 96% 98% 89% 1.81,
6.04) 3.05)
Bayesian Neural 11.97 69%, 71%, 72%, 8.44
Network + (2.98, 89%, 90%, 89%, (1.83,
Aleatoric 2.52, 95% 96% 93% 2.17,
6.46) 4.43)
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