
Applications in Energy and Combustion Science 16 (2023) 100211

Available online 24 September 2023
2666-352X/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Uncertainty quantification of a deep learning fuel property 
prediction model 

Kiran K. Yalamanchi a, Sahil Kommalapati a, Pinaki Pal a,*, Nursulu Kuzhagaliyeva b, 
Abdullah S AlRamadan c, Balaji Mohan c,d, Yuanjiang Pei e, S. Mani Sarathy b, Emre Cenker c, 
Jihad Badra d 

a Argonne National Laboratory, Lemont, IL 60439, United States 
b Clean Combustion Research Center (CCRC), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi 
Arabia 
c Transport Technologies Division, R&DC, Saudi Aramco, Dhahran 31311, Saudi Arabia 
d Aramco Research Center, R&DC, Saudi Aramco, Thuwal 23955, Saudi Arabia 
e Aramco Americas: Aramco Research Center–Detroit, Novi, MI 48377, United States   

A R T I C L E  I N F O   

Keywords: 
Fuel property prediction 
Deep learning 
Uncertainty quantification 
Monte Carlo ensemble methods 
Bayesian neural network 
Epistemic uncertainty 
Aleatoric uncertainty 

A B S T R A C T   

Deep learning models are being widely used in the field of combustion. Given the black-box nature of typical 
neural network based models, uncertainty quantification (UQ) is critical to ensure the reliability of predictions as 
well as the training datasets, and for a principled quantification of noise and its various sources. Deep learning 
surrogate models for predicting properties of chemical compounds and mixtures have been recently shown to be 
promising for enabling data-driven fuel design and optimization, with the ultimate goal of improving efficiency 
and lowering emissions from combustion engines. In this study, UQ is performed for a multi-task deep learning 
model that simultaneously predicts the research octane number (RON), Motor Octane Number (MON), and Yield 
Sooting Index (YSI) of pure components and multicomponent blends. The deep learning model is comprised of 
three smaller networks: Extractor 1, Extractor 2, and Predictor, and a mixing operator. The molecular finger
prints of individual components are encoded via Extractor 1 and Extractor 2, the mixing operator generates 
fingerprints for mixtures/blends based on linear mixing operation, and the predictor maps the fingerprint to the 
target properties. Two different classes of UQ methods, Monte Carlo ensemble methods and Bayesian neural 
networks (BNNs), are employed for quantifying the epistemic uncertainty. Combinations of Bernoulli and 
Gaussian distributions with DropConnect and DropOut techniques are explored as ensemble methods. All the 
DropConnect, DropOut and Bayesian layers are applied to the predictor network. Aleatoric uncertainty is 
modeled by assuming that each data point has an independent uncertainty associated with it. The results of the 
UQ study are further analyzed to compare the performance of BNN and ensemble methods. Although this study is 
confined to UQ of fuel property prediction, the methodologies are applicable to other deep learning frameworks 
that are being widely used in the combustion community.   

Introduction 

The continuous development of fundamental databases and data 
acquisition from reacting flow experiments and simulations has, in 
recent years, been complemented with machine learning (ML) in the 
field of combustion [1]. With the growing amount of data available in 
the field, deep learning (DL), a subfield of machine learning that uses 
deep neural networks to train on large datasets, is being widely used. 

While it can be straightforward to quantify uncertainties in traditional 
physics-based models and simpler ML models to a certain extent, it is not 
the same case with complex models such as deep learning models. 
Quantifying the uncertainties by identifying sources of uncertainties in 
its predictions can make the predictions robust. Deep learning models 
with no uncertainty quantification (UQ) can lead to poor outcomes 
when these models are deployed in the decision-making process. This 
directly translates to lack of reliability of the deep learning model 
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estimates. This can be undesirable and potentially hazardous when 
dealing with critical combustion applications. However, UQ for DL 
models incurs an additional computation cost. The added cost to the 
already computationally expensive DL models is one of the reasons that 
have hindered incorporation of UQ in most of the DL models developed 
in the combustion literature. 

In this work, UQ of a deep learning-based fuel quantitative structure- 
property/activity relationship (QSPR/QSAR) model is performed. A 
QSPR model builds a relationship between the structural parameters of 
molecules and their chemical (and/or physical) properties. These 
models are used in several fields for predicting the properties of mole
cules and for designing new molecules. There have been several QSPR 
models developed over the years in the field of combustion. Benson’s 
group additivity [2] is one of the simplest and widely used QSPR models 
for estimating thermodynamic properties using linear regression over 
the chemical groups present in the molecules. Over the years, the QSPR 
models moved from simple models such as linear and polynomial 
regression models to complex non-linear models such as k-nearest 
neighbors, support vector machine [3] and random forest regression [4]. 
This is driven by the effort to accurately fit the non-linearity in the data 
to better estimate the properties of the chemical molecules. However, 
the increasing dataset sizes and complexity in the data structures have 
made artificial neural networks a wider choice for developing QSPR 
models. 

The neural network based QSPR models are developed to estimate 
several properties of fuel species, such as octane/cetane number [5–8], 
vapor pressure [9,10], heating values [11–13], flammability limits [14], 
and toxicity [15]. The input features to these models use either the 
molecular structure directly or descriptors generated from the structure. 
The improved accuracy with neural network models [16] along with 
their flexibility in handling several types of inputs such as 
multi-dimensional data for convolution neural networks and graph 
neural networks [17] has led to wider adaptation of neural networks for 
developing QSPR models. Recently, a fuel design workflow with a DL 
model to predict the properties of pure fuel components and mixtures of 
fuel components was developed by Kuzhagaliyeva et al. [18]. The DL 
model has shown improved accuracy over previous data-driven models, 
especially for fuel blends. The predictor network was combined with 
robust search algorithm to demonstrate inverse design of fuel formula
tions that yield high engine efficiency with lower emissions. 

UQ has been used in the field of combustion for modeling un
certainties of chemical kinetic models [19,20] and reacting flow systems 
[21], among many other applications. There have been a lot of advances 
recently in UQ of deep learning models [22] and for DL based QSPR 
models [23–27]. However, the uncertainties in these QSPR models are 
often not investigated. This work aims to adapt the best principles from 
recent advancements in the field of deep learning to quantify un
certainties for fuel property prediction in the context of fuel design. By 
quantifying the degree of uncertainty in the predictions, it can be 
identified when the model is likely unreliable for a given fuel formula
tion, thereby supporting an informed decision making. Uncertainties 
from any estimation model can be broadly classified into two types. First 
is the uncertainty that is propagated from the underlying training data 
itself, which is known as aleatoric uncertainty. Second is the uncertainty 
induced by the model, which is known as epistemic or model uncer
tainty. Several combinations of model structure, hyperparameters and 
model parameters might be able to give a similar prediction accuracy; 
and this choices of parameters induces the epistemic uncertainty. In this 
work, quantification of both the aleatoric and epistemic uncertainties for 
DL models is discussed using multiple methods with different compu
tational costs. It is noted that epistemic and aleatoric uncertainties are 
sometimes referred to as reducible and irreducible uncertainties 
respectively. However in this work, these terms are used in context of 
model and data uncertainties, respectively. 

Bayesian neural network (BNN) is a type of deep learning model that 
provides uncertainty estimates for its predictions. BNNs offer UQ by 

means of a probabilistic interpretation of deep learning. In this proba
bilistic interpretation, the DL model weights are inferred as distributions 
rather than single values. Although BNNs are robust in providing UQ, 
training BNNs can be computationally expensive. The other approach to 
UQ for DL models is to use stochastic techniques, such as DropOut and 
DropConnect, that are widely used as regularization techniques. These 
regularization techniques combined with monte-Carlo sampling from 
different distributions offer a cheaper approach to UQ. It is also shown 
that these methods can theoretically be equivalent to BNNs; optimizing 
any neural network with these regularization techniques is equivalent to 
a form of approximate inference in a probabilistic interpretation of the 
model using BNN [28]. Both these approaches are employed in the 
current work and discussed in detail in subsequent sections. 

The paper is organized as follows. First, the dataset used and the 
baseline DL model developed by Kuzhagaliyeva et al. [18] is discussed 
briefly. Next, the UQ models used in this study for quantifying epistemic 
and aleatoric uncertainties are described. Application of these UQ 
methods to the DL model is subsequently discussed. Thereafter, analysis 
of the results from these models with hyperparameter optimization is 
presented. Lastly, the main findings from the study are summarized in 
the Conclusions section. 

Deep learning fuel property prediction model 

A brief overview of the dataset and the baseline deep learning model 
used in this work for uncertainty quantification is discussed in this 
section; detailed description of the dataset and the DL model can be 
found in Kuzhagaliyeva et al. [18]. The database comprises single hy
drocarbons as well as mixtures/blends, and was curated from a number 
of literature sources [29–33]. This consists of experimentally obtained 
measurements for three combustion-related properties, research octane 
number (RON), motor octane number (MON), and yield sooting index 
(YSI). Both RON and MON are standard measures of a fuel’s resistance to 
knocking relative to n-heptane and isooctane reference fuels. Both these 
properties are experimentally measured in a cooperative fuel research 
(CFR) engine at operating conditions corresponding to ASTM standards 
[34,35]. YSI quantifies sooting propensity of a fuel based on the 
maximum soot volume fraction measured at the centerline of a coflow 
methane/air non-premixed flame doped with 400 ppm test fuel. This 
value is then converted to an apparatus-independent YSI using two 
selected reference compounds and scaling the volume fractions linearly 
within the assigned YSIs of reference compounds. In the curated data
base with 1159 data points, only 141 data points have all three mea
surements of RON, MON and YSI available, and the remaining 1018 
observations have at least one missing property. Therefore, a customized 
stratified sampling was used to split the dataset to ensure that obser
vations from all relevant subpopulations w.r.t. properties and pure 
components/mixtures were included in the training, validation, and test 
datasets. 

The DL model consists of three smaller networks: Extractor 1, 
Extractor 2, and Predictor, and a mixing operator. The architecture of 
the DL model is shown in Fig. 1. Molecular fingerprints, that transform 
molecular structures into numerical strings, are first encoded through 
the use of Extractor 1 and Extractor 2. The Extractor 1 architecture has 
three stacked long short-term memory (LSTM) layers with descending 
dimensionality of output features (256, 64, and 16 neurons, respec
tively) and a fully connected layer with 12 neurons to transform the 
LSTM output. This Extractor 1 extracts a vector “SMILES fingerprint” 
from the one hot encoding of the SMILES (Simplified Molecular-Input 
Line-Entry System) representation of a species. Extractor 2 has three 
sequential fully connected (FC) layers with [1048, 512, 12] neurons in 
each layer sequentially and maps the Mordred descriptor of a species to a 
vector “Mordred fingerprint”. Mordred descriptors were normalized 
using a min-max scaler before passing through the Extractor 2. In the 
next step, both the SMILES and Mordred fingerprints are concatenated to 
give one vector, referred to as latent space representation of pure 
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components. In case of a mixture/blend, the Mixing Operator (MO) 
combines the latent space representations of pure components through 
linear weighted averaging. Subsequently, the predictor network, 
comprised of three FC layers with [128, 24, 12] neurons in each layer 
sequentially and with rectified linear unit (ReLU) activation function, 
and a final linear layer uses this combined latent space representation to 
predict the target properties of the blend. Since several numerical scales 
were used in the curated YSI database, their assigned YSI values are also 
provided as inputs to the predictor network. 

Uncertainty quantification methods 

Epistemic uncertainty: Bayesian neural networks 

BNNs are a class of neural networks that incorporate Bayesian 
inference into the network architecture. Unlike traditional neural net
works that produce point estimates for the model parameters, BNNs 
represent the parameters as probability distributions, allowing them to 
capture uncertainty in their predictions. This means that rather than 
simply outputting a single prediction for a given input, a BNN can 
provide a distribution of possible predictions and their associated 
probabilities [36]. BNNs are composed of Bayesian layers that incor
porate Bayesian inference by specifying a prior distribution over the 
layers’ weights and biases, and then estimating a posterior distribution 
over these parameters using variational inference [37]. In the context of 
the present study, while an architecture full of Bayesian layers for all of 
Extractor 1, Extractor 2, and Predictor networks can be better at 
modeling the uncertainties, this can be complex and computationally 
expensive. 

Non-Bayesian layers typically use a fixed set of weights and biases 
that are learned through standard backpropagation during training. 
These layers are computationally inexpensive to train relative to that of 
Bayesian counterparts and are commonly used in deep learning appli
cations. In a hybrid network, Bayesian layers can be placed at the end of 
the network thereby using variational inference only for the weights of 
the last layers, along with non-Bayesian layers for other layers [38]. The 
combination of Bayesian and non-Bayesian layers can allow a neural 
network to take advantage of the strengths of both types of layers [39]. 
This can provide uncertainty estimates, while still maintaining compu
tational efficiency during training and inference. Therefore, in this 

study, Bayesian layers are added to the predictor network only, while 
keeping the layers of Extractor 1 and Extractor 2 networks 
non-Bayesian. 

Epistemic uncertainty: stochastic techniques 

Stochastic techniques that are widely used for regularization in ANNs 
have recently emerged as powerful tools for quantifying uncertainty in 
deep learning models. These techniques are based on generating random 
samples for the posterior distribution over the model’s weights and 
biases, which can be used to estimate model uncertainty. Stochastic 
techniques are increasingly being used in the UQ of deep learning 
models for a range of applications, providing model uncertainties 
without a large increment in computational cost. In this work, two 
stochastic techniques, DropOut and its variant DropConnect, are 
explored for UQ in the deep learning model. DropOut involves randomly 
dropping out a fraction of the neurons in a network during training. Post 
training, DropOut generates multiple models with different architec
tures for inference. These models generate multiple predictions, the 
combination of which are then used to estimate model prediction and its 
uncertainty during inference. Similarly, DropConnect involves 
randomly dropping out connections between neurons in a network 
during training and generating multiple models for uncertainty esti
mation post training. The distribution from which the neurons or con
nections are dropped out (using Monte Carlo technique) determines the 
method. In this work, Monte Carlo- Bernoulli DropOut, Bernoulli 
DropConnect, Gaussian DropOut and Gaussian DropConnect methods 
are explored. Fig. 2 depicts these stochastic methods. Gal et al. [28] 
showed that these stochastic techniques are theoretically equivalent to 
BNNs with a specific choice of approximating distributions for varia
tional inference; for additional details of this proof, readers are directed 
to Gal et al. [28]. 

Aleatoric uncertainty 

Both the aforementioned Bayesian neural networks and stochastic 
techniques can estimate only the uncertainties induced by the deep 
learning model. This does not include the uncertainty that might be 
induced from the underlying training dataset. The type of uncertainty 
that arises from the inherent randomness in the data itself is referred to 

Fig. 1. Architecture of the baseline DL model [18] used in this work: (a) SMILES fingerprint and (b) Mordred fingerprint are concatenated to generate the (c) latent 
space representation of pure species. Latent space representation for a mixture is then obtained by weighted averaging of the latent space representations of indvidual 
species with corresponding volume fractions using the linear mixing operator. 
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as Aleatoric uncertainty. Modeling aleatoric uncertainty is particularly 
useful if the data has high variability. In the context of deep learning, 
aleatoric uncertainty can be modeled by modifying the loss function to 
include the data uncertainty or optimize the uncertainties of each data 
point independently. In this work, since there are no prior uncertainties 
for the data available, we will adopt the latter to model aleatoric un
certainty. For this, it is assumed that for each property and data point, 
the uncertainty value corresponds to the value that is obtained from 
treating it as Gaussian random variable. The aleatoric uncertainty 
modeling can be further divided into two types. Homoscedastic uncer
tainty modeling assumes that uncertainty in the three properties RON, 
MON, and YSI, does not vary within each property and only differs be
tween properties. Heteroscedastic uncertainty modeling, on the other 
hand, assumes that each property prediction for a data point has an 
independent uncertainty associated with it. 

L(W, σ1, σ2, σ3) =
1

2σ2
1
L1(W) +

1
2σ2

2
L2(W) +

1
2σ2

3
L3(W) + logσ1σ2σ3 (1)  

where L i(W) is 
∑N

j=1‖ yj − fw(xj)‖
2 for property i, N is the number of 

data points for that property and σ is the standard deviation of each 
property prediction. 

L (θ) =
1
N

∑N

i=1

1
2σ(xi)

2‖ yi − f(xi) ‖
2 + logσ(xi) (2) 

Where i is a data point and σ(xi) is corresponding standard deviation 
for that data point. 

Eq. (1) corresponds to the loss function for modeling homoscedastic 
uncertainty with the three properties, viz RON, MON, and YSI. y is the 
experimental value of a property for a data point and fw(x) is the pre
dicted value from the model. The uncertainty for each of the three 
properties (σ1, σ2, σ3) in the equation are independently varied to 
optimize the loss function. Eq. (2) shows the loss function for modeling 
heteroscedastic uncertainty. In Eq. (2), uncertainty corresponding to 
each data point (σ(xi) for data point i) is an additional output to the 
model and is learned by minimizing the loss function. In both the cases, 
the loss function is modified from the mean squared loss function by 
scaling each mean squared difference between prediction and target by 

the corresponding uncertainty. Furthermore, a regularization term on 
uncertainties to contain their values to lowest possible values is added. 
This is also known as the Gaussian negative log likelihood (GNLL) loss 
that reflects the deviation of targets from their means and variances, as 
per the stated assumption of treating the targets as Gaussian random 
variables. In this work, only heteroscedastic aleatoric uncertainty is 
considered. Incorporation of homoscedastic aleatoric uncertainty within 
the UQ framework will be part of future work. 

Results and discussion 

Stochastic techniques over optimized network 

Stochastic techniques can be readily applied over any optimized 
deterministic deep learning model network. However, optimization of 
the drop probabilities and re-optimization of the deep learning model 
architecture for optimal hyperparameters is required when stochastic 
techniques are applied for UQ of DL models. The optimal architecture 
could be different when the stochastic methods are applied to DL models 
and this warrants re-optimization of architecture. The optimization 
study and corresponding results are discussed in the next section. In this 
section, stochastic techniques are applied over the deep learning model 
without any hyperparameter optimization, keeping the model archi
tecture same as that of baseline model described in Section 2. The 
dropout/drop-connection probabilities of the first layer of predictor 
network in the original model are set to 0.01 and the results are 
generated from training with different stochastic methods. The training, 
validation and test datasets are same as the ones used for the original 
model and the results are discussed for the test set. Table 1 shows the 
comparison of results from four different methods discussed in previous 
sections, viz., Monte Carlo- Bernoulli DropOut, Bernoulli DropConnect, 
Gaussian DropOut and Gaussian DropConnect. In particular, Table 1 
provides the mean absolute error (MAE), confidence intervals (1-, 2- and 
3- σ ) and gaussian negative log likelihood loss for the three properties 
RON, MON and YSI corresponding to the four stochastic methods 
considered. The confidence intervals in the Table 1 indicate the per
centage of test data values that are within the 1-, 2- and 3- σ of the test 
set predictions. For the fixed drop probabilities, it is observed that the 

Fig. 2. Stochastic techniques used in this work for UQ – (a) Baseline model (b) Bernoulli DropConnect (c) Bernoulli DropOut (d) Gaussian DropConnect and (e) 
Gaussian DropOut. 
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GNLL is lower for DropConnect compared to DropOut. Among the four 
methods, Gaussian DropConnect shows better performance in most of 
the metrics. Note that this however may not be reflective of the per
formance of each of the methods since the probabilities and architecture 
are not optimized. However, due to the computational cost, only the 
Gaussian DropConnect method is selected for the final UQ studies with 
hyperparameter optimization. 

Hyperparameter optimization 

The optimal architecture of a neural network can change when the 
stochastic and Bayesian methods are applied to a deep learning model. 
In this section, hyperparameter optimization of the modified DL models 
for uncertainty quantification is discussed. As mentioned in the previous 
section, only the predictor network of the original model is modified and 
both the extractor networks are kept the same. However, note that 
during training for optimal hyperparameters of the predictor network, 
all the weights including those of both the extractor networks are 
retrained. In view of the computational cost, hyperparameter optimi
zation is conducted only for Gaussian DropConnect model among the 
stochastic models. Moreover, hyperparameter optimization is also done 
for the BNN model. 

Table 2 shows the ranges of the hyperparameters varied for each of 
the two models. Note that for the BNN model, the probability range only 
corresponds to the probability used in the last layer of predictor network 
as the Bayesian layer is only applied for the last layer. In addition, the 
loss functions of both the Gaussian DropConnect and BNN are modified 
to include heteroscedastic aleatoric uncertainty. 

The hyperparameter optimization is performed using k-fold cross 
validation (k-fold CV). k-fold CV is performed by splitting the entire 
training data (which is the entire dataset minus the test set) in k sets and 
using each one of them as the validation set while the remaining are used 

for training the model, in a loop until all the k sets are used as validation 
set once. The validation errors over all the k sets are averaged and used 
as the metric to choose the best hyperparameter combination. In this 
study, k is set to be 5 based on an ablation study, after considering the 
computational cost of training models for higher k values. For the 
hyperparameter search, an open source Bayesian optimization package, 
bayes_opt package [40], is used. This method starts with building initial 
runs over certain random hyperparameter combinations within the 
considered hyperparameter space. After the initial trials, at each sub
sequent trial, the gaussian process is fitted and posterior distribution 
along with exploration strategy is used to determine which combination 
of parameters to try next, until the total number of iterations reaches a 
user-specified limit. 

The optimal architectures and probabilities of the Gaussian Drop
Connect and BNN models found from hyperparameter search are listed 
in Table 3. Both the models show optimal performance with three layers 
and decreasing number of neurons in the successive layers. Additionally, 
for Gaussian DropConnect model, the optimal probabilities increase 
with the successive layers. The optimal hyperparameter combinations 
are subsequently used to train a model with the entire training data and 
produce the outputs on test set. The test results are discussed in detail in 
the next section. 

Model performance 

The Gaussian DropConnect and BNN models with modified loss 
functions to include heteroscedastic aleatoric uncertainty are trained 
with the optimal hyperparameters obtained from 5-fold CV. The pre
dictions with these two models for the test set provides the predictions 
with their uncertainties. Fig. 3 shows the comparison between the actual 
values and predictions from the Gaussian DropConnect model along 
with standard deviations of the predictions corresponding to the test set 
for RON, MON and YSI. In general, it can be observed that the predicted 
uncertainty is higher in regions of the property space where data is 
sparse. Although the true values seem to be within the predicted un
certainty, exceptions can also be observed mainly for RON and MON. 
Fig. 4 shows the comparison between the actual values and predictions 
from the BNN model along with the prediction standard deviations for 
the test set. The same observations as above are also hold true for BNN 
model. Fig. 5 shows variation of standard deviation with respect to the 
property’s actual values for all the three properties and for both the 
models. Also shown in Fig. 5 are the plots of data density with respect to 
the property values. The inverse relationship of the data density and 
uncertainty is more evident in Fig. 5, for all the three properties. It can 
be observed from Fig. 5 that the major difference between both the 
models is that the BNN model tends to estimate lower uncertainty 
compared to Gaussian DropConnect model in regions of the property 
space where the data is clustered, for RON and MON. Furthermore, a 
separate analysis of the UQ results indicates that the aromatic species 
have higher estimated uncertainties relative to the other classes of 
compounds in the dataset. 

Table 4 provides a comprehensive comparison of the performance of 
Gaussian DropConnect and BNN models for the test set. The mean ab
solute errors for both the models are similar and are also close to that of 
the original model from Kuzhagaliyeva et al. [18], which is 11.74 (3.05 

Table 1 
Comparison of the results from four different stochastic methods without 
hyperparameter optimization (MAE – Mean Absolute Error (the values in pa
rentheses indicate MAE for each of the three properties), CI – Confidence In
terval (the three values indicate the percentage of data in 1-, 2-, 3- σ CI, 
respectively), GNLL – Gaussian Negative Log Likelihood (the values in paren
theses indicate GNLL for each of the three properties)).  

Model 
Description 

MAE 
(RON/ 
MON/YSI) 

RON CI 
(1, 2, 3- 
σ ) 

MON CI 
(1-, 2-, 
3- σ ) 

YSI CI 
(1-, 2-, 3- 
σ ) 

GNLL 
(RON/ 
MON/ 
YSI) 

MC Bernoulli 
DropOut 

13.34 
(3.66, 
3.29, 6.3) 

27%, 
45%, 
59% 

26%, 
45%, 
55% 

8%, 
13%, 
16% 

2113 
(17, 20, 
2075) 

MC Bernoulli 
DropConnect 

14.22 
(3.1, 3.0, 
8.01) 

25%, 
45%, 
56% 

22%, 
43%, 
55% 

4%, 
13%, 
16% 

741 
(23, 26, 
691) 

MC Gaussian 
DropOut 

13.24 
(4.02, 
3.18, 6.02) 

26%, 
50%, 
62% 

32%, 
51%, 
67% 

2.7%, 
10%, 
16% 

394 
(19, 15, 
358) 

MC Gaussian 
DropConnect 

12.06 
(3.37, 
3.20, 5.4) 

29%, 
53%, 
68% 

28%, 
48%, 
67% 

9%, 
19%, 
26% 

167 
(11, 16, 
140)  

Table 2 
Hyperparameter ranges used for hyperparameter optimization (HPO) of the 
predictor network.  

Model Number of 
layers 

Neurons in each 
layer 

Probabilities 

Gaussian DropConnect +
Aleatoric 

1–6 16–2000 0–1 

Bayesian Neural Network +
Aleatoric 

1–6 16–1500 (first 
layer) 
16–512 (other 
layers) 

10− 4–0.1  

Table 3 
The optimal architectures obtained from hyperparameter optimization of the DL 
models used in this study.  

Model Number of 
layers 

Neurons in each 
layer 

Probabilities 

Gaussian DropConnect +
Aleatoric 

3 1310/457/140 0.005/0.05/ 
0.2 

Bayesian Neural Network +
Aleatoric 

3 1214/213/98 0.001  
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for RON, 2.79 for MON, 5.89 for YSI). This shows that the GNLL loss is 
optimized without significant impact on mean absolute error. In com
parison with the Table 1 with the non-optimized architecture and drop 
probabilities, the GNLL for the optimal Gaussian DropConnect model is 
significantly improved. Also shown in Table 4 are the confidence in
tervals for all the three property predictions from both the models. The 
lower confidence intervals for RON and MON in case of BNN compared 
to Gaussian DropConnect model can be linked to the prior observation 
that the BNN model tends to estimate lower uncertainty relative to 
Gaussian DropConnect model in regions of the property space where the 
data is clustered. Nevertheless, this does not have significant impact on 
GNLL as GNLL of both the models is similar for both RON and MON. On a 
different note, it is also found (not shown in Table 4) that for both 
models, the epistemic uncertainty component is much smaller than the 
aleatoric component in the final predicted uncertainties, with the 

difference between the two components being more pronounced for 
Gaussian DropConnect. 

Training for both BNN and Gaussian DropConnect were performed 
on a single NVIDIA A100 GPU. The computational cost of UQ with 
Gaussian DropConnect was similar to that of the baseline model since 
there was no increment in the trainable parameters during training. The 
marginal increment in cost during inference was insignificant relative to 
training time. Approximately 30 minutes of training time was required 
for each run of hyperparameter combination for Gaussian DropConnect. 
On the other hand, the BNN takes approximately twice as many epochs 
as the Gaussian DropConnect model to converge during training. 
Therefore, this doubled the computational cost of hyperparameter 
optimization for BNN relative to Gaussian DropConnect. However, since 
the hyperparameter space was limited for BNN to small hyperparameter 
ranges with only the last layer considered to be Bayesian, it took 

Fig. 3. Comparison of predicted values with true values for the three properties with their predicted uncertainties from Gaussian DropConnect model.  
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approximately 45 min for each run of hyperparameter combination. 

Conclusions 

In the present work, UQ of a deep learning fuel property prediction 
model is performed. Gaussian DropConnect and BNN are used for 
modeling epistemic uncertainty. For both these models, the loss func
tions are further modified to take into account the uncertainty that arises 
from the data itself, known as aleatoric uncertainty. Hyperparameter 
optimization is conducted for both the models with 5-fold CV. The final 
optimized models are tested on the same test set that was used by the 
baseline fuel property prediction model. The following is a summary of 
the major outcomes from this work.  

• The GNLL loss for the test set is quite reasonable and similar, without 
significant deterioration of mean absolute error, for both Gaussian 
DropConnect and BNN models.  

• The computational cost is higher for BNN relative to Gaussian 
DropConnect with no significant advantage w.r.t. accuracy, making 
Gaussian DropConnect a better option for UQ.  

• The quantified uncertainties can be used downstream in the fuel 
design process to make informed choice for exploration vs 
exploitation. 
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