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TWIP NiCo-based alloys - Age Hardening Response
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* MP35N (35Ni-35C0-25Cr-10Mo in at%) and similar alloys have exhibited interesting age-
hardening behavior for single phase y alloys

* Good combination of high strength, toughness and fatigue resistance

Antonov, S, et al. (2020). Scripta Materialia, 208.
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* VIM Melted 8 kg ingots

« Computationally optimized
homogenization

« Upset forging (1150°C)
« Hot rolling (1150°C)

In wt.%

From XRF analysis for major elements, LECO for C and N and
calculated from addition to the melt for B, plus minor impurities.

Alloys Ni Co Cr Mo B
DT-0 100 - - - -
DT-1 35.0 35.0 30.0 - 0.03
DT-2 35.0 35.0 25.0 5 0.03
DT-3 35.0 35.0 20.0 10 0.03

Hung, C., et al. (2025). Acta Materialia, 120918.



Starting Microstructure
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* Mo additions slow down grain growth and lead to smaller grain size
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Tensile Properties of Annealed Material
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* Low yield strength (~204-376MPa) with 1 Mo

* Improved ductility vs pure Ni

Strain hardening rate
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* Very high strain hardening with steady increase from 0.1 to 0.5 strain compared to decrease in Ni
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Effect of Mo on the Back Stress
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» Loading-unloading-reloading was conducted to understand local back stresses from pile-up
» Back stress was calculated from hysteresis loop of the curves (3 samples per alloy)

« At 0.7 true strain (prior to necking), the back stress of DT3 is as high as ~1.2 GPa and ~300 MPa higher
than that of DT1



Defect Structure of Pre-Strained Alloys
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« The primary deformation microstructure for DTO, subjected to tensile interruption at a true
strain of 0.26, is heterogeneous dislocations gliding on multiple slip systems

« Result in the formation of dislocation cells, consistent with observations reported for medium-

to-high SFE metals
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Heat Treating Pre-Strained Tensile Samples
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Pre-Strained and Heat-Treated Microstructures

Weak <111> texture in all
samples

Pure Ni, DTO, exhibits low
misorientation grains
indicative of
recrystallization at 500°C

The grain misorientation
across the entire scanned
region of DT1 and DT3
remains high,
underscoring that the heat
treatment did not
significantly annihilate
GNDs or causing
recrystallization
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Effect of Pre-Strain + HT on the Back Stress

True stress (MPa)
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The loading-unloading-reloading responses remain similar to the as-annealed, but with a higher true
stress level due to the strengthening caused by the heat treatment

Steeper slope of back-stress increment for DT alloys with heat treatment indicates that back-stress
was intensified and caused by strong barriers to dislocation motion



Deformation microstructure of pre-strained + HT alloys

High level of deformation
defects remain, showing that
the heat treatment does not
eliminate the pinned partial
dislocations

e

Some unlocked SFs expand - A
and terminate at intersection s A s : *
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encounter other SFs lying on R
conjugate slip planes

The intersection nodes circled
in yellow are known for
containing Lomer-Cotrell (L-C)
locks with sessile dislocations
acting as strong barriers to the
motion of incoming
dislocations
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Sub-structure of Pre-strained + HT alloys

(Uneven) Cr Segregation to fault planes
was observed at the expense of Co/Ni,
but minimal variation in Mo

A slight Cr depletion was detected
adjacent to the fault plane, indicating
localized diffusion

The Cr segregation width appears much
thicker than what a structural fault plane
would be, indicating that there is likely a
gradient of Cr segregation across the
fault plane as a result of the strain
gradient

The Cr segregation is expected to
Increase the SF width and node size due
to a local reduction of SFE, however no
local structural transformation observed
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SFE Considerations due to Cr Segregation

« Compositions around the DT1 and
DT2 space show a linear
relationship with Cr/Co ratio,
decreasing SFE with increasing
Cr/Co (segregation conditions)

* Mo addition introduces complexity to
the SFE landscape that universally
reduces the SFE and enables facile
SF expansion and intersection

SFE (mJ/m?)
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SF expansion and interaction

« V-shaped SFs configurations
are frequently observed in the
DT alloys post pre-strain + HT,
containing a stair-rod dislocation

* Qi et al. suggest that L-C locks
were frequently observed in
acute-angle V-shaped
configuration while obtuse-angle
V-shaped SF configuration
usually leads to Hirth locks

1. a/6[233] = a/Z[O:I-:I-]perfect + a/3[1OO]Hirth sessile
2. a/3[100]Hirth sessile

3. a/3[1%]Hirth sessile

4. a/6[233] =a/2 [Oll]perfect +a/3 [100]Hirth sessile

Qi, L., et al. (2020). Acta Materialia, 649.
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Effect of Mo and Pre-Strain + HT
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* Prior strain followed by a sub-
recrystallization-temperature heat
treatment extensively promotes a
secondary hardening while
maintaining an excellent ductility.
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« Level of strengthening also shows a
clear relationship to Mo content, as it
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Relationship between Yield Strength and Mo content
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3) Suzuki segregation strengthening Cr segregation, further SF locks and interface hardening (green

curves)



Conclusions

This study presents an alternative strategy for
tailoring the mechanical properties of NiCoCr-based
MPEAs and related alloys:

* Mo strengthens the material through lattice
distortion, Hall-Petch strengthening, and reduction
of SFE, which promotes complex stacking fault
(SF) interactions that hinder dislocation mobility

» SFs (stacking faults) act as preferential sites for
Cr segregation, reducing the stacking fault energy
(SFE) and impacting dislocation mobility, with a
decrease in SFE as the Cr/Co ratio increases

* The reduced local SFE in SFs allows them to
expand and interact with other faulting systems,
enhancing strength and strain hardening through
V-shaped configurations of L-C and Hirth locks
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