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Abstract

The proximal Galerkin finite element method is a high-order, low iteration complexity,
nonlinear numerical method that preserves the geometric and algebraic structure of
pointwise bound constraints in infinite-dimensional function spaces. This paper intro-
duces the proximal Galerkin method and applies it to solve free boundary problems,
enforce discrete maximum principles, and develop a scalable, mesh-independent algo-
rithm for optimal design with pointwise bound constraints. This paper also introduces
the latent variable proximal point (LVPP) algorithm, from which the proximal Galerkin
method derives. When analyzing the classical obstacle problem, we discover that the
underlying variational inequality can be replaced by a sequence of second-order par-
tial differential equations (PDEs) that are readily discretized and solved with, e.g., the
proximal Galerkin method. Throughout this work, we arrive at several contributions
that may be of independent interest. These include (1) a semilinear PDE we refer
to as the entropic Poisson equation; (2) an algebraic/geometric connection between
high-order positivity-preserving discretizations and certain infinite-dimensional Lie
groups; and (3) a gradient-based, bound-preserving algorithm for two-field, density-
based topology optimization. The complete proximal Galerkin methodology combines
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ideas from nonlinear programming, functional analysis, tropical algebra, and differ-
ential geometry and can potentially lead to new synergies among these areas as well
as within variational and numerical analysis. Open-source implementations of our
methods accompany this work to facilitate reproduction and broader adoption.
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divergence - Obstacle problem - Discrete maximum principle - Topology
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1 Introduction

Although the origins of variational analysis can be traced back at least to the sev-
enteenth century [167], its role in the modern study of partial differential equations
(PDESs) only truly began to take shape around 1847 once William Thomson introduced
what is now known as the Dirichlet principle. In contemporary language, this energy
principle states that for all functions f € L*(Q) and g € H' (), the (weak) solution
of Poisson’s equation over a Lipschitz domain 2 C R",

—Au=f inQ, u=g ondQ, (1.1)

can be obtained as the H'(2)-minimizer of the Dirichlet energy,
1 2
E(w)= <] |Vv|“dx — [ vfdx, (1.2)
2 Ja Q

confined to the constraint set H; Q=g+ HO1 Q) ={veH (Q)|v= g on 0Q2}.

Owing to the fact that Hgl(Q) is nonempty, closed, and convex, it is a straight-
forward consequence of the Lions—Stampacchia theorem [141, 188] that the energy
minimizer u* € K = H ; (£2) is the unique solution to the variational inequality (VI)

/Vu*~V(v—u*)dx2/(v—u*)fdx forallv e K (1.3)
Q Q

It happens that the boundary condition in (1.1) is an equality constraint that induces an
affine structure on the feasible set. Moreover, it is this particular algebraic structure that
can be exploited to show that the minimizer u* € H, gl (£2) is also uniquely characterized
by a variational equation. In the setting above, we have

/ Vu* - Vw dx =/ fwdx forall we HJ(RQ). (1.4)
Q Q
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To arrive at this conclusion from (1.3), the key idea is to notice that H, g} Q)+ H& (Q) =
H; (£2) and, therefore, one may replace v in (1.3) by u™ + w, for any w € H(} (R2). For
further details, see, e.g., [40, Proposition 9.22] and [50, Theorem 1.2.2].

A related additive structure appears if we consider imposing the pointwise non-
negativity constraint, u* > 0, and setting ¢ = 0. Hereafter, let H _ilr(Q) ={v €
H'(Q) | v > 0a.e.}. In this setting, the feasible set

K={veHJ(Q) |v=>0ae)=H}(Q)NHLRQ) (1.5)

forms a closed convex cone in H!(). It is well-known that the conic structure of K
allows us to write

fVu*-Vvdxz/fvdx forall v e K, (1.6)
Q Q

with equality holding for v = u™; see, e.g., [50, Theorem 1.1.2]. Thus, we encounter
another simplification directly from the algebraic structure of the feasible set. This
work pursues a third type of algebraic structure.

Our aim is to provide a high-order, multiplicative structure-preserving approach
to solving bound-constrained optimization problems and variational inequalities in
Sobolev spaces. This will lead us to working in Banach algebras, which are Banach
spaces that are closed under a continuous multiplication operation [53]. Instead of
performing Lagrangian relaxation or relying on penalty functions, the key component
of our approach is an adaptive form of entropy regularization. Through entropy reg-
ularization, we will find, e.g., that minimizing the Dirichlet energy over functions in
H; () NH _L(Q) can be reduced to solving a sequence of second-order semilinear
PDEs where each right-hand side is conditioned by the prior solution.

Algorithm 1 outlines the meta-algorithm for minimizing the Dirichlet energy under
the pointwise non-negativity constraint ™ > 0 considered above when f € L°°(2)
and gjpo € C(3€2) satisfies minyg g > 0. Note that, unlike, e.g., descent methods [215,
Section 3], this algorithm converges for all step size values o > 0; cf. Theorem 4.13.
A practical version of the algorithm appears via a saddle-point reformulation of the
semilinear subproblem (1.7), leading to the finite element method that gives this paper
its name.

Remark 1.1 (Latent variable proximal point vs. proximal Galerkin) Two general
approximation techniques are introduced in this work: the latent variable proximal
point (LVPP) algorithm and the proximal Galerkin finite element method. LVPP is
an infinite-dimensional optimization algorithm, equivalent to a saddle-point refor-
mulation of the (entropic) Bregman proximal point algorithm [198], which dates
back to early work by Bregman, Nemirovskij, and Yudin [38, 164]. The proximal
Galerkin finite element method is a nonlinear mixed method derived by discretiz-
ing the LVPP subproblems with the Galerkin finite element method. Although other
numerical methods, e.g., finite difference, finite volume, spectral, spline, or even neu-
ral network methods could also be used to discretize LVPP, we focus our attention on
the aforementioned finite element approach. We also acknowledge the existence of
EOE';W
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Algorithm 1: Entropic proximal point algorithm for Dirichlet energy minimiza-
tion with a non-negativity constraint.

input: Step size parameter o > 0 and initial solution guess
(RS H;(Q) N L°°(L2) satisfying essinf w > 0.

repeat
Solve the entropic Poisson equation,

{ —Au+o:_llnu:f+ot_llnw in 2, (1.7)

u=g on df2.

Assign w <« u.
until a convergence test is satisfied

significantly different “proximal Galerkin” method proposed in [147], yet choose to
use the same name for our method without any cause for confusion.

Remark 1.2 (Why pursue high-order discretizations?) The solutions to variational
inequality problems, as with other nonlinear problems, often have low regularity,
potentially leading to low-order accuracy. In the early days of the finite element
method, this fact led much of the community to conclude that low-order methods
“are sufficient for all practical purposes” [50, Chapter 5]. Much to the contrary, high-
order discretizations are now widely-used to solve nonlinear problems [54,209] owing,
in part, to more the accurate computational geometries [54] and higher efficiency on
modern computing architectures; see, e.g., [17]. The benefits of high-order methods
can be further improved when combined with adaptive mesh refinement, such as 4 p-
refinement [62, 185]. This often (sometimes provably [206]) results in high-order
accuracy, similar to if the underlying solution was smooth. These aspects all support
the present investigation into a high-order methodology for discretizing variational
inequalities.

1.1 Notation

Our notation is rather standard for the finite element literature. Norms are denoted by
|l - lx, inner products by (-, -)x, and duality pairings by (-, -) x/. x for Banach spaces
X and its paired topological dual X’. Whenever it is clear in context, we leave off or
abbreviate the subscripts in a natural way. For weak convergence we use the standard

notation, X or —. For subsets C of infinite dimensional spaces, we denote the closure
by cl C, the boundary by bd C, and the interior by int C. For a mapping F between
normed linear spaces X and Y, the Fréchet derivative of F at x is indicated by F’(x).
For an open bounded domain Q C R", n € {1, 2, ...}, LP(2), p € [1, co], denotes
the usual Lebesgue space of (equivalence classes of) p-integrable functions when p €
[1, 00), and essentially bounded functions when p = oo, respectively. Furthermore,

Elol:;ﬂ
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we simplify the L?(2)-inner product notation to (u, v) = (u, v)2(q) and define
LY (@) :={u e LP(Q) |u=>0ae.inQ}

for any p € [1, oc].

For domains  in R”, we denote the boundary by 92 and the closure by Q. The
spaces L?(0S2) are defined in the usual way. When needed, we indicate the surface
measure for 92 by d’H,,_1. The space of continuous functions on  is written C ().
Similarly, C" (), m € N U {00}, is the space of all m-times continuously differ-
entiable functions. The space of smooth compactly supported test functions on €2 is
given by C2°(£2). The Sobolev space of L%(Q) functions with L?(2) integrable weak
derivatives is denoted by H'() and its closed subspace of functions u with trace
yu = 0 is denoted by Hé (2). We use H%(0%2), s € (0, 1), for the usual Sobolev—
Slobodeckij space on 9€2. We refer the reader to a standard text on function spaces for
further details, e.g., [4, 155]. Finally, we adopt the following notational conventions:
Ry =[0,00), Ry = (0,00),0In0 := 0, and ||v||H71(Q) = supweHOl(Q) %,
with w = 0 ignored in this and similar expressions.

1.2 Outline

We have attempted to provide a scaffolded presentation of our findings. To this end,
Sect. 2 presents preliminary concepts and provides further motivation for this work.
Next, Sect. 3 reviews the literature and summarizes our main contributions. Sections 4
through 6 present the essential features of proximal Galerkin methods for the obstacle
problem, the advection—diffusion equation, and topology optimization, respectively.
Each of these sections contains an algorithm that is designed be implemented in a
production-level finite element code. The reader is encouraged to compare these algo-
rithms with our publicly available implementations [112—114]. The main paper closes
with Sect. 7, which contains a small number of concluding remarks, and then proceeds
to two technical appendices. Appendix A contains the continuous-level mathematical
analysis and Appendix B contains the discrete-level, finite element theory. Appen-
dices A and B are the most specialized sections of the paper and may be skipped by a
casual reader.

2 Preserving Multiplicative Structure

The proximal Galerkin finite element method is a nonlinear numerical method that
preserves the algebraic and geometric structure of bound constraints in infinite-
dimensional function spaces. It relies on reformulating subproblems like (1.7) into a
saddle-point form and discretizing the resulting system of equations. In this section, we
outline the essential features of the method using Dirichlet energy minimization (1.2)
as a motivating example. First, however, we study the multiplicative structure of non-
negative functions in order to illustrate how proximal Galerkin preserves this structure.
EOE';W
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2.1 Deconstructing the Semiring of Non-Negative Functions

Here, we discuss the natural logarithmic transformation between non-negative func-
tions and extended real-valued functions that may take the value —oo. This also first
introduces the latent variable 1. We claim this provides a basis for the use of logarith-
mic transformations to analyze and solve PDEs, an idea that goes back at least to work
by Schrodinger in 1926. Finally, we address the somewhat unnatural conditions this
transformation imposes on the solution spaces and variational equations themselves. In
turn, we show how a simple regularization of the transformed equations remedies these
concerns. We use this discussion to motivate the natural function spaces for pointwise
bound constraints in H ! (€2) and construct a direct link to entropy regularization.

Let X be a set equipped with two binary operations: addition &: X x X — X" and
multiplication ®: X x X — X.

Definition 2.1 (Semiring) We say that X is a semiring if the following conditions are
satisfied [81, 83]:

e Addition @ and multiplication © are associative;
e Addition @ is commutative;
e Multiplication © is distributive with respect to addition .

We say that X’ is a commutative semiring if the conditions above are satisfied and,
moreover, multiplication © is commutative.

It is easy to check that the set of non-negative Lebesgue measurable functions,
M (Q) = {v: @ > Ry | {v > ¢} is Lebesgue measurable Vc > 0},  (2.1)

forms a commutative semiring under the standard binary operations of pointwise
addition and multiplication. In particular, note that for any u, v € M (£2), we have

U+veM(Q), uveM(Q). 2.2)

There is an interesting identification between M. (£2) and the space of extended
real-valued measurable functions

Mpnax(2) = {¢: @ > RU{—00} | {¢ > c} is Lebesgue measurable Ve € R},
2.3)

induced by the (pointwise) logarithm and exponential operators. Namely, for all
u € Mi(R2), ¥ € Mnax(2), and ¢ > 0, we have that o 'nu € My ()
and exp(ay) € M (2) under the convention that In0 = —oo and, likewise,
exp(—o0) = 0. Such logarithmic transformations provide a family of semiring isomor-
phisms between My (2) and Mpax (€2), where Mpax (€2) is endowed with the following
(generalized) addition and multiplication operations:

Y ®¢=a 'In(expay) +explap)), YO¢=1y+o¢, (2.4)
FoCTM
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respectively [152, 153]. Moreover, in the limit @ — o0, the generalized addition
operation (2.4) becomes the pointwise maximum operation [143, 148]; namely,

¥ © ¢ — max{y, p}. (2.5)

Logarithmic transformations of the above form have been used famously over the
last century to analyze differential equations in quantum mechanics [184], fluid flow
[52, 100], and electrical engineering [149, 180], and, more recently, to study stochastic
PDEs [30, 90]. Given that they appear to capture certain key algebraic properties of
the set of non-negative functions, it is tempting to use logarithmic transformations to
enforce non-negativity constraints on function spaces. Unfortunately, however, spe-
cial care is required to apply a logarithmic transformation to a non-negative solution
variable in a free-boundary problem.

For illustration, consider minimizing the Dirichlet energy (1.2) over the set of non-
negative functions

K={veH Q) |v=0ae}=H(Q)NH Q). (2.6)

Assuming that f € L%(Q) and u* € H?(R), the well-known complementarity con-
ditions for the solution are as follows [117, p. 79]:

u* >0, —Au*—f>0, (Au*+ f)u* =0 ae.in Q. 2.7

Another perspective uses a dual variable A*, also known as a Lagrange multiplier, to
formulate (2.7) as a mixed complementarity problem of the form:

—Au* =X =f, u*>0 1">0, @W*,1*)=0. (2.8)

The Lagrange multiplier exhibits rather low regularity for general domains €2, so the
term “A* > 07 is actually understood to mean (A*, w) > 0 for all w € Hé (2) with
w > Oa.e.in £, 1.e., without further regularity assumptions, A* is merely a nonnegative
Radon measure on 2. See [117, Chap. II, Sec. 6] for details.

If we wish to study this problem under a logarithmic transformation, then a formal
computation using the substitution u™ = exp ¥ * leads to the observation that

Y*=—00 or —diviexpy*Vy*) = f, (2.9)

at almost every point in 2. Analyzing these equations presents challenges, in part,
because it requires moving away from well-studied Sobolev spaces [4] and, instead,
working in a latent space of extended real-valued functions [118] endowed with the
metric

A, ) =IVexpy — Vexpollr2q)- (2.10)

More specifically, it is difficult to imagine how to rigorously discretize a space of
functions that are allowed to take the value —oo on sets of positive Lebesgue measure.
EOE';W
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One conclusion of this work is that the above concerns are alleviated by a simple
regularization of the degenerate PDE in (2.9). In particular, we show that for all
bounded f € L°°(L2), the latent solution variable ¥* = Inu* is recovered as the
o — oo limit (with respect to the metric (2.10)) of a family of regularized solutions
V¥ € HY(Q) N L®(Q) satisfying

—div(exp ¥ Vy) + o~ 'y = . (2.11)
Moreover, the latent variable iteration ¥° € H' () N L®(RQ),
—divexp v vy +a Yk = Fra7 Yt k=1,2,..., (212

formerly written with primal variables in Algorithm 1, converges to ¥* for all finite
o > 0; cf. Theorem 4.13.

The ambient function space for the regularized latent variable i is interesting from
an algebraic point of view because itis a Banach algebra. Indeed, the Sobolev subspace
HY(Q) N L®(2), whose norm is

”U”HI(Q)OLOO(Q) = max{||v||H1(Q), lvllLe)}s (2.13)

is closed under the standard operations of pointwise addition and multiplication [40,
Proposition 9.4]. Maintaining closure under multiplication is desirable, in part, because
it often allows one to construct a smooth exponential map [77, 78]. Indeed, of particular
interest to this work is the Nemytskii operator

exp: H'(Q) N L®(Q) — H'(Q) Nint L?(Q), (2.14)
which is an isomorphism between H L(€) N L>°(Q) and the Banach—Lie group
HY(Q)Nint L(Q) = {w € H'(Q) NL¥(Q) | essinfw > 0};  (2.15)

cf. Proposition A.8. Since the range of this isomorphism is contained in the H'!(£2) N
L (Q)-interior of the set of essentially bounded non-negative H'(Q) functions, we
find that the primal iterates,

uF = expyt e H'(Q) Nint L (Q) C int(H' () N L™ (Q)),

will always be interior points. In the next motivational subsection, we explain that
S o . H'(Q) ..
an identical sequence of interior points «¥ "—>" u* can be found by regularizing the

Dirichlet energy with an appropriate entropy functional.

2.2 Dirichlet Free Energy

Only special function spaces are endowed with a norm topology that permits a contin-

uous multiplication operator. Indeed, it is well-known that H!(£2) is only closed under
Elo [y
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multiplication when n = 1 [4]. Moreover, it is easy to show that int H}F(Q) = ¢ for
all n > 2, which makes it impossible to define an H 1 (2)-interior point in any of its
subsets (cf.Remark 4.3). Because H ()N L® () bypasses both of these topological
issues, it is appealing to restrict the feasible set K in (2.6) to essentially bounded
functions when minimizing the Dirichlet energy.

Unfortunately, requiring the feasible set to be the intersection of K and L*°(2)
would cause the direct method of calculus of variations [22] to fail. This is because
the Dirichlet energy does not provide control over point-wise values of the solution
and K N L*®() is not closed in the H'(2) norm topology. Therefore, one may
conclude that maintaining some important mathematical structures is in conflict with
the classical energy principle.

Fortunately, it turns out there is resolution to this conflict that exposes the missing
algebraic structure; namely, minimizing the Dirichlet free energy,

A(u) = E(u) + 0Su). (2.16)

Here, 0 = ! > 0 is a non-dimensional “temperature” parameter and
S(u):/ ulnu — udx, (2.17)
Q

is the (negative) entropy functional. As we show in the proof of Theorem 4.7, the
unique minimizer of (2.16) lies in K N int Lf(Q). In particular, for all & > 0, the
function

u =argmin A(v) = argmin A(v), (2.18)
vek veEKNL>® ()

is essentially bounded away from zero. Moreover, Theorem A.13 shows that u = u(6)
converges linearly with respect to /6 to the unique non-negative minimizer of (1.2),
u* = argmin, . g E(v). More specifically,

IVi* = Vull7, o, < 20(Sw™) + |2), (2.19)

(€)

whenever f € L*°(Q).
Finally, as a consequence of u belonging to the interior of L°(£2), the general VI
that characterizes the solution of (2.18), i.e.,

/Vu-Vvdx—l—@/vlnude/fvdx forall ve K —u, (2.20)
Q Q Q

can be replaced by a variational equality; namely, the weak form of a semilinear PDE
we call the entropic Poisson equation, —Au+6 Inu = f.Indeed, Theorem 4.7 shows
that

/Vu-dex—}—@/ wlnudx:/ fwdx forall we H}(Q). (2:21)
Q Q Q

EOE';W
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Primal variable u ]

(
L —Au+Inu = f+ InuF J

Multiplicative update
u = uF exp(—\)

Group isomorphism
U = exp)

Dual variable A ]
A= —Du—f=of—y ]

Latent variable v
| =div (expwvy) + 9 = 1 +v*

( Equivalence of the iterates ]
IV = Vullao) = dw™, ) = IN = Aln) |

Fig. 1 A trinity is formed by the three isomorphic representations of the iterates in the latent variable
proximal point method. In this figure, equations for the three representations are given for the problem of
minimizing the Dirichlet energy (1.2) over non-negative functions u € Hé} ()N H _lF(Q). Note that, for
simplicity, the step size here is set to @ = 1. See Theorems 4.7 and 4.13 for further details and consequences
for variable step sizes

The entropic Poisson equation is the primal form of (2.11) and has numerous inter-
esting properties that we exploit in this work. For completeness, we also note that
6 In(1/u) approximates the true Lagrange multiplier A* introduced in (2.8) above.

The essential idea presented above is expanded on in Sects. 5 and 6 to accommodate
bound constraints for general VIs that do not appear as a result of energy principles,
as well as those that appear in topology optimization with a view toward other bound-
constrained optimization problems. Crucially, and unlike traditional penalty or barrier
methods [31, 166, 214], it is not necessary to take & — 0 in order to get an arbitrarily
accurate approximation of u*. Indeed, the simple adaptive entropic regularization
algorithm given in Algorithm 1 (see also (2.12)), which comes from regularizing the
Dirichlet energy with a relative entropy functional, is far more appealing and is derived
in Sect.4. Figure 1 provides a diagrammatic reference for the main elements of the
continuous-level algorithm in the case o = 1.

Remark 2.2 (Dirichlet free energy) We propose the name “Dirichlet free energy” for
the functional in (2.16) by analogy with the Helmholtz free energy from statistical
mechanics [171], A = E — TS, where E denotes total system energy, 7 denotes
absolute temperature, and S denotes thermodynamic entropy.

2.3 Pointwise-Positivity for Every Polynomial Degree

The majority of this paper is based on pursing the aforementioned observation that

the solution of VIs for bound constraints, including (2.20), can be approximated arbi-

trarily accurately by variational equations like (2.21). Leveraging this observation for
Elol:;ﬂ
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computational purposes leads to a new class of high-order, nonlinear finite element
methods we refer to as proximal Galerkin methods. In turn, taking advantage of the
multiplicative structure of the solution space leads to non-standard approximation
spaces that naturally preserve pointwise positivity at the discrete level.

As we shall also show in Sect. 4, a very convenient Galerkin discretization of the
entropic Poisson equation (1.7) is found by introducing a pair of linear subspaces
Vi C HO1 (2) and W), C L°°(2) — for instance, spaces of high-degree piecewise
polynomials — and simultaneously approximating the solution u in both the primal
space and via the latent variable in a potentially different function space; namely,

u~up and u =~ exp vy, (2.22)

where up € g + Vi, Yy, € Wyp,and g, € H L) provides an approximation of the
boundary values gnjaq ~ gjaq. The basic method is outlined in Algorithm 2.

Algorithm 2: Proximal Galerkin method for Dirichlet energy minimization with
a pointwise non-negativity constraint.

Input : Step size parameter o > 0, linear subspaces V), C Hg (2) and
W), C L°°(R2), and initial solution guess vy, € Wj,.

Output: Two approximate solutions, u;, and u;, = exp ¥, and an approximate
Lagrange multiplier, A, = (¢, — ¥p) /.

repeat
Assign ¢, < Y.
Solve the following (nonlinear) discrete saddle-point problem:

Find uj, € g, + Vj, and ¥, € Wy, such that

/aVuh~Vvdx+/ whvdxzf(oef—i—(ph)vdx forall veV,,
Q Q Q

/ upw dx —/ exp(Yp)wdx =0 forall w e Wy,.
Q Q

until a convergence test is satisfied

A novelty of the approximate solution i, = exp Y, is that it is guaranteed to
deliver pointwise positivity. We exploit and extend the above property throughout
this work to develop some of the first high-order bound-preserving finite element
methods for a variety of benchmark problems. Another important property of this
exponential discretization is that it preserves the multiplicative group structure of the
setint LE(Q2) = {w € L>() | essinf w > 0}. More specifically,

exp ¥y, exp on = exp(Y, + ¢p) € exp(Wy) C int L7 (), (2.23)
EOE';W
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for all ¥, and ¢, € Wj,. Before expanding further on this and other topics, we present
a comprehensive review of the literature and an itemized list of contributions.

3 Contributions and Related Work

Numerical methods for pointwise bound constraints have been a topic of investigation
for decades. With this is mind, it is important to distinguish proximal Galerkin from the
many other numerical methods for bound-constrained variational problems developed
over this time frame. Moreover, proximal Galerkin is as much a finite element method
as it is an optimization algorithm. In turn, we choose to survey the optimization
literature as well as the numerical PDE literature in Sects. 3.1 and 3.2, respectively.
The main contributions of this work are highlighted and itemized in Sect. 3.3. We
encourage readers to move directly to the latter subsection if are they not interested in
the historical context of the method.

3.1 Optimization Methods for Pointwise Bound Constraints

Bound-constrained variational problems arise in many subjects. These include, but
are not limited to, contact mechanics [116, 214], financial mathematics [196, Chap.
12], mathematical image processing [13], and the geosciences, such as glaciology
[224]. It is here that we are often confronted with the requirement that the solution
be pointwise bounded from above or below by some critical threshold over at least a
portion of the physical domain or its boundary. In PDE-constrained optimization and
optimal control, bounds on the solution of the PDE, i.e., state constraints, naturally
arise as a modeling requirement, see the well-known monographs [98, 202] and the
references therein, especially [44—46]. Consequently, a great deal of effort has been
spent on treating bound constraints in infinite dimensions.

We mainly restrict our overview to the numerical solution of the obstacle problem
(1.3), with K C {v € H'(Q) | v > ¢} for some ¢ € H'() N L®(Q), since
the available solvers capture the main essences of the common techniques for other
bound-constrained problems, however, we note that a number of the optimization
algorithms listed below are applicable far beyond this setting. Perhaps the most direct
approach begins by prescribing a finite-dimensional subspace of H! () for the discrete
solution and then solving the associated variational problem by methods of nonlinear
programming. In this “first-discretize-then-optimize” class of approaches, the finite-
dimensional reformulation typically amounts to a strongly convex quadratic program
or a discrete strongly monotone variational inequality. The fact that higher-order basis
functions face numerous challenges when used to enforce pointwise bound constraints
limits the benefits of these approaches; for further discussion, see Sect. 3.2. However,
a wealth of viable algorithms from nonlinear programming can be applied to lowest-
order discretizations; see, e.g., [31, 166]. Nevertheless, at least for active set-based
approaches, such as in [95], one will almost certainly observe mesh-dependence.

Mesh-dependence means that the number of nonlinear solver iterations required to
reach a prescribed stopping tolerance (using the appropriate function space norm) will
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grow without bound on successively finer meshes. Nevertheless, mesh-dependence
can be computationally mitigated by appealing to multigrid methods, as was done in
the celebrated papers [37, 89, 101-103, 119-121, 211]; see [85] for a comprehensive
review. Despite the favorable behavior of these multigrid methods, there is no proof of
mesh-independence in general. In particular, there is no guarantee that a given sequence
of meshes will not miss low-dimensional portions (sets of positive capacity [117]) of
the active set. To be fair, despite strong evidence of mesh independence for our method,
which is bolstered by the convergence theory of the infinite-dimensional optimization
algorithm underpinning the numerical method, a rigorous mesh-independence proof
leveraging the ideas in [210] is postponed to future work.

Mesh-dependence in active set methods arises from a lack of generalized differen-
tiability of the (nonsmooth) residual in the function space setting, cf. [95, 203]. This
has motivated researchers to propose and analyze algorithms for bound-constrained
problems in the continuous, i.e., infinite-dimensional setting. If an algorithm can be
shown to converge in the continuous setting and the problem of interest exhibits suf-
ficient stability properties around its solution, then this convergence will carry over
to perturbed problems. At least for conforming discretizations, the associated finite-
dimensional problem can be viewed as such a perturbation provided the discretization
is sufficiently fine. For further material on this topic, we refer the reader to the detailed
discussions and references to applications in [210] and the pioneering works [8, 9,
154].

Infinite-dimensional algorithms follow their finite-dimensional counterparts and
can be roughly split into several categories: penalty methods, barrier methods, aug-
mented Lagrangian methods, and first-order methods of convex optimization. For
penalty (approximation) methods, we point the interested reader to the well-known
monograph [79], which claims these techniques go back to [139, 140]. However, we
note that the numerical methods in [79], e.g., coordinate descent, are not seen to be
competitive with more recent developments in the subsequent decades after its publi-
cation.

Quadratic penalty methods are used widely in PDE-constrained optimization, see,
e.g., [94, 96, 97] and readily extendible to numerous applications; see, e.g., [3, 115,
123]. These are often referred to as “Moreau—Yosida-based approaches because the
quadratic penalty can be viewed as the Moreau envelope of the indicator function for
the bound constraints. The downside of these methods is the requirement to drive the
penalty parameter to infinity to restore feasibility. Mirroring their finite-dimensional
equivalents, interior point methods have also been investigated in detail for certain
classes of PDE-constrained problems, see, e.g., [99, 181, 182, 204, 212]. Our method
is closer to interior point methods, due to the entropy term [172, 192], and somewhat
related to the first-order methods in [199, 223]. However, in contrast to traditional inte-
rior point methods, the entropy functions employed in the text below do not exclude
points from the feasible sets as they are still well-defined for feasible solutions that
exhibit contact on sets of positive measure (or capacity). Recently, entropy regulariza-
tion has become a popular technique to promote exploration in reinforcement learning
[5, 127, 136]. The same technique is also used in semidefinite programming [138]
and optimal transport [57]. An early comparison of infinite-dimensional interior point
versus quadratic penalty approaches can be found in [28]. We also point to more
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recent work [199, 223] on new penalty methods that appear to be mesh-dependent.
Finally, though not expressly developed for bound-constrained problems in infinite-
dimensional spaces, proximal point methods will play a central role in our method.
This is discussed in detail in Sect. 4.4 below.

Augmented Lagrangian approaches have also been developed for variational
inequalities and PDE-constrained optimization; see, e.g., early work in [27, 29, 108,
109] along with the monographs [79, 110, 116, 214] and the many references therein.
Recent work has extended these methods to more general problems in abstract Banach
spaces while simultaneously exploiting advances in matrix-free, inexact subproblem
solvers in constrained optimization (such as [93, 122]), see [18, 32, 111]. In finite
dimensions, augmented Lagrangian approaches are generally superior to penalty-
based methods in the sense that the penalty parameter does not need to be driven
to infinity to guarantee feasibility. Moreover, the penalty function in the subproblems
is adaptively updated by the dual variables at each iteration. However, as observed
in [18, Sec. 5], the situation is more delicate in infinite dimensions, e.g., it may be
necessary that some of the penalty parameters need to pass to infinity to guarantee the
generation of a sequence of iterates with feasible accumulation points and the dual
variables may not be bounded in those function spaces which are more easily treated
numerically.

3.2 Numerical Methods for Pointwise Bound Constraints

The development of bound-preserving numerical methods for PDEs began in the early
days of scientific computing [80, 130] and has remained an important pursuit ever
since. Although the present paper focuses on an entirely different category of PDE
problems, hyperbolic conservation laws have provided a major source of motivation for
research on the topic [55, 92], and have inspired many bound-preserving techniques
now applied to other classes of PDEs. In many situations, the challenge lies in the
fact that standard high-order numerical methods do not preserve key invariant domain
properties of the underlying physics [86], such as pointwise positivity [194], yet, such
properties are often required for numerical stability [216].

Some of the earliest attempts to ensure bound constraints involved using artifi-
cial viscosity to dampen oscillations that would lead to negativity and other spurious
solution features [129, 208]. Later on, more sophisticated “high resolution” flux- and
slope-limiting strategies emerged [35, 91, 195, 205]; see also [135] for a classical
overview and further references.

One of the most popular approaches to designing high-order bound-preserving
methods is flux-corrected transport [35, 124, 125, 219]. The general idea relies on
forming a convex combination of a desired high-order solution and a bound-preserving
low-order solution. The method then selects the high-order solution wherever the
constraint is satisfied and locally transitions to the low-order solution wherever it is
necessary to avoid constraint violations. A more recent popular approach [220-222],
which can be traced back to [173], relies on developing high-order schemes with
positive cell averages. If such a high-order scheme can be found, the local solution
need only be rescaled towards its (positive) mean wherever the constraints are violated.
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The majority of high-order bound-preserving numerical methods for PDEs, includ-
ing the two methods just described for hyperbolic conservation laws, do not constrain
the solution to the continuous-level feasible set. This is due, in part, to the fact that
checking pointwise bound violations with an arbitrary polynomial is prohibitively
expensive [128]. Instead, almost all modern methods involve one of two common
strategies: (1) enlarging the feasible set by only constraining the values of the solution
at quadrature or nodal points [21, 65, 137, 194, 221] or (2) diminishing the feasible set
by constraining the solution’s basis function coefficients [1, 2, 15, 145]. The former
strategy results in a relaxation of the underlying problem that allows for solutions that
are not truly positive pointwise. The latter strategy typically involves discretizing the
solution with a positive basis that guarantees, e.g., that the solution is non-negative if
its coefficient are non-negative; see [6, 7, 54, 58, 168, 193] for the properties of various
choices. If a high-order discretization is used, both strategies lead to basis-dependent
solutions, instead of solely approximation space-dependent solutions.

Since limiters tend to have a minimal number of hyperparameters, enforcing
bound constraints using many of the techniques above may, at most, reduce to only
solving a single-variable optimization problem at each element. Recently, however,
optimization-based methods have been explored to enlarge the solution space [33,
217]. In these methods, a nonlinear program is solved at each element. Likewise,
global optimization approaches have also been explored, but, possibly owing to the
cost, we are only aware of investigations with simple model problems [71, 142].

Finally, logarithm-transformation methods, which date back at least to [105], have
been known in the literature for some time [43, 106, 146]. Yet, they have taken on
new interest in recent years [64, 75, 144, 157, 207]. Other earlier work of related
interest include [41, 61, 72, 132, 158]. The appeal is that discretizing a transformed
variable may deliver an approximation that is intrinsically structure-preserving and
basis-independent because it encodes geometry of the feasible set. However, as we
have already described in detail in Sect. 2.1, naively transforming a PDE variable leads
to theoretical concerns when the solution is permitted to reach the boundary of the
feasible set. Therefore, implementing these methods in practice can be challenging,
and may require ad-hoc assembly rules for the degenerate PDEs that arise, as noted
in [207].

3.3 Contributions of the Present Work

This paper focuses on establishing a mathematical foundation for the proximal
Galerkin finite element method and exploring some of its applications. The main
technical results are developed specifically for the obstacle problem. Yet, Sects. 5 and
6 provide further applications with an eye towards future work. In order to distin-
guish our work from previous and parallel efforts described in the literature above, we
itemize our primary contributions:

e We introduce a new numerical method to treat infinite-dimensional bound-
constrained variational inequality problems. The method hinges on an adaptive
entropy regularization technique that was introduced by Nemirovskij and Yudin
in [164] for general reflexive Banach spaces, but has been primarily explored as
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an efficient optimization algorithm for finite-dimensional problems [198]. More-
over, the nature of the functionals involved in our approach indicate that we need
to work in a non-standard, non-reflexive setting that is nevertheless natural for
entropy regularization in infinite dimensions.

e The adaptive entropy regularization technique explored in this paper indicates
the potential for a broad methodology in which the nonlinearity arising from the
variational derivative of the entropy term can be replaced by a slack variable —
which we call the “latent” variable — that is isomorphic to the regularized primal
variable. This ultimately delivers a greater degree of flexibility in the choice of
discretization scheme as the isomorphism naturally facilitates structure-preserving
discretizations. We coin this framework the latent variable proximal point (LVPP)
methodology.

e We apply the entropy regularization technique to the obstacle problem, and in
doing so derive (distributional forms of) the entropic Poisson equation,

—Au+Inu=f, (3.1a)
and the binary-entropic Poisson equation,
— Au + arctanhu = f. (3.1b)

When understood as arising from the Euler-Lagrange equations for the regularized
energy functionals, these appear to be novel semilinear elliptic PDEs. Though a
similar equation to (3.1a) has been investigated in [159] and the nonlinearities are,
at least when restricted to their domains, smooth and monotone, the Nemytskii
operators induced by In and arctanh require special care as they have restricted
domains when defined from the original real-valued functions; cf. [12] and related
literature for the analysis of Nemytskii, i.e., nonlinear superposition operators.

e Motivated by the analysis of the entropic Poisson equation, we establish a non-
trivial geometric connection between non-negativity-constrained optimization and
group theory. Further geometric connections are established via entropy function-
als for other bound constraints.

e We present a novel finite element method to solve the entropic Poisson equation
and perform preliminary a priori error analysis on the resulting nonlinear mixed
method. Our numerical experiments indicate that the method is mesh-independent
when comparing the number of iterates required to reach a certain solution toler-
ance; see, e.g., Sect. 4.8.

e We extend the contributions above to arrive at a novel approach to enforce discrete
maximum principles on non-symmetric elliptic PDE, e.g., the advection—diffusion
equation.

e We introduce two different types of stable finite element pairs for proximal
Galerkin discretizations of second-order elliptic VIs with pointwise bound con-
straints. The first type employs a discontinuous latent variable y,; cf. Sect. 4.7.
These finite elements lead to a primal solution u;, with a bound-preserving cell
average; cf. Remark 4.22. The second type uses a C%(S2)-continuous latent vari-
able; cf. Sect. 5.3. In this case, a well-chosen quadrature rule induces a nodally
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bound-preserving primal solution; cf. Remark 5.3. Both types of proximal Galerkin
discretizations lead to a secondary solution variable 4y, that is pointwise bound-
preserving throughout the domain.

e We present a new algorithm for topology optimization to showcase the breadth
of applicability of the geometric optimization techniques developed in this work.
The algorithm is efficient and relatively simple to implement. Our results indicate
that it is also mesh-independent.

e We release our code [112-114], implemented in part using the finite element
software FEniCSx in Python and, otherwise, with the MFEM library in C++ [14],
to facilitate broader adoption in the community.

4 The Obstacle Problem

In Sect. 2, we surveyed several structural properties that entropy regularization brings
to a specific form of the obstacle problem,

1
min —f |Vu|2dx—/ fudx subjecttou > ¢ in €2, 4.1
ueH () “J/Q £

where ¢ = 0. In this section, we return to the same motivating example to review these
properties in greater detail and extend our conclusions in order to analyze nonzero
obstacle functions ¢ # 0. The main theoretical results in this section are the repre-
sentation theorem, Theorem 4.1, the characterization theorem, Theorem 4.7, and the
convergence theorem, Theorem 4.13. The section closes with a proximal Galerkin
algorithm to solve the obstacle problem (Algorithm 3) and a report of our numerical
experiments with it (Sect. 4.8).

4.1 The Entropy Gradient

Before we can properly investigate entropy regularization and its role in treating the
obstacle problem (4.1), we must closely analyze the regularity of the entropy func-
tional (2.17) in Lebesgue spaces. Doing so will guide us toward the key geometric
structure encoded in this functional. As a pedagogical instrument, we proceed by
building an analogy to the finite-dimensional setting.

Let x € RY denote the N-dimensional vector (x1,...,xn) and denote the non-
negative orthant in RY by

RY = {(x1,...,xn) e RN | x; > Oforalli = 1,... N}. 4.2)

Now, consider the corresponding finite-dimensional entropy function s : R_’X - R

defined by s(x) = vazl x; In x; — x;, wherein we remind the reader of our simplifying

convention 01n 0 := 0. It is easy to see that s(x) is continuous and strictly convex on
Rﬁ , but only differentiable on its interior,
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intRY = {(x1,...,xy) €eRY | x; > Oforalli = 1,... N}, 4.3)

due to the logarithmic singularity in the gradient Vs (x) = (Inxy, ..., Inxy). A careful
analysis is required to determine what the effect of the same type of logarithmic
singularity will be at the function space level when analyzing the entropy functional
Sin (2.17).

As our first key structural result shows, L?f(Q) and int L‘f(Q) reflect the roles
played above in finite-dimensions by R_’X and int Rﬁ , respectively. The proof is
deferred to the outset of Appendix A.2.

Theorem 4.1 (Gradient representation) Let S : LP(R2) — R U {400}, p € [1, 0],
be the negative entropy functional defined by

() = {fQulnu —udx, ifuec ;ﬁ(Q),
+00, otherwise.
1. If p € [1, o], then S is strictly convex and lower semicontinuous.
If p € (1, 0], then S is continuous on Li(Q).
3. If p = oo, then S is continuously Fréchet differentiable on int Li(Q) with respect
to the LP (2)-norm topology. In particular, the L°°(Q2)-Fréchet derivative of S can
be uniquely characterized by the variational equation

N

(8" (), v) = /Qvlnudx forallu € int LY (Q) andv € L™(Q).  (4.4)

Moreover, ||S/(M)||(LOO(Q))/ = [IVS@lL1 @) where
VS(u) =Inu € L*(Q) 4.5)

is the unique primal representation (i.e., gradient) of S’ (u) and is uniquely deter-
mined by the variational equation

(VS(), v) = (S'(u), v) forallu €int LL(Q) andv € L'(Q).  (4.6)

At a first glance, it is tempting to define S from LY(Q) into R U {+o0}. This is the
perspective taken in much of the literature on infinite-dimensional convex analysis;
see, in particular, [23, 36]. In this setting, it is shown that we have strict convexity and
lower semicontinuity. However, as noted in [23, Remark 5.7], there are some issues
with this viewpoint. For example, S would be nowhere continuous, but it would admit
subgradients of the form Inu whenever u € int LY (<2).

As claimed above, and proven in Appendix A.2, we see that S: L”(Q2) — R U
{400} is in fact continuous on Lf_ (€2) provided p > 1 and even continuously Fréchet
differentiable when we take p = oo and u € int LI (€2). Moreover, the derivative
S’ (1) admits a “primal” representation of the form In u, which connects back to the
convex analysis literature. Our proof techniques, however, are not based on duality
arguments or the properties of subgradients.
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Since S will be used to define a Bregman distance below, whose domain needs to
fit together with the typical regularity spaces for partial differential operators, we can
safely choose any p € [1, oo] so that the regularity space is continuously embedded
into L”(2), even if this initially appears to rule out certain functions in the domain
of S. For example, if we are working with u € H l(Q), then we can select p €
[1, 2], regardless of the dimension of €2 or regularity of 2. On the other hand, if the
dimension of 2 is n = 2 or higher, then H () does not continuously embed into
L*®(Q).

Finally, the properties of S given in Theorem 4.1 indicate that § : L(R) — R
is part of an important class of essentially smooth functions introduced by Rockafel-
lar [175, Section 26] (in finite dimensions) known as Legendre functions, which are
extended to infinite dimensions in [23, 36]. As discussed in, e.g., [198, Section 2.3],
Legendre functions play a crucial role in proximal algorithms for finite-dimensional
convex optimization.

To prepare us for non-trivial obstacles ¢ # 0, we have the following corollary to
Theorem 4.1 pertaining to the shifted entropy functional Sy (1) = S(u — ¢). As with
Theorem 4.1, the proof of this result is deferred to Appendix A.2.

Corollary 4.2 (Gradient of the shifted entropy functional) Let ¢ € L°°(S2). The shifted
negative entropy functional Sy (u) is strictly convex on

Lg(f+(§2) ={w e L®(Q) | w > ¢}. 4.7)
and Fréchet differentiable on
int L(?,(f+(§2) ={we L;’ﬁ_(ﬂ) | essinf(w — ¢) > 0} 4.8)

with respect to the norm topology on L*(S2). The Fréchet derivative of Sy can be
uniquely characterized by the variational equation

(S(;,(u), V) = / vin(u — ¢)dx forallu € int L;?JF(Q) andv € L*(Q). (4.9)
Q

Moreover, ||S(;)(u)||(Loo(Q))/ = ||VS¢(u)||L1(Q), where
VSp(u) =In(u — ¢p) € L™(Q), (4.10)

is the unique primal representation (i.e., gradient) of S(; : int L;‘j+(§2) — (L™ ()
in L*(R), determined by the variational equation

(VS (u), v) = (S:b(u), v) forallu € int L;’,f’+(§2) andv € LI(Q). “4.11)

Remark 4.3 (Empty interior in the H'(Q) topology) We point out that if K = {u €
Hy(Q) |u >0} = H (QNH{(Q) and @ C R" withn > 1, thenint K = . This is
a non-trivial consequence of the fact that H 1(Q) contains unbounded functions (see,
e.g., [4, 4.43 Example]), and so we can get arbitrarily close to any # € K in the
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H'-norm with an unbounded function lying outside of K. For example, if @ C R? is
the open unit ball centered at zero, then ¢ (x) := min(0, — In | In(||x|])]), ¢ > 0, is in
H'(S), but is unbounded at zero. Fix u € K and assume wlog that u is bounded on
a neighborhood of 0. Then u + €p ¢ K can be made to be arbitrarily close to u by
modulating € > 0.

Remark 4.4 (No Riesz representation theorem) When inspecting Theorem 4.1 and
Corollary 4.2, the reader should note that L”(£2) is a Banach algebra only in the case
p = oo and we only prove that u > Sg(u) is Fréchet differentiable with respect to
variations in this set; see (4.9). In fact, there is a key step in our proof of Theorem 4.1
that requires all functions u where the functional S(u) is differentiable to have a
multiplicative inverse 1/u € L*°(2); see (A.18). Based in part on this requirement,
we continue to work directly with L (£2), which is a non-reflexive Banach space
without a corresponding Riesz representation theorem [4]. It is, therefore, not a trivial
consequence of differentiability that the Fréchet derivative S:/)(”) € (L*™(2)) has
the unique function space representation V.Sy (1) € L°°(Q2) given by (4.11). In fact,
the derivative of general functionals on L°°(£2) lie in (L°°(£2))’, which is the space
of absolutely continuous, finitely additive set functions of bounded total variation
on 2; cf. [218, p. 118]. Throughout this work, we consciously choose to refer to
VSs: int L(‘;‘f +(8) — L*(R) as the gradient of the (shifted) entropy functional,
even though we are well aware that the term “gradient” is typically understood as a
Hilbert space concept.

4.2 The Entropy Gradient is an Isomorphism

Let us return to the finite-dimensional entropy function s(x) = ZlN: 1 Xxilnx; — x;
introduced at the beginning of the previous subsection and focus on its properties in
the strictly positive orthant int Rﬁf C RN, In this case, the reader should note that
x = Vs(x) = (Inxy,...,Inxy), is a bijection between the set of component-wise
positive vectors x € Rﬁ and the entire vector space RV .

This correspondence has a special algebraic significance if we view int ]Rﬂ\_’ asalLie
group under the operation of componentwise multiplication,

X®y=(X1¥1,..., XNYN), (4.12)

and view RY as its associated Lie algebra under addition; cf. [133, Example 7.4 (b)].
Indeed, the smooth map Vs: int Rﬁ — RY given above is a Lie group isomorphism
because

Vs(x)+Vs(y) =(nx;+Inyy,...,Inxy +Inyy) =Vs(x ® y). (4.13)

It is trivial to see that the same structure is replicated at the infinite-dimensional level
between the Banach-Lie algebra L°°(£2) and its Banach-Lie group int L3 (£2) since

VSu)+VSw)=Inu+1Inv =VSuv). (4.14)
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L>(Q 1nt L3 (92
(VS)~1
Fig.2 The exponential map vsH! (¢) = exp ¢ is an analytic isomorphism between the Banach algebra
L°°(Q2) and the Banach-Lie group int L°(R2) = {v € L*°(Q) | essinfv > 0}; see Proposition A.7.

Moreover, its restriction to the subalgebra H 1(@) N L>°(Q) forms an isomorphism with the subgroup
HY(Q) Nint L% (2); see Proposition A.8

A deeper geometric meaning to this correspondence is revealed if we draw upon
the well-known result in differential geometry that all finite-dimensional Lie groups
are associated to their Lie algebra by an exponential map [133, Proposition 20.8]. In
the case of the Lie group int RY, it may be checked that the inverse of Vs, defined
(V) L) = (expxy,...,expxy), is precisely this map. Conveniently, the finite-
dimensional result extends to the Banach—Lie group int L?ro(Q) [77, 78], and we are
left with a similar geometric interpretation (cf. Fig. 2) of the isomorphism induced by
the gradient of the entropy functional VS int L (2) — L°°(2) and its inverse,

(VS) ™' (¢) = expo. (4.15)

Moreover, it can be shown that restricting the exponential map (4.15) to the subalgebra
H'(Q) N L°°(Q) induces an isomorphism with the subgroup H'!(£2) N int LY ().
For further details, see Propositions A.7 and A.8.

Remark 4.5 (Exploiting the geometry of the feasible set) From the optimization point-
of-view, there is great value in the isomorphism VS residing in the fact that L*° () is
a Banach space and Banach spaces are natural spaces in which to construct additive
update formulas (they are complete, normed, and closed under addition). Many com-
petitive algorithms for unconstrained optimization problems, such as gradient descent
and Newton methods, are additive update formulas that leverage this linear structure
in some way [166]. Likewise, when dealing with constrained optimization problems,
most algorithms appeal to the linear structure of the ambient space containing the fea-
sible set. In Sect. 4.4, we will show how the isomorphism VS int L (2) — L*°(2)
allows us to ignore the ambient space the original problem is posed in and work instead
with the intrinsic geometry of the constraint set. This, in turn, will allow us to treat con-
strained optimization problems in Sobolev spaces with methods originally designed
only for the unconstrained setting.
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4.3 Relative Entropy

Entropy not only delivers an isomorphism between the Banach—Lie group int L5°(£2)
and its Banach algebra L°°(£2). It also induces a valuable distance function called the
relative entropy or (extended) Kullback—Leibler divergence.

We assume below that V' is a Banach space. For any smooth convex function
G: V — R, its Bregman divergence is defined by the formula

Dg(u,v) = Gu) — Gw) — (G'(v), u — v). (4.16)

Encoded in this definition is the important observation that, because G is convex, the
graph {(#, G(u)) | u € V} will always lie on or above its supporting hyperplanes,
{(u, G() +{(G'(v), u —v)) | u € V}, forevery v € V at which G’ (v) exists, see [38]
for this and related insights. The Bregman divergence Dg: dom G x dom G’ — R
measures the vertical distance between these two sets.

Loosely speaking, a Bregman divergence is a generalization of the squared distance
between two points in a Hilbert space. Indeed, it is a straightforward exercise to check,

e.g., that if G: HOl () —> R, with G(u) = %”V“”%?(sz)’ the associated Bregman
2

LX)

The relative entropy D : Li(Q) X int L3_°(52) — R, for p € [1, oo, is the Bregman
divergence induced by the entropy functional S. Given its importance to this work, we
neglect to write the subscript-S when working with this measure of distance. In turn,
we may select any u € Li(Q) and v € int L5°(R2) to explicitly derive the relative
entropy as follows,

divergence is D¢ (u, v) = +[|Vu — Vu||

D(u,v) = S) — S() — (VS@), u — v) = / uln% —u+4vdx. (417
Q

An illustration of the Bregman divergence of the finite-dimensional entropy function
s(x) = ZZN=1 x; Inx; — x; is given in Fig.3 for the case N = 1. We initially use
the right-hand side of (4.17) in our study below without requiring its definition as a
Bregman divergence. After a careful analysis shows that the relevant solutions are in
LS°(2), we then employ the usual properties of Bregman divergences where required
in several convergence proofs. This frees us from the rigid structures of convex analysis,
e.g., that often fix the domain V in the beginning and require us to work only in this
space and its given topology.

Along with other statistical distances, the relative entropy has arich history of being
used to encode geometric structure in analysis within statistics, probability theory, and
information theory [10, 11, 165]. Although a Bregman divergence is not symmetric,
i.e., Dg(u, v) # D¢ (v, u) in general, it will satisfy the following important properties
when G is strictly convex [38, 49]:

Proposition 4.6 (Properties of Bregman divergences) Let G: V — R be smooth and
strictly convex. Then the following properties hold:
Non-negativity. D¢ (u, v) > 0 for all u € dom G and v € dom G'.

Positivity. Dg(u, v) = 0 if and only ifu = v.
Elol:;ﬂ
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Y s(z)=azlnzx—=z

s(xo) + 8 (zo)(z — x0)

Fig.3 The convex function s(x) = x Inx — x, its supporting hyperplane {s’(xg) + s’ (xg)(x —xo) | x € R},
and its Bregman divergence D (x1, xg) = x1 In(x1/x9) — x1 + X0

Convexity. D¢ (u, v) is strictly convex in its first argument. Moreover, if G is strongly
convex, then so is u — D¢ (u, v).

Linearity. Let F: V — R be smooth and strictly convex and » > 0. Then
DGiar(u,v) = DG(u,v) + ADfp(u, v). (4.18)
Three points identity. For all u € dom G and v, w € dom G’, it holds that
D, v) — Dg(u, w) + Dg (v, w) = (G'(v) — G'(w), v — u). (4.19)

4.4 Proximal Point

Recall that in Sect. 2.2 we proposed the regularized Dirichlet free energy functional
A(u) = E(u) +6S(u), (4.20)

and asserted that its minimizer will converge to the solution of the obstacle problem in
thelimit® — 0;cf. (2.19). Although this approach to solving the non-negative obstacle
problem is viable, there is a much more numerically stable alternative. Indeed, it turns
out that we can just as readily generate a sequence of positive functions u% — u*
by recursively regularizing the Dirichlet energy E(u) with the Bregman divergence
D(u, u*). The idea is relatively old in finite dimensions [47, 49, 197, 198], and well-
explored in reflexive Banach spaces [59, 60]. However, given that the algorithm is not
well-known in the finite element community, we present a classical description that
begins with a Hilbert space framework.

We now introduce the so-called proximal point algorithm [170, 178, 198], due
to Marinet [151]. In turn, let H be a Hilbert space and o > 0 be a positive step size
parameter. The proximal operator, introduced in [160] by Moreau, is defined for every
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proper lower semi-continuous function F': H — R U {oo} as follows,

) 1
prox,, - (v) = arg min {F(u) - v||§,}. 4.21)
ueH 2a
The utility of this operator lies largely in the fact that the || - ||%1-regularizati0n term

in (4.21) transforms F' (which may not be differentiable) into a finite-valued function,

— mi ! 2
Fo () = min { F(@) 4 5 e = vl | (4.22)

with an o~} -Lipschitz continuous gradient [178]. Moreover, when F is convex, min-
imizing either F or F, is equivalent in the sense that

inf F,(u) = inf F(u). (4.23)
ueH ueH

In fact, the set of minimizers, argmin, .y F (1), coincides with the set of fixed points
u* € H that satisfy u* = prox, »(u™); see, e.g., [24, Prop. 12.28].

Choosing to iterate this fixed point equation with variable step sizes ax > 0 delivers
the proximal point algorithm [151, 177], written explicitly as

ue H, u*t =prox, @), k=01,... (4.24)

It is well-known (see, e.g., [87]), that F(u¥) converges to F(u*) at a rate inversely
proportional to the sum of the step sizes. More explicitly, it holds that

Ul = u®l

Fk) — Fu*) < =
2 lezl oy

(4.25)

Thus, the function values of proximal iterates (4.24) can converge “arbitrarily” fast
(by increasing «¢), and the asymptotic complexity of the iteration (4.24) is determined
by the complexity of the method used to solve each subproblem (4.21). Convergence
of the function values carries over to convergence of the iterates provided an estimate
of the type

o(llu—vl) = F(u) — F(v)

holds, where o is monotone and invertible on R, e.g., if F is strongly convex.

The potentially arbitrary order of convergence in (4.25) makes the proximal point
algorithm an attractive candidate to solve many optimization problems. The drawback,
however, is that each iteration of the algorithm requires the solution of a nonsmooth
optimization problem that may be just as difficult to solve as the original problem;
cf. Remark 4.11. At the same time, the proximal operator (4.21) and fixed point itera-
tions (4.24) are fundamental to a broad selection of modern optimization algorithms;
seee.g., [24,25, 126, 198] and the many references therein. They also play a deep role
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e(z) + Ds(z, 22)

T
T3 T2 Ty o
Fig. 4 Tllustration of convergence to the solution x* = 0 for the constrained minimization prob-
lem miny¢[g o0) €(x), where e(x) = %x2 + x, by solving the sequence of minimization problems

Xg41 = argminy (o o) {€(x) + Dy (x, xp)} starting at xo = 1

in augmented Lagrangian methods, as recognized at least as early as [176], which have
seen a resurgence in interest due, in part, to their applicability for infinite dimensional
problems [18, 111].

It turns out many of the most important properties of the proximal point algorithm
also hold if % lu—v ||%_I in (4.21) is replaced by a Bregman divergence Dg (u, v) [198].
Indeed, if we assume that G: V — Ris astrictly convex functional on a Banach space
V, we may define the Bregman proximal operator

prong(v) = argmin {F(u) +a7! D¢ (u, v)}, (4.26)
uedom FNdom G

and the corresponding Bregman proximal point algorithm
u’ € dom F Ndom G/, u*t! = proxgk+|F(uk), k=0,1,... (4.27)

Figure 3 illustrates the execution of this algorithm for the one-dimensional energy
function e(x) = %xz + x and the relative entropy Dg(x, y) = x In(x/y) —x 4+ y. Note
that under the definitions above, one can show that (4.25) generalizes as follows [49],

* 0
Fa) - ) = 260010 (4.28)
=19

See also Theorem 4.13.

Our contribution is to show that the proximal operator (4.26), with an appropriately
defined Bregman divergence, transforms the solution of an infinite-dimensional con-
strained optimization problem into a sequence of semi-linear PDEs whose solutions
converge to the solution of the underlying VI. In the case of the positive obstacle prob-
lem (i.e., F = E and G = §), this conclusion hinges on the following result. When
combined with (4.27), Theorem 4.7 leads us directly to Algorithm 1, which forms
the basis for the proximal Galerkin finite element method. We note that the proof is
technical and saved until Appendix A.3.
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Theorem 4.7 (Solution characterization) Assume Q2 C R" is an open, bounded Lip-
schitz domain, n > 1. Let K = {v € Hy(Q) | v = 0} = Hy(Q) N H{ (), where
g€ H'(Q)NCEQ) satisfies mingq g|,, > 0. Moreover, given f € L™ (), set

1
E(v)z_/ |Vv|2dx—/ fudx,
2 Ja Q

and for w € int L () set D(v, w) = fQ vin(v/w) — v + wdx. Then, for any step
size a > 0, the (relative) Dirichlet free energy minimization problem,

min Ay (v, w) = E(v) + o~ ' D(v, w), (4.29)
vekK

has a unique solutionu € H ; (2) Nint L () that is (uniquely) characterized by the
weak form of the entropic Poisson equation; namely,

(@Vu,Vv) 4+ (Inu,v) = (xf,v) + (Inw, v) forallv e HOI(SZ). (4.30)

Remark 4.8 (Adaptive entropy regularization) Similar to the free energy formula-
tion (2.16), where the Lagrange multiplier A is approximated by 6 In(1/u), we see
that the subproblems (4.30) give rise to an approximation of the form o~ In(w /u).
Recalling that # = o~! we see that there is fundamental difference in the two
approximations given by the inclusion of the function w. Chosen correctly, as with
u¥ in (4.27), this function can act as an informative prior on the sequence of sub-
problems. More specifically, w = u* allows us to view the Bregman divergence
v = D, uf) = fQ vln(v/uk) — v + u¥dx as a biased barrier function that is
updated adaptively at each iteration k so that u¥ — u* without sending the step size
a — 00.

From now on, we mainly focus on inhomogeneous obstacle problems; i.e., ¢ # 0.
Therefore, we close this subsection with an important corollary for this case. Before
we state the result, we note that

Sp() — Sp(v) — (VSp(v),u —v) =D(u —¢,v—¢)

whenever u € L£7+(Q) and v € int L;‘f+(9). Therefore, (4, v) = D(u—¢,v—¢)is
a Bregman divergence on Lg’ +(§2) X int Lgf +(§2). For technical reasons, we require
the obstacles to be in a particular subset of H'!($2) defined by

O:={pec H(QNCEQ) | Ap € L¥(Q)}. (4.31)

Moreover, like Theorem 4.7, the proof of Corollary 4.9 is delayed until Appendix A.3.

Corollary 4.9 (Solution characterization for inhomogeneous obstacles) In addition to

the assumptions of Theorem 4.7, let ¢ € O such that mingg(g — ¢)|,, > 0 on IQ
Elol:;ﬂ
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and define
Ky :={ueHy(Q|ux=g¢ ae inQ}.
Then for any step size o > 0 and w € int L(‘;?  (82) the optimization problem

min E@)+a "D —¢,w—¢), (4.32)
veKy

has a unique solution u € H; (2) Nint L;O+(Q) that satisfies the weak form of the
(generalized) entropic Poisson equation; namely,

(@Vu,Vv) + (In(u — ¢),v) = (@ f,v) + (In(w — ¢), v) forallv e Hol ().
(4.33)

Remark 4.10 (Delicate analysis) Semilinear mixed variational inequalities of obsta-
cle type have been thoroughly studied, as detailed in the famous monograph by
J.-F. Rodrigues, [179, Chap. 4.6]. This includes regularity theory and a maximum
principle that relates the solution of the VI to the obstacle, forcing term, and boundary
values. The techniques go back to the seminal work by Stampacchia [189], Murty and
Stampacchia [162] and can also be found in [117]. However, the VI associated with
our problem is only valid if we can differentiate the “extra” nonlinearity in the entropy
term. This in turn requires the solution u of each subproblem to be essentially bounded
and strictly above the obstacle, so we need to resort to a more delicate analysis solely
based on the properties of the optimization problem.

Remark 4.11 (Challenges of the Hilbert space setting) Let xx : H'(€2) — R U {o0}
denote the indicator function g (x) = 0 if x € K and xx (x) = oo otherwise. It is
interesting to compare the operator

. 1
PrOXg £y i (v) = arg min {E(u) + —|lu — v||%11 }, (4.34)
uek 2a

to proxz g (v). Indeed, unlike (4.30), the subproblems that (4.34) induces each require
the solution of their own VI,

/V((l+a)u—v)-dex—i—/(u—v—af)wdx20 forall w € K —u,
Q Q
(4.35)

that is at least as difficult to solve as the original VI defining u*; cf. (1.3). Similar

issues tend to appear whenever squared norm regularization terms are used to design
proximal point algorithms for infinite-dimensional bound constraints.

EOE';W
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Alternatively, one can use a penalty method to solve the original problem by con-
sidering instead a C!»!-quadratic penalty term of the type

1
—/ max{0, ¢ — u}? dx.
200 Q

This functional is in fact the prox-operator (in the L?(£2) topology) of the indica-
tor function for the larger feasible set {u eL*(Q)|u=>¢ } See [96, 97] for details
including second-order algorithms and an analytical path-following scheme for «.
Note that the subproblems using a quadratic penalty would be semismooth semilinear
elliptic PDEs. However, since the nonlinearity does not arise from a strictly monotone
continuous function, we cannot derive a similar latent variable formulation.

Remark 4.12 (Comparison to the augmented Lagrangian method) It is possible to view
classical augmented Lagrangian methods as penalty methods that adaptively change
the penalty function and associated penalty parameter via the behavior of the dual
variable, i.e., Lagrange multiplier. Aside from identifying an efficient subproblem
solver, the challenge is usually to find an appropriate combination of update strategies
that allow for inexact subproblem solves and conservative parameter update rules
that still exhibit rapid convergence behavior in practice. The method described in this
work follows a similar strategy. Indeed, the role of the penalty function is played by a
Bregman distance, which is adaptively updated via the primal variable, and the penalty
parameter is given by «. Bregman distances allow us to better exploit the geometry of
the feasible set and the convergence theory of the proximal point method provides a
clear connection to convergence rates that even allows for « to remain constant.

4.5 Latent Variable Proximal Point

An appealing feature of the entropic Poisson equation (4.33) is that its solution permits
two additional representations; cf. Fig. 1. In both cases, we take advantage of the
entropy gradient VS(v) = In v being an isomorphism (cf. Sect. 4.2). First, we may
introduce the latent variable representation,

Y=In(u—¢) <= u=expy+9¢, (4.36)

by simply applying the entropy gradient transformation to the primal solution u. Sec-
ond, as already noted in Remark 4.8, we may construct a dual variable representation
which, for the inhomogeneous obstacle problem, is written as follows:

A=a 'ln ;¢> = u=(w—p)exp(—al) + ¢. (4.37)
U —

The utility of these representations is witnessed if we consider how to solve either
of the primal subproblems (4.30) or (4.33). Indeed, due to the logarithmic terms, these
semi-linear PDEs are only defined if ess inf (x —¢) > 0, which appears to rule out most
efficient root-finding algorithms, such as Newton’s method, and discretization choices,
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such as the Galerkin method. Fortunately, the alternative solution representations above
provide saddle-point relaxations of the entropic Poisson equation that do not suffer
from these two drawbacks.

We are now ready to state the final main theoretical result, which also establishes
explicit bounds on the optimization error for the latent variable proximal point (LVPP)
algorithm, defined via (4.38) below. The proof is given in Appendix A.4.

Theorem 4.13 (Convergence of LVPP) Assume aj+1 > 0,k =0, 1, ..., is a sequence
of positive step size parameters. Furthermore, assume 2 C R" is an open, bounded
Lipschitzdomain,n > 1, ¢ € O, andlet g € H' (Q)NC () such that minyq(g—¢) >
0. Fix y° € H'(Q) N L>®(RQ) and consider the sequence of functions u*, * solving
the following coupled system of variational equations:

Find u**+" € H; (Q) and y*' € L™(Q) such that
(1 Vi Vo) + @ ) = (e £+ 95, v) forall ve Hy (),
@ w) — (exp Y w) = (¢, w) for all w € L*(Q).
(4.38)

Then the Dirichlet energy of the primal iterates is monotonically non-increasing, i.e.,

E@Y < EWh. (4.39)

Moreover, if Z];:I aj — oo as k — oo, then the subproblem solutions uk converge

in HY(Q) to

u* = argmin E(u) subjecttou > ¢ in Qandu = g on 9Q. (4.40)
ueH (Q)

Furthermore, the functions \*1 = (% — y*1) /a1 converge strongly in H='(Q2)
to the Lagrange multiplier .* = —Au™ — f. In fact, the optimization error in both
uk and 1* are equal and converge at the following arbitrary rate determined by the
sequence of step-sizes o > 0,

Dw* —¢,u’ —¢)

<
() — k
Zj:l aj

1
2 = A1) = S 1V = VI, (4.41)

1

5!
Remark 4.14 (Arbitrary orders of convergence) Theorem 4.13 shows that the iteration
complexity of LVPP depends on the choice of the step sizes ag. The consequences
of different step size choices is summarized in Corollary A.12. For example, we find
that constant step sizes lead to sublinear convergence and geometrically increasing

step sizes lead to first-order convergence. Even faster growing step size sequences
will achieve superlinear convergence. See also Remark 4.18.

Remark 4.15 (Convergence in the H 1 (2)-norm) At first glance, control over the full
HY(Q) norm of uf appears problematic because (4.41) does not include the full norm
FoC
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on Hg} (€2). However, in light of the Poincaré inequality and u™ — uk e HO1 (2), we
also obtain

Du* — ¢, u’ — @)
Sllu* — b)), < c :
() k
2 j=19%

where ¢ > 0 is an embedding constant independent of k.

Remark 4.16 (Convergence of the latent variable) If we adopt the conventions In0 =
—o0 and exp(—o0) = 0, we may define ¥* = In(u* — ¢) as an extended real-valued
function on €2; cf. Sect. 2.1. Likewise, we may understand convergence of the latent
variable ¥y — 1™ under the metric implied by this transformation. Indeed, consider
the metric d(, ¢) = [[Vexp ¥ — Vexp¢|l;2(q), first introduced in (2.10). Clearly,

dW*, ) = |[V(expy™ 4+ ¢) = V(exp ¥ + @)l 12 = IVu™ = Vul 12 »
(4.42)

which converges to zero as k — oo by (4.41).

Remark 4.17 (Dual variable mixed formulation) The formulation (4.38) is derived
by setting w = u*, & = oy, and substituting the equation ¥**! = In(u* — ¢)
into (4.33). If, instead, we considered the dual variable substitution AL = ln((uk —
@)/ Wt — ¢)) /g4 1, we would arrive at the following alternative formulation:

Find u* ™! € H](Q) and 2! € L>(Q) such that
(Vi vy — 05 vy = (fF,v)  forall ve HH(RQ),

@ w) — h exp(—os 1 AT, w) = (¢, w)  forall w e L3(Q).
(4.43)

Although this is equivalent to (4.38) at the continuous level, it will induce a different
Galerkin method; cf. Sect. 4.6. We leave the study of such dual variable proximal
Galerkin methods for future research.

Remark 4.18 (Strict complementarity) Although Theorem 4.13 allows us to establish
arbitrary orders of convergence (see Corollary A.12), it still represents the worst-
case iteration complexity. In particular, our numerical experiments in Sect. 4.8.2,
suggest that an improved result may be possible if the solution u* exhibits strict
complementarity.

4.6 Proximal Galerkin

Motivated by Theorem 4.13, it is natural to use finite-dimensional subspaces Vj C
HO1 () and W), C L°°(2) in order to form a Galerkin discretization of (4.38). Thus,
we arrive at Algorithm 3, which may be seen as a natural extension of Algorithm 2 to
the inhomogeneous obstacle problem.
FoC'T
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Algorithm 3: Proximal Galerkin method for the obstacle problem.

Input : Linear subspaces V;, C Hé (R) and W), C L®°(L2), initial solution
guess %(,) € Wj,, unsummable sequence of step sizes ax > 0.
Output: Two approximate solutions, u;, and i, = ¢ + exp ¥, and an
approximate Lagrange multiplier, A, = (1//,11‘71 — )/ k.
Initialize k = 0.

repeat
Solve the following (nonlinear) discrete saddle-point problem:

Find uy, € gn + Vj, and v, € W, such that

(@41 Vun, Vo) + (Y, v) = (g1 f +¥f,v) forall ve Vi, (4.44)
(up, w) — (exp¥n, w) = (¢, w) forall we W,.

Assign 1//;;“ <~ yYpandk < k+ 1.
until a convergence test is satisfied

Just like Algorithm 2, we find that Algorithm 3 delivers two distinct approxima-
tions of the exact solution; u, € Vj and i, € ¢ + exp(Wy). The second of these
approximations is unusual because it is guaranteed to satisfy the inequality i), > ¢.
Moreover, like the continuous-level algorithm in Theorem 4.13, it also produces an
approximate Lagrange multiplier,

=W = e, (4.45)

where k denotes the final iterate where the abstract convergence test in Algorithm 3 is
satisfied.

Finite element methods typically lead to piece-wise polynomial approximations
of the exact solution. Given that i, = ¢ + exp V¥ relies on a non-standard type of
exponential function approximation, it is natural ask whether &, can produce an accu-
rate approximation of the continuous-level solution u#. The following result provides
a partial positive answer to this question. The proof is given in Appendix B.3.

Proposition 4.19 (Approximability) Let u € int LS°(2) and define ¥ = Inu. More-
over, let Yy, € Wy, and Uy, = exp ¥ry,. The following identity holds:

lu =l < llullze)(exp Yy — Yalle@ — 1) (4.46)

The next ordinary concern would be the stability of the discretization (4.44). In the
next subsection, we propose stable pairs of finite elements that can be used to construct
Vi, and W,.
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4.7 Stable Pairs of Finite Elements I: Discontinuous Latent Variable

Subspace pairings determine the stability of finite element methods for saddle-point
problems [34]. Thus, it should come as no surprise that choosing compatible subspaces
Vi, and W), is central to the proximal Galerkin method. In this section, we choose to
focus on stable pairs of finite elements with discontinuous latent variables vy, as
these appear to provide the most efficient approximations per degree of freedom. The
elements we propose are defined in (4.48), below.

Remark 4.20 (Continuous latent variables) In Sect. 5.3, we propose a simple type
of equal-order Lagrange element discretization employing a continuous latent vari-
able yr,. Although this compatible discretization has numerous interesting properties,
including providing a feasible, H ' (Q2)-conforming discrete solution 7;,, we have been
unable prove that these elements are stable under as general a set of assumptions as
the elements proposed here. The elements proposed in Sect. 5.3 are also less efficient
with respect to degrees of freedom.

Remark 4.21 (Other stable pairs) Alternative finite element discretizations employing
macroelement partitions (e.g., [190]), various non-conforming approximation tech-
niques (e.g., [51, 56]), or even spline-based approximation spaces (cf. [104]) all
provide possible alternatives for the design of proximal Galerkin methods. Due to
space in this manuscript and the limitations of our present software, we leave these
and other possible constructions to future studies.

4.7.1 Finite Element Notation

Here and throughout, 7;, always denotes a shape-regular [69, Chapter 11.1] partition of
the domain 2 C R",n = 2, 3, into finitely many open connected triangular/tetrahedral
or quadrilateral/hexahedral mesh cells 7 with Lipschitz boundaries 97 such that 2
is the union of the closure of all mesh cells 7 in 7. Following convention, 7 > 0
denotes the mesh size h = maxy oz, hr, where hy = diam(7T'). Let P,,(T') denote the
space of polynomials of total degree up to and including p on a triangle/tetrahedron
T. Likewise, let Q,(T) denote the space of tensor-product polynomials of partial
degree up to and including p on a quadrilateral/hexahedron T [69, Chapter 6.4]. For
any space X(7') of polynomials over an element T € 7, we abuse notation to denote
the corresponding space of “broken” polynomials X(7;) = {¢ € L™®(Q) | 1 €
X(T) forevery T € 7y}

We will require spaces of degree-¢g polynomials whose traces on the cell boundary
dT have lower polynomial degree p < ¢. To this end, define the sets of so-called
bubble functions in P, (7) and Q,(T) to be Pa(T) = {p € Py(T) | gar = 0}
and @q(T) = {¢p € Qu(T) | ¢jar = 0}, respectively. Accordingly, define @p(T) =
P,(T)\PP(T) and Q,(T) = Q,(T)\QP(T). Finally, let

PH(T) =Py(T) @ PU(T) and QY1) =Qu(T1) @ QU(T). (447
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Pi-bubble Py-broken Q1-bubble Qo-broken

Fig.5 Conventional representation of the (P1-bubble, [Py-broken) and (Q-bubble, Qp-broken) finite ele-
ments in two dimensions. The central degree of freedom in each element can be understood as the average
over the individual mesh cell

4.7.2 Element Definitions and Properties

We are now ready to define the finite element spaces, which we chose based on a
priori analysis of a simple linearization of subproblem (4.44). For further details of
the analysis, see Appendix B.

For any integer p > 1, we define the following two pairs of spaces: Triangu-
lar/Tetrahedral elements. We refer to the following as the (P,-bubble, P, _;-broken)
pairing:

Vi =Py T) N HY(Q), Wi =P, 1 (Th). (4.482)

Quadrilateral/Hexahedral elements. We refer to the following as the (QQ,-bubble, Q|
-broken) pairing:

Vi = QU T N HEQ), Wi =Q, 1 (Th). (4.48b)

Fig.5 provides a visual representation of the lowest-order versions of these elements.

Remark 4.22 (Positive cell average) Assume ¢ = 0. Although the piecewise poly-
nomials uy that arise from solving the subproblems (4.44) can not be guaranteed
to preserve pointwise positivity, they are guaranteed to have positive cell averages.
Indeed, notice that the subspaces W), in (4.48) always include piecewise constant
functions. Therefore, we may consider the second equation in (4.44) withw = 1in T
and w = 0 otherwise. Testing with this particular function implies that

/ updx = / exp ¥ > 0. (4.49)
T T

If ¢ # 0, then a similar argument implies that each cell average of u, lies above the
corresponding cell average of ¢.

Remark 4.23 (Alternative subspaces) Although variable-order spaces like V}, in (4.48)

are supported in some software [76, 183], they may not available in the preferred

software of many users. For this reason, we also propose the following less efficient
alternative pairings:
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Alternative triangular/tetrahedral elements. We refer to the following as the (P4, Pp—1
-broken) subspaces:

Vi =Ppin(Ti) N Hy(Q), Wiy =P, 1(Tp). (4.50a)

Alternative quadrilateral/hexahedral elements. We refer to the following as the
(Qp+1, Qp—1-broken) subspaces:

Vi = Qi1 (TR) NHY (), Wi = Qp1(Th). (4.50b)

Since (4.48) are stable (cf. Lemma B.3), it is a straightforward consequence of the
inclusions PY™" (T) C P4, (T) and Q4™ (T) € Q1 (T) that (4.50) are also stable.
For further details, see Remark B.5.

4.8 Numerical Experiments

We performed five sets of numerical experiments in order to validate the proximal
Galerkin method. The first experiment involves a smooth biactive manufactured solu-
tion that allows us to verify the (mesh-independent) iteration complexity predicted by
Theorem 4.13, in addition to high-order convergence rates with respect to the poly-
nomial order of the finite element subspaces. In the second experiment, we check the
discrete Karush—-Kuhn—Tucker (KKT) conditions on a manufactured solution exhibit-
ing strict complementarity. In this case, we observe better iteration complexity than
predicted by Theorem 4.13. We conjecture that this improved convergence order holds
in general whenever a strict complementarity condition is satisfied; cf. Remark 4.18.
The third experiment involves a non-smooth biactive solution and is included to fur-
ther stress test the proximal Galerkin method. In the fourth experiment, we consider
a benchmark obstacle problem from the literature and demonstrate our ability solve
this problem with the highest order finite elements currently supported in our MFEM
implementation (p = 12); cf. Remark 4.24. Finally, our fifth experiment demonstrates
good performance with a discontinuous obstacle on an adaptively-refined mesh. Thus,
the regularity restriction A¢ € L°(£2) required in the theory above is not essential
in practice.

Each of our experiments were conducted on standard sequences of uniformly refined
nested meshes 7, 7y,/2, Tp 4, . . . conforming to unit ball domains in R?. The exper-
iments with the triangular elements (FEniCSx) used an £°°-unit ball (i.e., square)
domain,

Qoo = {(x,y) € R? | max{|x|, |y|]} < 1} C R?, (4.51a)

with initial mesh size denoted & = ho,. Meanwhile, the experiments with the quadri-
lateral elements (MFEM) used an ¢2-unit ball (i.e., circular) domain,

Q ={(x,y) e R? | x* +y* < 1} C R?, (4.51b)
FolCTM
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Qoo QQ

2 2

Fig. 6 Initial finite element meshes for computational domains Q2 and €27. We denote their mesh sizes
h = hoo and h = hy, respectively. Left: Initial triangular mesh for the (I ,-bubble, I, 1 -broken) subspace
pair on the domain Q2 (FEniCSx experiments). Right: Initial five-element curvilinear quadrilateral mesh for
the (Qp 4.1, Q,—-broken) subspace pair on the domain Q; (MFEM experiments). Across our experiments,
we consider various polynomial orders p > 1 for both of these subspace pairs

with initial mesh size denoted # = hj, which was uniformly refined using a standard
transfinite interpolation rule to handle the curvilinear element mappings [84]. The
initial meshes in these sequences are depicted in Fig. 6.

Remark 4.24 (Software implementations and reproducibility) We conducted numeri-
cal experiments across two separate code bases, FEniCSx [186] and MFEM [14], and
have released our implementations to the public [112, 114]. The FEniCSx implementa-
tion [114]is Python-based and uses the (P ,-bubble, P, _{-broken) triangular elements
proposed in Sect. 4.7. The MFEM implementation is written in C++. Because MFEM
does not currently support bubble function enrichment, the MFEM implementation
[112] uses (Qp+1, Qp—1-broken) quadrilateral elements (see Remark 4.23) instead of
the (Q,-bubble, Q,_-broken) elements also proposed in Sect. 4.7.

We have taken care to ensure that the numerical experiments in this section are easily
reproducible. Indeed, all results from Experiments 1, 2, 3, and 5 can be reproduced
by running the FEniCSx script obstacle. py or compiling and running the MFEM
codes obstacle.cpp or obstacle_discontinuous.cpp, all of which are
available at [114]. Experiment 4 now exists as an official part of the MFEM codebase
called MFEM Example 36 [112].

4.8.1 Experiment 1: Smooth Biactive Solution

In this experiment, we set ¢ = O and g = u, where u(x, y) is the smooth manufactured
solution

0 ifx<O 0 ifx <0
ux,y) = " implied b xX,y) = .
x. ) x* otherwise, P y Jxy) —12x% otherwise.

(4.52)
See Figs.7 and 8 for depictions of the exact solution on 2, and €2, respectively.
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Fig. 7 Experiment 1: Smooth biactive solution. Verifying the convergence orders predicted by Corol-
lary A.12 with the (P1-bubble, IPy-broken) discretization (FEniCSx). Left: The exact solution. Right: Plots
of the optimization error ||uj;, — uﬁ g1 (Qo0) and corresponding step size «y when i = heo/16. The blue
curve tracks the sublinear convergence induced by the fixed step size rule oy = 1. Meanwhile, the step
size rules (4.53b) and (4.53a) induce linear (red) and superlinear (green) convergence, respectively. The
results are similar on finer meshes due to mesh-independence; cf. Table 1

This problem is specifically chosen to exhibit biactivity; i.e., both the inequality
constraint # > 0 and the associated Lagrange multiplier are simultaneously equal to
zero on a set of positive measure; i.e., on the set {(x, y) | x < 0}. Such problems
are notoriously difficult to solve for certain classes of algorithms, such as active set
methods. Biactivity, also know as weak activity or lack of strict complementarity, is
a notion from nonlinear optimization that indicates a kind of degenerate nonsmooth-
ness of the primal-dual system of equations used to calculate the solution. It is often
associated with a lack of stability with respect to perturbations of the data, as well.
We refer the interested reader to any standard text of numerical optimization; see, e.g.,
[166, Definition 12.5].

Our first aim is to use this challenging example to illustrate mesh-independence
of the proximal Galerkin method. To this end, we use Table 1 to record the values
of the increments ||“1;; — u',‘fl I 51 (@, taken from a sequence of refined meshes with
polynomial orders p = 1, 2 from our FEniCSx implementation [114]. The specific
step size rule used to generate this data is chosen based on Corollary A.12 to deliver
superlinear convergence (in iterations), and is given as follows:

a1 =1, o =min{max{a;, ¥ —_1},100), k=2,3,..., (4.53)

where r = g = 1.5. Note that, for each iteration k, the increments in Table 1 converge
to fixed values as the mesh is refined or the polynomial order is raised. Moreover, the
total number of linear equation solves remains bounded. Both of these characteristics
are emblematic of a mesh-independent numerical method.

Our next aim is to verify the convergence orders predicted by Theorem 4.13 and
Corollary A.12. In doing so, we consider the double-exponential step size rule (4.53a)
alongside the geometric rule

o =rc1 k=1,2,..., (4.53b)
FoE'ﬂ
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Fig. 8 Experiment 1: Smooth biactive solution. Veritying high-order convergence of the approximation
error with various polynomial order (Qp+1, Qp—1-broken)-discretizations on 2 = 2. Top left: The exact

solution. Top right: The approximation error of the discrete solution uj, in the H L_norm. Here, the extra
1/2-order of convergence is made possible from the (p + 1)-degree approximation space. Bottom left: The
approximation error of the discrete solution i, = exp ¥, in the L2-norm. Bottom right: The approximation
error of the Lagrange multiplier 15, in the L2-norm. Notice that each of the convergence rates for this smooth
solution grow with the polynomial order

with r = 2, and the fixed step size rule oy = 1, for all k = 1, 2, ... The results
in Fig.7 agree precisely with the predictions made later on in Corollary A.12. In
particular, notice that the fixed step rule o = 1 leads to sublinear convergence, the
geometric rule (4.53b) induces linear convergence, and the double-exponential step
size rule (4.53a) delivers superlinear convergence.

The final aim of this experiment is to demonstrate that high-order convergence rates
(with respect to the mesh size /) can be achieved using polynomial orders p > 1.
To this end, we use our high-order MFEM implementation to solve for the biactive
solution (4.52) on the circular domain 2 = 2;. In Fig. 8, we plot the approximation
errors of the discrete solutions uy, %, and A;. From these results, we witness that
high-order convergence rates can, indeed, be achieved with the proximal Galerkin
method.

4.8.2 Experiment 2: Strict Complementarity

In this experiment, we set ¢ = g = 0 and define

fx,y) =272 sin(x) sin(xry). (4.54)
EOE;”
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Table 1 Experiment 1: Smooth biactive solution

Progress of the iterates ||u1;l — u];fl ”Hl(Qoo) for various 4 and p

Polynomial order p = 1 Polynomial order p = 2
ko oo hoo/16 hoo/32 oo /64 hoo/16 hoo/32
1 1.0 2.10- 100 2.10- 100 2.10- 109 2.10- 100 2.10- 109
2 1.0 6.45-1071  645.107!  645-1071  645.107'  6.45.107!
3149 1731071 1.73-1071 1.73-107! 1.73 107! 1731071
4 243 1.10-107! 1.10-107! 1.10-1071 1.10-107! 1.10-107!
5 535 776-1072  7.77-1002  7.77-1072  7.77-1072  7.77-1072
6  1.64-10 476-1072  477-1072  477-1072  477-1072  4.77-1072
7 850-10! 224-1072  225-1002  225.1072  225-1072  2.25.1072
8  9.35-102 582-1073  584-1073  585-1073  585.1073  5.85.1073
9  3.17-10% 6.04-107%  6.07-107%  6.07-107%  6.07-107*  6.07-107%
10 5.85-10° 1.80-107°  1.81-1075  1.81-107°  1.81-1075  1.81-107°
1 1-10'0 941-1078%  947.107%  949.1078%  950-.-107%  9.50-10~8
12 1-1010 2.10-10712 2.00-10712  1.96-10712  1.92.10712 195.107!2
Tot. linear solves 21 20 19 19 19

Table of increments Hu/;l — u];fl g1 (Qe0) for various mesh sizes i and polynomial orders p using the
triangular element (P,-bubble, P, -broken) discretization. The initial degrees of freedom for uj, and ¥y,
were set to zero at the beginning of each run. Between eight and ten Newton iterations performed by the
PETSc Newton solver used for each initial subproblem solve and then only one Newton solve was used for
each of the following subproblems. The convergence of the increments for each fixed k and the boundedness
of the number of linear solves indicates mesh-independence

See Fig. 9 for afine mesh (A = ho/128) solution uy, as well as the associated Lagrange
multiplier A.

When viewed from the perspective of continuum mechanics, the multiplier A is
a resolvent force. It is therefore rare that we would see biactivity of the type in the
previous experiments on such large domains as it would correspond to contact without
any opposing force resulting from the obstacle.

The first aim of this experiment is to revisit the convergence orders predicted by
Theorem 4.13 and Corollary A.12 and demonstrate that they are overly pessimistic
for this more typical type of problem. Indeed, as demonstrated in Fig.9, we see that
linear convergence is achieved using only a fixed step size. In turn, superlinear con-
vergence can be achieved using any unbounded step size rule. For illustration, we
have added results using the geometric rule (4.53b) with various growth parameters
r e {1.05,1.1, 2}.

The second aim of this experiment is to check convergence of the discrete solu-
tion via the KKT conditions. This is useful to assess a posteriori the optimality
of the discrete solution when the true solution is unknown. To this end, we con-
sider the complementarity condition | fQ Au dx| = 0, the primal feasibility condition
Jo max{—u,0}dx = 0, and the dual feasibility condition [, max{—2x,0}dx = 0.
We note that the discrete solution u;, = exp v, always satisfies the primal feasibility

FoC'T
e,
@ Springer |03



Foundations of Computational Mathematics

O
£ f“\
2 g — Linear (r =1)
S 100 — Superlinear (r = 1.05) | {10° :
:” T: 1021 Superlinear (r = 1.1) 10t o
L= — Superlinear (r = 2 g
o104t 10° &
= &
z 107° 10° 2
£ o 10 %
f 10710} 1107

0 10 20 30 40 50 60 70
Outer loop iteration k

Fig. 9 Experiment 2: Strict complementarity. Surpassing the convergence orders predicted by Corol-
lary A.12 with the (Pj-bubble, Py-broken) discretization (FEniCSx). Left: A high-resolution image of
the exact solution # and associated Lagrange multiplier 1. Right: Plots of the primal variable increments
Hui‘l — u];l_l g1 (Q00) and corresponding geometric step sizes oy = k=1 for mesh size h = hoo/16. The
results are similar on all finer meshes due to mesh-independence; cf. Table 1. Analogous results can also
be obtained for higher-order and quadrilateral element discretizations (not shown)

Table 2 Experiment 2: Strict complementarity

h Complementarity Primal feasibility Dual feasibility
| me Apup dx| fﬂoc max{—uy, 0} dx me max{—2y, 0} dx

hoo (all less than 10~ 14) 6.97-1073 (all less than 10~12)

hoo/2 9.09-1073

hoo/4 1.16-1073

oo/8 1.69-10~%

hoo/16 4.08-107°

hoo/32 4.53.107°

Checking the discrete KKT conditions for the proximal Galerkin solution owing to (4.54). Here, we see
that primal feasibility is achieved in the limit # — 0. Meanwhile, complementary and dual feasibility holds
on all meshes

condition by construction; i.e., fQ max{—uy, 0} dx = 0. Therefore, in order to glean
more interesting information about the proximal Galerkin solution, we focus on dis-
crete versions of the KKT conditions formulated in terms of u,. The discrete KKT
conditions that we checked are recorded in Table 2. From the results in this table, we
see that discrete primal feasibility, fQ max{—uj, 0} dx = 0, is achieved only in the
limit ~ — 0. However, discrete complementarity, fQ Apup dx| = 0, and discrete
dual feasibility, |, o max{—24;, 0} dx = 0, appear to hold for all mesh sizes.

4.8.3 Experiment 3: Biactive Solution, Nonsmooth Multiplier

In this experiment, we set ¢ = 0 and ¢ = u, where u(x, y) is the smooth manufactured
solution

EIO [y
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Discretization errors
h lw —unllg1au) | lv—uallrz.,)
hoo /16 3.102-107! 2.864 1072
hoo/32 1.566 - 101 1.405-10—2
hoo /64 7.849 - 1072 6.991-1073
hoo /128 3.927-1072 3.491-1073
Rate 1 1
h lw —unllLz o) | IA = Anllp2 o)
o hoo /16 7.326-1073 2.827-1071
hoo /32 1.875-1073 1.823-1071
Mooy = {1 if 22 +.y2 > 3/4 hoo /64 4.717-1074 1.121-10"1
’ 0 otherwise hoo /128 1.118-10~4 8.646 - 102
Rate 2 <1

Fig. 10 Experiment 3: Biactive solution, nonmsooth multiplier. Checking the discretization errors in
various standard norms. Notice that the error in the Lagrange multiplier variable does not decay linearly
with respect to the L%-norm

1 —4x2 —4yH)* ifx2 +y2 < 1/4,
u(y) = |0 TR TR AT < (4.552)
0 otherwise,

implied by the forcing function

1 ifx2 +y% > 3/4,

x,y) =—Au(x,y) — .
Fex) x. ) 0 otherwise.

(4.55b)

Clearly, this is another solution exhibiting biactivity. In this case, however, the multi-
plier,
1 if x2 4+ y* > 3/4,

Ax,y) = 4.55¢
. 7) 0 otherwise, ( )

is discontinuous. See Fig. 10 for a depiction of the exact solution u as well as the
associated Lagrange multiplier A on the domain Q = Q.

We use this experiment to inspect the approximation error of the (IPj-bubble,
Po-broken) discretization. See Fig. 10 for our results. As expected, unlike for the
biactive solution studied in Sect. 4.8.1, the L>-error of the Lagrange multiplier does
not decay to zero linearly. We observed no other adverse effects from this non-smooth
manufactured solution.

4.8.4 Experiment 4: Spherical Obstacle

Our next experiment is motivated by an exact solution in [88]. Here, we setboth f = 0
and g = 0 and define the obstacle to be the upper surface of a sphere of radius 1/2,
namely

Elol:;ﬂ
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o(x,y) =4/1/4 —x2 —y2, (4.56)

if \/x2 + y2 < 1/2, and assume that ¢ is sufficiently negative when y/x2 + y2 > 1/2
so that no contact happens on that subdomain. Exploiting radial symmetry, the exact
solution on the circular domain = €25 is found to be

Aln/x2+y2 if /x2+y2 > a,

4.57
o(x,y) otherwise, ( )

u(x,y) = {

where a = exp (W,l(%)/Z + 1) ~ 0.34898, A = /1/4 — a*/Ina ~ —0.34012,
and W, (-) is the j-th branch of the Lambert W-function.

Figure 11 presents the very high polynomial degree (p = 12) proximal Galerkin
solutions uj, and u}, to this problem on the coarsest mesh, i = h;, which has only five
elements. We note that the solution to this problem is in H>/>7¢(2), ¢ > 0, which is
the highest regularity guaranteed by a smooth obstacle ¢ and load f [39]. Thus, we
do not expect to achieve high-order accuracy with such a high degree discretization
unless the mesh is adaptively refined [20]. Developing an a posteriori error estimator
for proximal Galerkin in order to enact such adaptive mesh refinement strategies will
be the subject of future work.

Table 3 compares the subproblem error, ||u —ui I 71 (@,)» onasequence of uniformly-
refined meshes. In order to include the more A-refinements, we consider only the
lowest-degree discretization (p = 1). However, we find similar results with higher
p; cf. Table 1. To demonstrate that proximal Galerkin is practical without large step
sizes, we fix a; = 1 for all iterations. In this case, we note that the method is now
expected to converge with linear complexity due to the strict complementarity of the
solution; cf. Sect. 4.8.2. From Table 3, we see that if the number of outer iterations k
is fixed, then the error converges to a single value as the mesh is refined. This is an
important hallmark of mesh-independence.

4.8.5 Experiment 5: Discontinuous Obstacle

Our final experiment serves to test an important limitation of the mathematical the-
ory presented in this section. In particular, we explore the performance of proximal
Galerkin when the regularity condition A¢ € L (2) (cf. (4.31)) is not satisfied. For
simplicity, we set p = 1.

In this experiment, we consider the discontinuous obstacle,

: 2 2
¢(x,y)={1 a7 < 14, (4.58)

0 otherwise,

on the circular domain 2 = 25, with no body force (f = 0), and homogeneous

Dirichlet boundary conditions # = 0 on d€2>. In this case, one can show that the exact
solution is
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Free boundary

Diagram of problem

Very high order (p = 12) proximal Galerkin
solutions up, (top) and wp (bottom)

Fig. 11 Experiment 4: Spherical obstacle. Benchmark obstacle problem from [88]. Left: Diagram of the
problem set-up. Right: Five-element proximal Galerkin solutions uj, and i,

Table 3 Experiment 4: Spherical obstacle

Primal errors |lu — ”ﬁ”Hl(Qz) forp=1

k  Linear solves hy/8 hy/16 hy /32 hy /64 hy/128

1 3 272.10°!  270-107!  270-107'  270-107'  2.70-107!
21 1.37-107! 1.38-107! 1.38-107! 1.38-107! 1.38-107!
3001 3.62-1072  333-1072  331-1072  331-1072  3.31-1072
Total iterations k 11 11 11 11 11

Total linear solves 13 13 13 13 13

Final error 1.98-1072  873-107%  3.49.1073 1.18-1073  3.85-107%4

Checking the subproblem error, ||u — u’;l g1 (@)’ for various mesh sizes using the (Q;, Qg-broken) dis-
cretization. We used oy = 1forallk = 1, ... and stopped the algorithm when ||u/;l —u];;l ||L2(92) <1070

ifx2 4+ y2 < 1/4,

In(x> 4 y?)/In(1/4) otherwise. (4-59)

u(x,y) =

To obtain an accurate discrete solution, we pre-process the mesh with adaptive refine-
ments until the data oscillation error [161] in the obstacle,

1/2
osc(¢, Tp) == ( 3l —I>¢||§2(T)) < Tor,
TeTy
EIOE:’H
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Fig. 12 Experiment 5: Discontinuous obstacle. Lowest-order proximal Galerkin solution from an
adaptively-refined mesh and a discontinuous obstacle. Left: Adaptively-refined mesh 7j,. Middle: Dis-
continuous obstacle ¢ ¢ O. Right: Proximal Galerkin solution u,

is below TOL = 10~*. The corresponding mesh 7, obstacle ¢, and solution uj,
are depicted in Fig. 12. Starting with the same initial guess as in Experiment 4, we
witnessed convergence to the depicted solution in only 3 outer iterations of Algorithm 3
with 4 total linear solves (inner Newton iterations). The corresponding L2-error is
lu = unllp2q,) = 2.16- 1073

5 Extensions I: More General Bound Constraints and Variational
Inequalities with an Application to Enforcing Discrete Maximum
Principles

The purpose of this section is to move beyond the framework developed in Sect. 4
for energy principles with pointwise lower bound constraints. To this end, we aim to
answer the following two necessary questions:

1. Can proximal Galerkin be used to simultaneously enforce pointwise upper and
lower bound constraints?

2. Can proximal Galerkin be applied to variational inequalities that do not arise from
an energy minimization principle?

The answer to both of these questions is yes.
We use our answers to these questions to construct a discrete maximum principle-
preserving proximal Galerkin method for the advection—diffusion equation,

—€eAu+pB-Vu=f in <, u=g onas, (GR))

where € > 0 and B € R? are fixed, f € L®(), and g € H'() N C(). Along
the way, we introduce the binary entropy (Sect. 5.1), a proximal algorithm for VIs
with non-symmetric coercive bilinear forms (Sect. 5.2), and an alternative type of
proximal Galerkin discretization employing a continuous latent variable (Sect. 5.3).
The section features an implementable algorithm and closes with a brief survey of
numerical experiments.
EOE';W
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5.1 Binary Entropy

In the previous section, enforcing a pointwise lower bound on the minimizer of the
Dirichlet energy led us to consider a sequence of entropy-regularized energy minimiza-
tion problems. We now consider the situation of enforcing pointwise upper and lower
bounds simultaneously. For simplicity, we illustrate the approach on the so-called
double-obstacle problem written in (5.2) below.

Let ¢1, ¢ € HY(2) N L®(Q) with ess sup(¢2 — ¢1) > 0 and esssup y (¢ —
g) <0 < essinf y(¢2 — g), and consider minimizing the Dirichlet energy under the
pointwise bound constraints ¢; < v < ¢». More specifically,

u* = argmin E (v), (5.2)
vek

where E(v) = 1 [0 |Vv[?dx — [qufdxand K = {v € H}(Q) | ¢1 < v < o).
A natural way to apply entropy regularization to (5.2) is revealed if we rewrite the
problem with two new variables v = v — ¢ and v» = ¢ — v. Doing so, we arrive
at the equivalent equality-constrained optimization problem

(uf,uy) = argmin E(v; + ¢1) subjectto v; + v2 = ¢ — ¢1, (5.3)

(v1,v12)€K1 X K2

where K| = {v; € H;_¢l(sz) |v; > 0}and K» = {vs € H(;}z_g(Q) | v2 > 0}. It can
be readily verified that u] = u™ — ¢1 and u3 = ¢ — u™.

Following our treatment of entropy regularization for pointwise non-negativity
constraints in Sect. 4, it stands to consider the sequence u* = u’f —¢p1 =1 — u’ﬁ — u*

defined
k ky _ : -1 D k—1 D k—1 5.4
(uy,uy) = argmin  {E@i+¢1) + o (D, uy )+ Dz, us )} (5.4a)
(vi,12)€eK1x K>

subject to v; + v2 = ¢ — @1 . (5.4b)

We may now resubstitute vi = v — ¢1 and vy = ¢ — v into (5.4a), which leads to

uk = argmin{E(v)—i—a,:lDB(v,uk_l)}, (5.5)
vek
where
Dg(v,w)=/(v—¢])ln‘v_¢l ‘—i—(d)z—v)ln‘@_v’dx, (5.6)
Q w— @ ¢ —w

is the Bregman divergence of the (generalized) binary entropy

B(v) = /Q(v — ¢ In|v—¢i[+ (¢2 —v)In|¢ — v|dx. (5.7
FolCT
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5

L>(Q) \_/{Il'vlle<Q> <1}
(VB)~!

Fig. 13 The sigmoid map (VB)*1 (¢) = tanh(gp/2) is a diffeomorphism between the Banach algebra
L%°(2) and the L°°(Q2)-unit ball

A straight-forward computation shows that

v— @ and (VB)~\(p) = o1 +¢>2€XP<P.

VB(v) =In
¢ —v expo + 1

(5.8)

The cases (¢1, ¢p2) = (0, 1) and (¢1, ¢p2) = (—1, 1) are somewhat special for the
binary entropy functional (5.7). In the first of these, (5.7) is usually referred to as
the (negative) Fermi—Dirac or electronic entropy [198]. As these particular upper and
lower bounds will appear prominently later on, we choose to adopt special notation
for the corresponding entropy gradient and its inverse; namely,

VB(v) =Initv :=1n 7 v and (VB)_1(<p) = expity = XpY 5.9)

—v expp +1°

The second case, (¢1, ¢2) = (—1, 1), provides a gradient that is an explicit diffeomor-
phism between the L°°(2)-unit ball, denoted B> (Q2) = {v € L=(Q) | l[v]r~@) <
1}, and the entire Banach algebra L°°(£2). More explicitly, we write

VB(v) = 2arctanhv and (VB)_I(gD) = tanh(¢/2), (5.10)
with the diffeomorphism illustrated visually in Fig. 13. For posterity, we use the latter

case of the binary entropy functional to define a canonical binary-entropic Poisson
equation,

— Au + arctanhu = f, (5.11)
which follows from writing the strong form of the first-order optimality condition
for 5.5) with ¢y = —1, ¢ = 1, ap = 1, ukF=1 = 0, and removing the factor of 2
in (5.10).

5.2 Variational Inequalities with Non-Symmetric Bilinear Forms

In order to develop a proximal Galerkin method for the advection—diffusion equa-
tion (5.1), we first propose a continuous-level proximal algorithm for non-symmetric
EOE';W
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bilinear forms. The approach is based on the proof technique for the classical theorem
of Lions and Stampacchia on the existence of solutions to elliptic variational inequal-
ities with non-symmetric bilinear forms, which can be understood as employing a
“linearized” version of algorithm (4.24).

Assume that H C L?() is a real separable Hilbert space and a: H x H — R
is bilinear, continuous, and coercive. In particular, assume that there exist constants
C,4, ¢q > 0 such that

a(w,v) < Collwlmlvlag and cilvly < a(,v), (5.12)

for all w,v € H. For any nonempty closed convex set K C H and function f €
L%(Q), the Lions—Stampacchia theorem [141] states that the following variational
inequality is well-posed:

Find u* € K such that
(5.13)

a(u*,v—u®) > (f,v—u*) forall veK.

The proof works by arguing that for p € (0, 2¢,/ Cg), the mapping Q, : H — K,
defined as the unique solution of the problem

Givenu € H, find w € K such that
(w,v—w)y > u,v—w)yg — plau,v—w) — (f,v—w)] forall veKk,

(5.14a)
is a contraction. Note that we may equivalently write
. 1 2
0, (1) = arg min {a(u, V) = (fv)+ -l - u||H}, (5.14b)
vek P

which illustrates the following relationship to the proximal operator introduced
in Sect. 44, Q,(u) = proxp[a(u’_)_(f’.)](u). Clearly, if we find the fixed point
u = Qp(u), then (5.14a) reduces to (5.13) and we deduce that u = u*.

This method of successive approximations,

wWWeH, '=0,u", k=01,... (5.14c)

is well-known and has been analyzed in, e.g., [200]. However, it is not exactly amenable
to computation because it requires a separate subproblem solver for each of the VIs
(5.14a). Since p is typically not known in practice, it is common to select diminishing
step sizes px to analyze the convergence behavior. In addition, different strategies
may be employed using extrapolation steps, see related methods in, e.g., [126]. We
postpone a deeper analysis for future work. Given a set K with appropriate structure,
we can circumvent this issue using the proximal Galerkin methodology.
We begin by regularizing the continuous-level subproblems (5.14a). A first
approach would be to use the Bregman proximal point algorithm (4.27) to solve the
Elol:;ﬂ
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subproblems to an iteration-dependent tolerance toly > 0. This would result in a
sequence of inexact successive approximations ||u**1 —Q 0 @) |ly < toly thatcould
converge to u™ if the sequence of tolerances decays to zero as k — oo. The potential
drawback of this approach is that it creates an additional nested sequence of iterations.
In turn, generating each iterate **! may require numerous individual proximal point
iterations (4.27) for every inexact fixed point iteration Wkt~ 0 p(uk ).

Instead of using the Bregman proximal point algorithm as a subproblem solver,
we propose to modify the original fixed point map (5.14b) by adding an additional
Bregman divergence term. More specifically, we propose considering the alternative
fixed-point iteration

u’ edom G/, W = Q0 Wh), k=0,1,... (5.15a)

where G: dom G — RU {00} is a strictly convex entropy functional associated to the
feasible set K D intdom G and Q7 : intdom G — intdom G is an operator formally
defined for all p, o > 0 as follows:

05(u) = arg min {a(u, ) — (f,v) + %nv —ull} + éDg(v, u)}. (5.15b)

Returning to the advection—diffusion problem (5.1), we now assume that0 < f <1
ae, H=H'(Q),and K = {v e HJ(Q) | 0 < v < 1}, where g is such that
and esssupy (0 — g) < 0 < essinf y(1 — g). Instead of iterating the fixed point
operator Q, : H — K for some p > 0, we propose to generate a sequence of
iterates {u¥} from (5.15) with G = B set to be the binary entropy considered in (5.9).
More explicitly, we choose an appropriate p > 0 and a sequence {o} of positive real
numbers, and then solve the sequence of resulting subproblems

Given u*~!, find u* € H}(Q) N L™(<) such that

o . o _ . —

Vi, Vo)) + (it v) = “R VU Vo) (g + (nit@hh,0) - (5.16)
—ala@ =1 v) = (f,0)] forall ve H}(RQ).

Once discretized with a slack variable ¥, we arrive at the algorithm written below.
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Algorithm 4: A Proximal Galerkin method for advection-diffusion.

Input : Linear subspaces V;, C H(} (R2) and W), C L°°(£2), initial solution
guesses u2 e Vi, 1//2 € Wy, step sizes ax > 0, p > 0.
Output: Two approximate solutions, uy, and u;, = expit y.

Initialize k = 0.
repeat
Solve the following (nonlinear) discrete saddle-point problem:

Find uy, € g + Vj, and v, € Wy, such that
%(wh, Vo) + (Yn. v) = ax Lk, v) + (pF, v) forall ve vy,

(up, w) — (expit ¥, w) =0 forall w e Wj,.
(5.17)

where
Lu,v)=U0/p—€)(Vu,Vv) —(B-Vu— f,v).

Assign YT < gy and k <k + 1.
until a convergence test is satisfied

5.3 Stable Elements II: Continuous Latent Variable

Constructing a stable finite element discretization for Algorithm 4 has the same chal-
lenges we witnessed in solving the obstacle problem with Algorithm 3. Namely, we
must construct a stable pair of finite element subspaces Vj and Wjy. To this end,
Sect. 4.7 introduced a class of possible pairings based on the requirement that the
latent variable ¥/, be discontinuous. We could use the same finite elements here because
the saddle-point problem (5.17) has the same structure after linearization as (4.44).
Instead, however, we use this subsection to introduce the following alternative class
of equal-order finite element pairings where v, is continuous.

For any integer p > 1, we define the following two pairs of spaces:
Triangular elements. We refer to the following as the (P, IP,) pairing:

Vi =P,(Ty) N Hy (), Wy = V. (5.18a)
Quadrilateral elements. We refer to the following as the (Q,, Q) pairing:
Vi = Qu(T) NHY(Q), Wy = Vp. (5.18b)

Fig. 14 provides a visual representation of the lowest-order versions of these elements.
The equal-order finite element subspaces in (5.18) are appealing because they can
be formed from standard C°(£2)-finite elements that are found in nearly all production
codes. However, due to limitations of the stability proof outlined in Remark 5.2, we
Elo [y
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Py Py Q1 Q1

Fig. 14 Conventional representation of the (P1,P1) and (Q1, Q1) subspace pairs in two dimensions

only advocate for using these elements when the mesh sequence {7} is quasi-uniform
[69, Definition 22.20].

Definition 5.1 (Quasi-uniformity) A shape-regular sequence of meshes is called quasi-
uniform when there exists a mesh-independent constant ¢ > 0 such that A7 > ch for
all T € 7, and all & > 0 in the index set.

A careful inspection of Appendix B shows that we do not need to place such arestriction
on the mesh when using the non-standard elements proposed in Sect. 4.7.

In addition to the quasi-uniformity assumption above, the reader may notice that
the number of degrees of freedom per element pair in (5.18) is larger than that of
the analogous order-p pairs proposed in (4.48). We pause to point out that neither of
these factors preclude using (5.18) in practical applications. Indeed, many practical
applications are solved on quasi-uniform meshes. Moreover, it turns out that the addi-
tional computational cost can be mitigated via a mass lumping technique described
in Remark 5.3 below.

As also explained in this remark, a particularly interesting consequence of mass
lumping is that it induces a nodally bound-preserving primal solution u;,. Moreover,
because nodal boundedness extends to pointwise boundedness when p = 1, the pri-
mal solution u;, will be pointwise bound-preserving for any lowest-order (P, P1) or
(Qq, Q) proximal Galerkin discretization with box constraints. In contrast, the lowest-
order elements in (4.48) only induce a primal discretization with a bound-preserving
cell average; cf. Remark 4.22.

Remark 5.2 (Stability) As described in Appendix B, uniform stability of the proximal
Galerkin discretization rests on satisfying the Ladyzhenskaya—Babuska—Brezzi (LBB)
condition

inf sup (v, w) > By > 0, (5.19)

weW, veV, ||VU||L2(Q)”w”H*1(Q)

with By independent of the mesh size & > 0. Verifying this condition is often nontrivial.
However, it reduces to a one-line argument given in (5.21) below if the global L>-
orthogonal projection Py : HO1 (2) — Vp,, defined

(Ppv, w) = (v, w) forall we Vy, (5.20a)
EOE';W
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is stable in the (equivalent) H 1(Q)-norm; i.e., if there exists a constant ¢ > 0, inde-
pendent of A, such that

IVPr)ll L2 = eVl @) (5.20b)

forallv € H} ().

As shown in, e.g., [69, Proposition 22.21], quasi-uniformity of the mesh sequence
implies (5.20) for Vi, = P,(7;,) N HJ () and Vi, = Q,(7;,) N H (). Therefore, if we
assume {7} is quasi-uniform and we are using any of the equal-order pairs in (5.18),
then Py, (HO1 (2)) C Vj, and (5.20) imply that there exists o = 1/c¢ > 0 such that

(v, w) - (Ppv, w) > fo sup (v, w)

sup ———— > su > ——— = Bollw| g1, (5.21)
vevy 19012 = o IV = S V0l 2

for all w € Vj, = Wp, as necessary.

Remark 5.3 (Nodal bound preservation) We choose to focus this remark on the
saddle-point problem in Algorithm 4. Yet, similar conclusions could be drawn
about Algorithm 3 and, potentially, other future proximal Galerkin algorithms for
second-order elliptic VIs.

Consider the equal-order finite element subspaces in (5.18) and let {(pi},N: | bea
basis for V), = W),. It follows that there exist coefficients ¢;, andd;, j = 1,2,..., N,
such that uy (x) = Y)_, ¢j@;(x) and Y4 (x) = ), djp;(x). Substituting these
expressions into the second variational equationin (5.17), setting ¢ = ¢;, and replacing
the Lebesgue integral |, o ¢(x) dx with a global quadrature rule ZZAL w;e(x;), where
w; # 0and x; € Qforl=1,2,..., M, we find that

M N M N
DY wicie e (x) =) wy expit( > d ,-soj(m)sol- ) (5:22)
=1 j=1

I=1 j=I

foreachindexi =1,..., N.

We now employ the nodal-quadrature mass lumping technique [74] that is com-
monly used in, e.g., spectral element methods [63]. Although this quadrature technique
is applied to the linearized form of (5.22), the effect on the solution is equivalent to
modifying the nonlinear equation directly, as described below. Assume M = N and
that ¢ ; are formed from anodal basis with nodes corresponding to the quadrature points
x; (e.g., a Lagrange basis with Gauss—Lobatto nodes [174]). Thus, ¢;(x;) = §;; for
all j,Il =1,..., N. Moreover, we find that (5.22) reduces to

C = expit(di). (5.23)

Finally, notice that ¢; = uj;(x;) and d; = v, (x;) since we have assumed the basis
{go,-}lN: | is nodal. Thus, the primal variable u, is nodally bound preserving; i.e., 0 <
up(x;j) < latall points x;,i =1,..., N.
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5.4 Numerical Experiments

In this set of experiments, we follow [48, Section 4.1] and consider the exact solution
of a model problem attributed to Eriksson and Johnson [66]. In particular, we set
=(0,1)%, f =0,and B = (1,0)" in (5.1) and, therefore, write

u  d%u ou .
—e<ﬁ+a—yz)+a=0 in 2, u=g ond. (5.24)

Exact solutions of this problem for arbitrary boundary data g can be derived using the
separation of variables technique. We choose to isolate the solutions satisfying u = 0
where x = 1 and Vi - n = 0 where y = 0 and 1. Doing so generates the following
series expansion:

L i ¢ P2 — 1) —exp(r(x — 1))

r1exp(—rp) — rpexp(—ri)

cos(nmy), (5.25)

n=1

where rj » = 1£y/14deh, 1+4€’\” and X

mined from the prescrlbed values of g on {(x, y) € Q | x = 0} C 9. Since we have
not yet prescribed g on this part of the boundary, we define g there to be (5.25) with
Ci1 = 1 and C,41 = 0; i.e, we treat the first mode in this series as a manufactured
solution for (5.24).

Figure 15 places the standard FEM solution of this problem for ¢ = 1072 along-
side the corresponding maximum principle-preserving proximal Galerkin solution .
Here, the proximal Galerkin solution can be found by running only two iterations of
Algorithm 4 with constant values for p and o, and using the standard first-order FEM
solution to provide an initial guess for ug and %?- Note that the two discrete solutions
are similar, except the proximal Galerkin solution preserves the maximum principle
0 < u < 1. We also experimented with using the mass lumping technique described
in Sect. 5.3. The results of this experiment are given in Fig. 16. Here, note that both
the the primal solution u;, and the latent variable solution i}, are bound-preserving in
this case. For further details, or to reproduce the our experiments, the interested reader
is directed to our open-source FEniCSx and MFEM implementations found at [114].

Note that neither of the numerical approximations depicted in Figs. 15 and 16 were
obtained with numerical stabilization techniques that are common for this class of
singularly-perturbed problems and usually required to avoid spurious oscillations for
smaller values of € > 0. Just as conventional stabilized finite element methods do
not necessarily preserve maximum principles [71], we find that entropy regularization
does not necessarily induce robustness with respect to the diffusion parameter €. In
turn, we observe spurious oscillations in the discrete solution for smaller values of €.
Our conclusion is, therefore, that future work is required to develop robust proximal
Galerkin finite element methods for singularly-perturbed PDEs.

. = n?mw2e. Note that the constants C,, can be deter-
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Fig.15 The Erikkson—-Johnson problem (5.24) fore = 1072, Left: The exact solution. Middle: A first-order
Bubnov—Galerkin numerical solution that clearly violates the strong maximum principle 0 < u(x) < 1.
Right: The corresponding (Qg, Q)-proximal Galerkin solution &, = expit(yy,) satisfies the strong
maximum principle, by construction. These results can be reproduced by running the MFEM code
advection_diffusion.cpp available at [114]
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Fig. 16 Comparison of two (Qp, Q1)-proximal Galerkin discretizations of the Erikkson—Johnson prob-
lem (5.24) also considered inFig.15. In the first row, we see a pair of solutions corresponding to a
proximal Galerkin discretization where standard Gaussian quadrature is used to evaluate every integral.
In the second row, we see a similar pair of solutions obtained from a discretization employing the nodal-
quadrature mass lumping technique described in Remark 5.3. As argued above, the latter discretization
delivers rwo feasible discrete solutions. These results can be reproduced by running the FEniCSx code
advection_diffusion.py available at [114]

6 Extensions II: Non-Convex Objective Functions and a
Structure-Preserving Algorithm for Topology Optimization

The variational problems considered in the sections above share several common fea-
tures. The most decisive feature is convexity. This raises the question as to whether
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entropy regularization can be as effective in a non-convex infinite-dimensional setting.
We investigate this possibility here by providing a new proximal gradient (entropic
mirror descent) framework for possibly non-convex, bounded-constrained optimiza-
tion in infinite dimensions. Our benchmark problem for this setting is a well-known
problem in topology optimization. As before, the section closes with an explicit algo-
rithm and a brief account of numerical experiments. In the interest of completeness, we
recall several details from abstract mirror descent methods. Although these methods
are widely used in finite-dimensional convex optimization, and much of our treatment
is inspired by the more recent works [26, 198], it is important to note that Nemirovskij
and Yudin did not restrict themselves to finite dimensions in their original works many
decades ago [163, 164].

6.1 Mirror Descent

Section 4.4 introduced a proximal framework that was applied to solve the obstacle
problem. Section 5.2 introduced a linearized proximal framework to solve variational
inequalities with non-symmetric bilinear forms. The purpose of the present subsection
is to combine those two approaches into a general first-order framework for non-convex
optimization problems,

min F(v) subjecttove K C V, 6.1)

veV

where K is a nonempty, closed convex subset of a Banach space V and F: V — R
is continuously Fréchet differentiable. We closely follow [26, 198] below to provide
intuition for the method. In several places, we are purposely vague. This is particularly
the case for the assumption that a Bregman divergence D¢ induced by the derivative
G’ is available or that int dom G is non-empty with respect to the topology on V.
We begin by introducing the Bregman gradient step operator,
Py(w) = argmin {(F'(w), v) + & ' Dg(v,w)}, w €intdomG,  (6.2)

veV

where G: dom G — R U {oo} is strongly convex with derivative G'(w) € V’. When

V is a Hilbert space and G(v) = %||v||%, = %(v, v)v, the use of the gradient step

operator leads to the standard gradient descent rule. This follows from a straightforward
computation of the first-order optimality criteria, which leads to

Py(w) =w —aVF(w), (6.3)

where VF: V — V is the gradient of F characterized by the variational equation
(VF(w), v)y = (F'(w),v) forall veV. (6.4)
More generally, assuming the minimizer exists and G’ : V — V' is invertible, (6.2)
returns the formula
Py(w) = (G/)’I(G’(w) —aF'(w)). (6.5)
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e(xo) + €' (xo)(x — m0) + Ds(z, 20) e(x)
e(xy) + €' (x1)(x — 21) + Ds(x, 21)

e(x2) 1+ €' (x2)(x — z2) + Ds(x, 72)

Fig. 17 Tllustration of convergence to the solution x* = 0 for the constrained minimization problem
min, [0, o0) €(x), where e(x) = %xz + x, by solving the sequence of minimization problems x| =
argmin g0, o0) {€/(xx)x + Dy (x, x)} starting at xg = 1

Recalling the classical steepest descent method, see, e.g., [ 166], it is not surprisingly
that iterating (6.2) can generate a convergent algorithm to solve (6.1) when K = V and
an appropriate step size rule for « is available. Indeed, convergence of this algorithm is
illustrated inFig. 17 for optimizing the scalar objective function e(x) = %xz + x with
the Bregman divergence D, (x, xi) from the scalar entropy function s(x) = x Inx —x.
This naturally leads to the so-called mirror descent method [26, 164], which, given a
sequence of positive step sizes {a}, generates a sequence of iterates {u*} according
to the following scheme:

u’ eintdom G, ¥t =P, "), k=01,2...

Nemirovskij and Yudin point out that the motion of the iterates {1}, which takes
place in the primal space V, is a “shadow” or “image”, of the main motion: G’ (u*) —
ax 41 F'(uF), which by definition takes place in the dual space; whence the name
“method of mirror descent” [164, p. 88]. This is easily witnessed by introducing a
dual variable A := G'(w). Then under the assumptions that G’ is invertible, the new
step in the dual space takes a somewhat more familiar form:

AT = 2% — a1 (F 0 (G 7H(A5).

This important distinction is often lost in finite dimensions and to some extent in the
Hilbert space setting, where G’ and F' are often identified with their Riesz represen-
tations in V; i.e., the gradients VG and V F, respectively.

6.2 Mirror Descent with a Linear Equality Constraint

For constrained problems, it is essential that G properly captures the geometry of
the feasible set, as was done in the previous sections on the obstacle problem and
advection—diffusion equations. Many problems of interest have the following form:

min  F(v), (6.6)
veK1NK>y
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where K| and K, are nonempty, closed convex subsets of V and F is differentiable.
For example, suppose that K = K is a nonempty, closed convex set and K, :=
{v e V| £() = c} for some linear functional £ € V' and constant ¢ € R; i.e., K, =
27 '({c}). Furthermore, suppose that D¢ is a Bregman divergence associated with a
distance generating function G, which is a Legendre function whose critical domain
is linked to the properties of K. In this setting, we fix o« > 0 and define the operator

Ty(w) := argmin {F(w)+ (F'(w),v—w)+ oFlD(;(v, w)}.
veKNe=1({c}))

We assume here that D¢ (-, w) over K N £~1({c}) has all the properties needed to
ensure 7T, is single-valued. Using standard optimality theory, e.g., [107], we can argue
that u := T, (w) satisfies the inclusion

0 €aF' (w)+ G'(u) — G'(w) + Ngnp-1(ep (@), (6.7)

where N Kne=1({ch (u) is the normal cone from convex analysis [107], defined by

NKHZ_I({L'})(“) = {)\. (S V/

Gov—u) <0 YoeKne(eh .
Note that if w = T, (w), then (6.7) reduces to
0e O[F/(U)) + NKﬁZ*I({c})(w)’

which indicates that w is a first-order stationary point of (6.6).

If we furthermore assume that K contains a subset 3 such that £(B) C (c—¢, c+¢€),
for some € > 0, then {c} — £(K) contains an open neighborhood of 0. This constraint
qualification [107] allows us to rewrite (6.7) as

0€aF (w)+ G ) — G'(w) + Nk ) + Niey(€(u)) o £, (6.8)

where M) (£(u)) o £ = {uﬁ eV'ine R} provided ¢(«) = c. Continuing on, we
may assume for the sake of argument that the use of Dg forces Ng (1) = {0} and
u € K. This happens, for example, if # remains away from the boundary of K. For
pointwise bound constraints in L”-spaces of the type 0 < u < 1 considered below,
we would also have Ng (1) = {0} when 0 < u < 1 almost everywhere, even if the set
K has an empty interior. The remaining normal cone is trivial to compute and yields
Nip(€(w)) = R.

These observations justify the following first-order optimality system that charac-
terizes the map w +— u := Ty (w): Find (4, n) € K x R such that

U= (G’)_l(G/(w) —aF'(w) + ul) and £(u) = c. (6.9)
EOE';W
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In other words, given w and «, compute the increment *i=G (w) — o F’(w) and find
u € R by solving the equation

(G R+ ) =c.
Repeating the process
u’ eintdom G, W' =T, @5, k=0,1,2...

generates a sequence of primal variables. Indeed, given a sequence of positive step
sizes {o }, we can generate {Ak } according to Algorithm 5.

Algorithm 5: Half-step mirror descent rule in Banach space

Input : Initial dual variable A° € V’ and sequence of step sizes ag > 0.
Output: Stationary dual variable A.

Initialize k = 0.

repeat
Dual space half step (gradient descent) Assign

M2 <28 — a1 (F/ 0 (G)™H 5.

// Compute Lagrange multiplier

Solve for u*t1 € R such that £((G") "' (W, 172 4 k1)) = ¢.
// Dual space feasibility correction

Assign Akt g k+1/2 + ,uk+1[,

Assignk <k + 1.

until a convergence test is satisfied

The pre-image of G is tacitly assumed to be contained in K . Therefore, the abstract
scheme Algorithm 5 theoretically provides a sequence of feasible primal iterates

uk+1 = (G/)—I(Ak+l/2 + Mk+1€).

Checking for optimality is rather difficult in general, as the evaluation of the residual of
first-order optimality conditions may require the computation of a projection operator
in non-trivial settings; recall the discussion in Remark 4.11 above. On the other hand,
we demonstrated above that fixed points of 7, are stationary for the original problem.
This motivates the simple stopping rule: || Ty, W) — uk ||y < tol., with tol. > 0
sufficiently small, or some variant using absolute and relative tolerances. However, in
order to remove the influence of o, which will typically change with k, we advocate
for rescaling the fixed point residual and also consider the relative quantities

k+1_ k
T —ufly fogr.

M= Ty @) = uFly forsr = Ilu
In the unconstrained Hilbert-space setting, we have n; = ||[VF ") |ly. Therefore, if
liminfg gy — O, then liminfy |[VF (ur)|ly = 0; i.e., we get a limiting stationarity
condition. For example, if (k1 — u*} is a null sequence in o(oy) for o | 0, then
Elol:;ﬂ
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clearly n; | 0. We therefore also use n; as a heuristic stopping measure in our
experiments below.

The abstract derivation above yields an iterative scheme in the dual space V. Imple-
menting finite-dimensional approximations of negative-order Sobolev spaces can be
challenging. However, the bound-constrained variational problem we have considered
happens to have a substantial degree of useful structure, and entropy regularization
of the associated bound constraints provides us with representations of G’, G'~! and
£ that lead to a latent space reformulation of Algorithm 5 that is readily treated with
finite elements.

6.3 An Entropic Mirror Descent Algorithm for Topology Optimization

We consider the benchmark topology optimization problem of elastic compliance
optimization of a cantilever beam; see, e.g., [16]. In particular, we use the two-field
filtered density approach to topology optimization [187, Section 3.1.2] to formulate
the optimal cantilever beam problem.

The purpose of the problem is to find a material density 0 < p < 1, where zero
indicates no material, and one indicates the complete presence of material, that induces
a minimal elastic compliance, F (u, p) = fQ u - fdx. In this expression, the displace-
ment u = u(p) is determined by a variable material density p and a fixed body force
f through the classical linear elasticity equation [150], —DiV(r(,B) a) = f. In this
equation, we are meant to understand that

o = rdivim) ! 4+ u(Vu+ (Vu) ), (6.10a)

with Lamé parameters A, > 0, is the Cauchy stress of a homogeneous, isotropic

material, Div(-) denotes the row-wise divergence operator, p is a regularized (filtered)

density function [42, 131], and r(p) > O is a local model for the Young’s modulus.

For our work, we use the well-known (modified) solid isotropic material penalization

(SIMP) model (5) = p+p°(1—p), where 0 < p < 1isanominal constant assigned

to void regions in order to prevent the stiffness matrix from becoming singular [16].
The full problem formulation is written as follows:

min {F(u, p):/u~fdx}, (6.10b)
Q

peLI(Q)
subject to the constraints

—DiV(r([)')J):f inQ with u=0only, on=0 ondQ\ Iy,
—?AF+p=p inQ with Vp-n=0 onas,

/Qp(x>dx=9|sz|, O<p<l, r®=p+p-p).

(6.10c)
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Fig. 18 The design domain 2 for the cantilever beam problem (6.10) with corresponding boundary con-
ditions, and three-element initial mesh with length 2o = 1. The circular load f, is applied at the point
x0 = (2.95,0.5), and defined f = (0, —1) if |[x — xg| < 0.05 and f = (0, 0) otherwise

where € > 01is a length scale and 0 < 6§ < 1 is the desired volume fraction, which
constrains the amount of the domain €2 occupied by the design. The design domain €2
and associated boundary conditions are depicted in Fig. 18.

We defer a rigorous mathematical discussion to the literature and simply note that it
can be shown that u can be understood, via p, as a differentiable mapping from p into
an appropriate regularity space; e.g., a subspace of [H ' (2)]?. Therefore, we replace
the objective function in (6.10b) by the reduced functional

F(p) := F(u(p), p) (6.11a)

and arrive at the reduced space optimization problem

min F(p) subjectto0 < p <1 a.e. and / pdx =0|Q]. (6.11b)
peL!(Q) Q

We can now solve this problem with a custom version of Algorithm 5 that employs
the binary entropy-based Bregman divergence for the pointwise bound constraints
found in (6.11b); cf. Sect. 5.1. In particular, the favorable structure of this problem
lends itself nicely to a latent space representation, given below, that makes use of the
transformations

pf =expit(y) = y* =mit(ph),
as well as the following variational characterization of the gradient V F (p%):

Find VF (p*) := & € H'(Q) such that 6.12)
2(Vi, V) + (i1, v) = —(' (5 o (u¥) : Vuk, v) forall ve H'(Q).

A visual representation of a single iteration of Algorithm 6 is given in Fig. 19.
FoC'T
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expit {o<p<1}

Fig. 19 Illustration of motion of the primal and latent iterates in Algorithm 6. When viewed in the primal

space, we find that both steps of the progression ok > pk 12 s oK+l inyolve nonlinear transformations

of the primal variables. However, when viewed in the latent space, L (2), these transformations are simply
just translations of the latent variables; namely, y*+1/2 = yk — k41 VF(p*) and y¥+1 = yh+1/2 4 ¢

Algorithm 6: Entropic mirror descent for topology optimization.

Input : Initial latent variable wo € L*°(R2), sequence of step sizes o > 0,
increment tolerance 1tol. > 0, and normalized tolerance ntol. > 0.
Output: Optimized material density 7 = expit(y¥).
Initialize k = 0.
while | expit(y*) — expit(l//k_l)HL](Q) > min{ox ntol., itol.} do
// Latent space gradient descent
Assign Y* 12— gk — oy VF (expit(yh)).
// Compute Lagrange multiplier
Solve for ¢ € R such that [, expit(y* /2 4 ¢) dx = 0]Q].
// Latent space feasibility correction
Assign yhH1 «— g k12 4
Assignk <k + 1.

6.4 Numerical Experiments

In this set of experiments, we estimate the gradients V F (o) in Algorithm 6 by dis-
cretizing (6.12) with C°(2)-conforming, quadrilateral finite elements of degree p > 1.
Likewise, the discrete displacements u’,i ~ uf and filtered densities, o~ Pk, are also
computed with conforming finite elements of degree p. Finally, unlike the physical
variables above, the latent variable ¥ is approximated by discontinuous piecewise
polynomials %]f of degree p — 1. Note that this induces a discontinuous primal variable
p,’i = expit(w{l‘ ) satisfying 0 < ,0,/: < 1;see also Remark 6.1. We then apply the result-
ing discretized version of Algorithm 6 to solve (6.10) with p = 1070, A = w=1,
6 = 0.5, and ¢ = 0.02. The boundary conditions and body force f are depicted
in Fig. 18. This experiment is an official part of MFEM 4.6. We invite the reader to
view MFEM Example 37 [113] for full implementation details. For sake of space, we
EOE';W
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k=0 k=6 k=12
0.4
o
k=18 k=24 k = 29 (final)

Fig. 20 Subsequence of material densities ﬁﬁ from Algorithm 6 for selected iterations k. Results obtained

with problem parameters € = 2- 1072 and 6 = 0.5; algorithm parameters itol. = 1072, ntol. = 107,
and o = 25k; and discretization parameters 7 = hg/128 and p = 1

have focused on presenting results with low-order discretizations (i.e., p = 1, 2) of
the above form and left the exploration of higher-order discretizations to future work.

A sequence of iterates converging to a discrete solution with mesh size h = hy/128
and polynomial degree p = 1 are depicted in Fig.20. From this figure, we observe
typical first-order convergence behavior to a standard truss-like structure. To generate
this figure, we used the heuristic step size sequence oy = 25k and tolerances itol. =
1072 andntol. = 107>, Although the conventional wisdom from finite-dimensional
optimization theory would indicate that oy should tend to zero, or at the very least be
less than the reciprocal of the Lipschitz constant of V F', our experiments indicate that
we can moderately increase the step sizes and still obtain satisfactory convergence
behavior. To be fair, “satisfactory” convergence is based on the heuristic stopping rule
given in Algorithm 6.

Future work is needed to develop an adaptive step size selection procedure. In turn,
we include Fig.21 to show the different effects the step size sequence can have on the
final solution. Here, we witness that different sequences — e.g., oy = 10k, oy = 25k,
and oy = 50k — can lead Algorithm 6 to converge to significantly different local
optima. This class of non-convex optimization problems is widely known to exhibit
multiple local optima, though procedures are available to compute them [169]. In
particular, notice from the two top left images that different final designs are possible
just by changing the step size rule. The suspicious design on the bottom left is found
because the oy = 50k step size rule is too aggressive in the early iterations. Thereafter,
a “design locking” phenomenon that is common in topology optimization problems
keeps the design close to its nearly-binary, early state. To generate the results in Fig. 21,
we changed the length scale to € = 1072 because it invokes a higher parameter
sensitivity.

Finally, we return to the case considered in Fig. 20 (i.e., we again set € =2 - 1072
and oy = 25k) to record the sequence of error indicators n; = ||,o;i — p’;_l ||L|(Q)/ak
with different discretization parameters i € {ho/64, ho/128, ho/256} and p € {1, 2}.
The results are given in Table 4. From these results, we see that the number of iterations
required to reach the tolerance ||p;f — ,o;fl (FARRSYLTIRS 1075 tends to a fixed value
as the mesh is refined or the polynomial order is elevated. Moreover, the individual
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0 10 20 30 40 50 60 70
Iteration k
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=
F(p,) =3.75-1073 = 1072 4000
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10 3000
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F(p,) =3.72-107° = 107} 1000 =
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E 10-6F 0
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I
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Fig. 21 An aggressive step size rule can lead to a better convergence rate. However, if the step size rule
is too aggressive, the algorithm may convergence to a sub-optimal local minimum or even diverge. Left:
The final densities py, and associated compliance values F(py,) for step sizes o = 10k (top), oy = 25k
(middle), and o = 50k (bottom). Right: The normalized error estimates for the various step size sequences
ag, with k = 1,2, ... These results were obtained using the problem parameters € = 1072 and 6 = 0.5
and the discretization parameters 4 = ho/128 and p = 1

values of n; appear to stabilize as 7 — 0, for both p = 1, 2. Both of these properties
suggest mesh-independence of Algorithm 6.

Remark 6.1 (Preserving pointwise bound constraints at the discrete level) No matter
the polynomial degree p > 1, the discrete primal variable p,’j = expit(w{:) is guar-
anteed to satisfy the pointwise bound constraint 0 < ,oﬁ < 1. This is an immediate
consequence of the sigmoid map expit: R — (0, 1) and the decision to discretize
the latent variable with finite elements. Had we followed the literature and, instead,
directly discretized the primal variable p* with finite elements, then the property
0< ,og < 1 would have to be enforced by introducing discrete-level pointwise bound
constraints. This is a common concern in standard topology optimization approaches
since the number of discrete-level pointwise bound constraints must grow with the
size of the finite element space; cf. Sect. 3.2.

7 Conclusion

We have introduced proximal Galerkin, a new nonlinear finite element method that
hinges on a mathematical technique called entropy regularization and an infinite-
dimensional optimization algorithm we were refer to as the latent variable proximal
point method (LVPP). The essential feature of the proximal Galerkin method is to
provide robust, high-order, and pointwise bound-preserving discretizations accompa-
nied by a built-in, low iteration complexity, mesh-independent solution algorithm. We
Elol:;ﬂ
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Table 4 Table of error estimates n; = H,o;: - p,’j_l ||L1(Q)/°‘k for various mesh sizes 4 and polynomial
orders p

Optimization error ||p£ - p£71 [F3! (Q)/ozk for various 4 and p

Polynomial order p = 1 Polynomial order p = 2

koo ho/64 ho/128 ho /256 ho /64 ho/128

1 25 2.00-1072 2.06-1072 2.05-10"2 2.07-10"2 2.05-1072
250 5.42.1073 5.80-1073 5.76-1073 5.88-1073 5.74.1073
375 2971073 330-1073 3.27-1073 3.38-1073 3.25.1073
4 100 1.61-1073 1.87-1073 1.85-1073 1.94.1073 1.83-1073
5 125 1.12-1073  1.30-1073 1.29-1073 1.36-1073 1.28-1073
Total iterations k 30 29 29 29 29

Final compliance F (o) 3.86-1073  4.04-1073 4.02-1073 4.08-1073 4.01-1073

The initial density was set to the constant function p,? =6 (ie., W;(,) = Init ) at the beginning of each

run and each run was stopped once n; < 1075, These results were obtained using the problem parameters
€=2-10"2and0 = 0.5

have derived, analyzed, and implemented proximal Galerkin for the obstacle problem
and used the advection—diffusion equation and topology optimization to motivate our
wider vision for the method. Each of our numerical experiments is accompanied by
an open-source implementation to facilitate reproduction of our results and broader
adoption of the proximal Galerkin method.

The upshot of this work is that computational techniques for variational inequali-
ties, maximum principles, and bound constraints in optimal design can be unified with
a rigorous mathematical framework rooted in nonlinear programming and nonlinear
functional analysis. We hope that the proximal Galerkin methods that arise from this
framework will lead to new challenges and opportunities in optimization theory, anal-
ysis of PDEs, and numerical analysis, as well as provide promising alternatives to the
more classical procedures used for industrial-scale problems.

Appendix A Mathematical Results I: Isomorphisms, Regularity,
Characterizations, and Convergence

This appendix contains proofs and continuous-level structural results supporting the
main sections of the paper.

A.1 Structural Results on the Set int L3 (Q2)

The following concepts and results are not commonly used in the finite element lit-
erature. Although they can be derived from diverse sources, such as [36, 53, 77], we
assemble them here for the reader’s convenience.
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Definition A.1 (Group of units) Let X’ be a semiring equipped with two binary oper-
ations: addition @: X x X — & and multiplication ©: X x X — X. An element
u of X is called a unit if there exists an inverse element in X, denoted %, such that

u® % = % O u = 1. The group of units of X, denoted X' *, is the set of all units in X

This work is largely centered around the group of units (L5°(£2))*. We prove
(LT (2))* = int LI (2), along with several other algebraic/topological identities, at
the end of this subsection; see Proposition A.7.

It is well-known that algebraic and topological structures are often entwined, as the
following definition and result shows.

Definition A.2 (Banach algebra) A Banach algebra is a complete normed vector space
that is closed under multiplication.

Proposition A.3 (Topology of the group of units) For any Banach algebra X, its group
of units X is open. Moreover, the inversion map X>* — X*: u — % is continuous.

Proof See [53, Theorem 2.2, p. 192]. O
Notably, this result also implies that int L5°(£2) is a Banach-Lie group.

Definition A.4 (Banach-Lie group) A Banach manifold is a topological space M
where each point # € M has an open neighborhood that is homeomorphic to an open
set in a Banach space. A set G is a Banach—Lie group if it is a Banach manifold that
is closed under continuous multiplication and inversion operations.

An important property of Lie groups is the existence of a smooth exponential map,
exp: X — G, where X is the associated Lie algebra; cf. [133].

Definition A.5 (Banach—Lie algebra) A Lie algebra X is a vector space endowed with
an antisymmetric bilinear form called the Lie bracket [-, -]: X x X — X satisfying
the Jacobi identity [, [¢, @]l +[¢, [0, V1] + [, [, ¢]] =0 forall ¥, ¢, w € X. A
set X' is Banach-Lie algebra if it is both a Lie algebra and a Banach space.

Using well-known results on Nemytskii operators between Lebesgue spaces, we
can argue that L°°(Q2) is the Banach—Lie algebra associated to the Banach-Lie group
int LY (2); cf. Proposition A.7. In particular, as a result of Lemma A.6, the Nemytskii
operator generated by the standard exponential function on R provides the exponen-
tial map from L°°(2) to int L5°(2). Moreover, this map is surjective and, thus, the
inverse of the entropy gradient (VS)~! = exp: L®(Q) — int LE°(2) is a group
isomorphism. Finally, in our setting, int L°(£2) is commutative and so the Lie bracket
is trivial; i.e., [V, 9] = Yo — @ = 0 forall ¥, ¢ € L*(Q).

LemmaA.6 The Nemytskii operator \ +— exp is infinitely continuously Fréchet
differentiable on L*°(Q2).

Proof The properties of the exponential function allow us to apply the required results
in [79]; notably [82, Theorem 1 (iv)] and [82, Theorem 5] for continuity and [82, The-
orem 7] for differentiability. Since exp’ = exp, these results can be applied recursively
indefinitely. O
FoC T
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Proposition A.7 summarizes various useful interpretations of the set int L3 (£2).
We withhold the proof, which follows from elementary arguments, for sake of space.

Proposition A.7 Nemytskii operator r +—> exp ¥ is a diffeomorphism between L (2)
and int L () for which the following definitions are equivalent:

(a) int LS°() is the set of all positive functions in L°°(2) whose reciprocals lie in
L>(R),

int L(Q) = {w e L¥(Q) | 1/w € L*(Q) and w > 0}. (A.la)
In other words, int L (2) = (LS°(2))* is the group of units in LY (2).
(b) int Lf(SZ) is the set of all functions in L°°(2) whose logarithm is bounded in
L>(Q),
int L(Q) = In"1(L™(Q)). (A.1b)
(c) int LL(R2) is the image of L*°(2) under the exponential map,

int L () = exp(L®(R)). (A.1c)

(d) int LY (2) is the set of all positive functions in L*°(S2) that are strictly bounded
away from zero,

int L(Q) = {w € L™(Q) | there exists € > 0 such that w > €}. (A.1d)

It is well-known that W17 (€) N L°°(Q) is a Banach algebra forevery 1 < p < oo;
see, e.g., [40, Proposition 9.4]. The following proposition shows that the space is also
isomorphic to the Banach—Lie group W17 () Nint LT().

Proposition A.8 Let Q2 be an open subset of R" and 1 < p < oo. Then
In: WhP(Q) Nint L (Q) — WP () N L™(RQ)
and

exp: WhP () N L®(Q) — WP (Q) Nint LT(Q)
are isomorphisms. Moreover,
1
Vinu=-Vu and Vexpy =expyVy, (A.2)
u
forallu € WP(Q) Nint L(Q) and € WP (Q) N L®(Q).

FoC'T
e,
@ Springer |03



Foundations of Computational Mathematics

Proof We prove In: W' (Q) Nint L°(Q) — WIP(Q) N L>®(Q) and VInu =
1/uVu for the case that Q2 is bounded. The corresponding statements for the expo-
nential map are treated similarly. Similar to the proof of [40, Proposition 9.4] and [40,
Corollary 8.10], the case for p = oo needs to be considered separately. Hence, assume
first that 1 < p < oo.

Step0.Letu € WP (Q)Nint L (S2). By Proposition A.7 we know thatlnu € L™ (L)
and, moreover, there exists € > 0 such that ¢ < u(x) < 1/€ ata.e. x € Q. We now
follow the proof technique used for [40, Proposition 9.4] to show thatlnu € W Lr(Q).
Step 1. The first step involves constructing a sequence u; € CS°(£2) such that

Uup — u in L7 (€2) and pointwise a.e. in 2, (A.3a)

Vup — Vu in [LP(0)]" forall @ CC 9. (A.3b)
Furthermore,

lull Lo < lullLe(o) (A.3c)

and, for all w CC €2, it holds that

IT/urll o @) < I11/ullL= (@), (A.3d)
once k is sufficiently large. For simplicity, we choose to focus on the case where €2
is bounded. This step may be modified by multiplying u; with a sequence of smooth

cut-off functions to treat the case where €2 is unbounded; cf. [40, Proof of Theorem 9.2].
Begin by defining

) :u(x) ifx € Q. A

0 if x € Q\ R”,
andsetuy = pyu, where p € C°(R") is a sequence of mollifier functions satisfying
supp px C B(0, 1/k), / pr=1 pr>0 ae inR". (A.5)
Rn

Notice that u;(x) < 1/e ata.e. x € 2 since

1
uj(x) =/ u(x —y)pr(y)dy < ||M||L°°(Q)f pr(y)dy < —. (A.6)
R~ Rn €

This proves (A.3c).
Now, take @ CC 2 and let § > 0 be chosen small enough so that the open cover
Uxew B(x, §) is contained in Q2. Then, for all k > 1/6 and a.e. x € w, we have that

¢= / e o) dy < f B0 — o dy = . (A7)
B(x,8) B(x,8)
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We have thus shown (A.3d). Properties (A.3a) and (A.3b) are proven for this sequence
in [40, Theorem 9.2].
Step 2. The next step is to consider a test function ¢ € C, cl (£2). Observe that

/ln(uk)Vgodx = —/(l/ukVuk)wdx. (A.8)
Q Q

Let w = suppe CC €2 denote the support of ¢. Clearly, Inui(x) — Inu(x) at
a.e. point x € w. Moreover, it is a straightforward exercise to show that | Inuy(x)| <
max{ln |[u| L), In||1/u|l1~)} ata.e. x € w. Therefore, by the dominated conver-
gence theorem, we have that

lim /ln(uk)V(pdx:/ln(u)Vgodx. (A9)
k—o0 Jo Q

To treat the right-hand side of (A.8), we apply a converse of the dominated con-
vergence theorem to the sequence Vuy — Vu given in (A.3b). In particular, by [40,
Theorem 4.9], we know that there exists a subsequence {Vuy,};°, and a function
h € LP(w) such that

|Vuy, (x)| < h(x) forall I >0andae. x € . (A.10)

Next, we use (A.3d) to conclude that |1/ug Vuy, (x)| < |[1/ullpo@)h(x) € LP(®).In
turn, dominated convergence theorem implies that

llim /(1/uleuk,)g0dx:/(1/uVu)<pdx (A.11)

because 1/uiVuy (x) — 1/uVu(x) as | — oo at a.e. point x € w. The identity
ViInu = 1/uVu immediately follows from (A.8),(A.9) and (A.11).

For p = oo, we can proceed analogously to the end of the proof of [40, Corol-
lary 8.10]. The key observations are that Inu, u~!, Vu € L () holds and that the
chain rule derived above for p < oo works on compact subsets of €2. O

A.2 Regularity of the Entropy Functional

One of the important facts that arise from Proposition A.7 is that u € int L (£2)

implies u > |[1/ u||230. Indeed, this property allows us to differentiate the negative
entropy function

ulnu —udx ifu e L1 (),
S(u) = /g *

+00 otherwise,

(A.12)

on the open set int L5°(£2) with variations in L°°(£2). We proceed now with a proof

of Theorem 4.1, which makes use of the classical integral form of the mean value
Elol:;ﬂ

@ Springer Lﬁjog



Foundations of Computational Mathematics

theorem for continuously differentiable functionals g on a Banach space,

g
g +v) — g(v) =/ L gt ovndo
0 o

Proof of Theorem 4.1 Case 1:1 < p < oo.For p = 1, the properties of strict convexity
and lower semicontinuity are easily verified from the properties of the scalar negative
entropy function that generates S. For instance, strict convexity and the monotoncity
of the Lebesgue integral yield strict convexity of S and lower semicontinuity follows
from Fatou’s lemma. Otherwise, we refer the reader to the seminal works [23, 36],
see e.g., [36, Lemma 3.1]. Since 2 C R” is bounded, the continuous embedding of
LP(Q) into L' () imply these same properties for all p € (1, ool.

Case 2: 1 < p < oo. Our proof continues by considering the Nemytskii operator
induced by the real-valued function

Sx) :=xIn|x| —x.

We will show that it is a continuous map from L”(2) to L'(Q2) when p > 1. In
doing so, we first note that 5 is continuous when viewed as a real-valued function
x +— xIn|x| — x with x € R and, moreover, for any p > 1, there exists a constant
C(p) such that

[S()] < C(p) + x| (A.13)

Note that C(p) exists on the one hand since [s(x)| < 1 for x € [—e, e]. Moreover,
for x € (e, 00) with x — 400, we have [s(x)|/x? — 0 for all p € (1, c0). By
symmetry, the same argument holds for x € (—o0, e) with x — —oo. Therefore,
by Krasnosel’skii’s theorem (see, e.g., [12, Chapter 1, Theorem 2.2]),5: LP(Q2) —
LY() is continuous for p € (1, 00). Clearly, if we restrict s to Li(Q), then we have
a continuous mapping 5] L7 (@) On Lf_(Q). This function coincides with

xInx —x, x>0,
s(x) = 0, x =0, (A.14)
+o00, otherwise,

on L{i(Q). Hence, continuity of S on Lﬁ(Q) now follows from the continuity of the
Lebesgue integral u +— fQ udx and the fact that the composition of two continu-
ous functions is also continuous. Finally, suppose {ux} C L (£2) converges to u in
L>® (). Then {u;} C Li(Q) for every for every p € (1, co) and, moreover, uy — u
in L?(£2) because Q2 is a bounded domain. Consequently, S(uy) — S(u) ask — o0,
as conjectured.
Case 3: p = co. In order to show that § is Fréchet differentiable on int L3°(2) with
respect to the L>°(€2) topology, we will first prove that S is Gateaux differentiable
on int L5°(£2) and, subsequently, that the Géteaux derivative S(; is continuous on
int Lio(SZ). Fréchet differentiability of S will then follow from [12, Theorem 1.9].
EOE';W
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To show that § is Gateaux differentiable on int LE°(£2), we must show that for any
fixed u € int LT (R2) and v € L*°(R2),

lim/ wdx:/ v In(u) dx. (A.15)
Q Q

7—0 T

First observe that for almost every x € €2, we have pointwise convergence of the
associated integrands, namely,

s + Tu) — s(u(x))
lim

=0 T

=v(x) In(u(x)). (A.16)

Next, we know from the proof of Proposition A.7 that u > || % ||Zolo. This implies that
for sufficiently small 7, u + v > || % ||Zc}o /2 holds a.e., and we have

u+tv 1
s(u+tv) —s(u) = / Inodo = rv/ In(u + otv)do. (A.17)
u 0

The critical step is to see that for the # and v fixed above, we may find w € L>(2)
where

vV =uw. (A.18)

As such, for all sufficiently small 7, we may rewrite

1
s(u+rv)—s(u)=rv<1nu+/ ln(l—i—otw)do), (A.19)

0

and, consequently,

s(u+ tv) — s(u)
T

1
—vinu v/ In(14+otw)do| < |v||In(1 + Tw)|.
0

(A.20)

To arrive at an upper bound that is independent of 7, we use the following well-known
inequality:

xx? <In(14x) < x. (A21)

In turn, for all |t] < 2|lw|r~)"1,
|In(1 + Tw)| < 1. (A.22)
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The next argument owes to the function |v| belonging to L 1(Q) because € is bounded.
Indeed, by (A.16),(A.20) and (A.22), the dominated convergence theorem provides
us with the following well-defined Gateaux derivative:

(S5 (), v) = limf de:/ vinudx. (A.23)
Q Q

t—0 T

It remains to show that S;: int L°() C L*(R2) — [L*°()] is continuous.
To this end, let u € int L°(2) and consider any sequence {uy} in int L (£2) where
up — uin L*°(2). Consequently, we know there exists C > 0 such that ||luy| g~ < C
and uy (x) — u(x) for almost every x € 2. Clearly,

[(SG () — S k), v)| Sf ol In Ju/ug||dx < ||U||L°°[ |In fu/uklldx, (A.24)
Q Q
where |In [u/ug|| < |In|u|| 4+ |InC| € L' (). Therefore,

1S5 — Sh@ i~y < /Q |10 Ju/ug ]| dx (A25)

and, by the dominated convergence theorem,

lim | Sg(u) — Sg @) lljzooy 5/ lim |1n|u/ug||dx = 0, (A.26)
k— 00 Q k—o00

as necessary.
Finally, we show that VS(u) exists and is equal to Inu. Let u € int L3_°(SZ). By
(A.1b) Inu € L*°(L2). Next, we see that ||S"(u) [z < || Inu|/;1, since

(8" (), v) = /Qvlnudx < |lvllze|Inul1. (A.27)

Moreover, since the difference of characteristic functions associated with the sign of
Inu, denoted by 1yny>0) — L{nu<o}, are in L°°(2) with norm one, we obtain the
lower bound on the dual norm of S’ (u):

1S Gy = / L my In o dx — / LjmuzoyInudx = [ Inuf, (A28)

and so [|.8"(u)|ljLooy = I Inu 1. H

We complete this subsection with a proof of the gradient representation theorem
for the shifted entropy functional, Sy (1) = S(u — ¢).

Proof of Corollary 4.2 By Theorem 4.1, S is continuous on L5°(R2). If ¢ € L>(Q),

then the shift operator Tyu := u — ¢ is continuous on L*>°(2) for u € L°°(2) with
u > ¢, as well; continuity of the composition follows.
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As argued in Theorem 4.1, S is strictly convex on L°(£2). Taking w; € L(‘;‘f (),
withi = 1, 2and wy # wy, weseethat Tyw; = w;—¢ > Oa.e.fori = 1, 2. Moreover,
Tywy = Tywy iff wy = wy and for A € (0, 1) we have Ty, (Aw; + (1 — Dwy) =
AMwy — @) + (1 = 1) (w2 — ¢) = ATyw; + (1 — 1) Tyw. Then since Tyw; € LT (L)
fori = 1, 2, the strict convexity of the composition follows.

We proceed with the characterization of int L;‘j . (€2). First, we can easily show the
elementary properties L(‘;f’+(Q) =¢ + L(2) and

int L3, () = int(¢ + L(R)) = ¢ + int LT(<).

Therefore, w € int L;’;’JF(Q) implies w — ¢ € int LE°(£2). By Proposition A.7, w > ¢
and essinf(w — ¢) > 0. Conversely, if w € L% (2) such that w > ¢ and ess inf (w —
¢) > 0, then Proposition A.7 implies w — ¢ € int L°(£2). Hence, w € int L(‘;f’+(9)

Let wy € int Lg‘er(Q). Then wy — ¢ € int LE°(R2). It follows from Theorem 4.1
that Sy is Fréchet differentiable at wj.

The formula for the derivative of S;) can be viewed as an application of the chain
rule. Indeed, Sy = S o Ty, S is differentiable with respect to the L°°-norm at Tyw
with w € int Lg‘j (2) and Ty is differentiable with respect to the L°°-norm at (any)
w € L° with derivative A:p(w) given by the identity on L*°. Therefore, we have
(4.9). Since u — ¢ € int Lf(SZ) the rest of the computations for the gradient remain
unchanged; in particular, we obtain (4.10) and (4.11). O

A.3 Deriving the Entropic Poisson Equation

We devote this subsection to proofs of the characterization theorem and its corollary
for non-zero obstacles (i.e., Corollary 4.9). This section also includes a short remark
about a weak maximum principle for the entropic Poisson equation that arises from
the first of these proofs.

Proof of Theorem 4.7 The proof proceeds in five steps. We suppress the w-argument
in A, as it plays no role here.
Step 1. Show that there exists a unique solution.

The proof of existence is standard. We sketch the main points here; see, e.g., [19,
Chap. 3.2] for details. By [69, Lem. 3.30], we have that

lvllz2 — fandHn_l <c|Vvll;2, forall ve H;(Q), (A.29)

for some constant ¢ that depends on Q2. Clearly, A, is finite on K. This yields a
minimizing sequence {uy}. The form of A, consequently yields the boundedness of
{lIVug|l;2}. Combined with (A.29) we deduce boundedness of {u;} in HY(Q). We
can readily show that A, is weakly lower-semicontinuous and K weakly sequentially
closed both in H!(). This yields the existence of a minimizer # € K. The minimizer
u is unique because Ay is strictly convex on K.
Step 2. Show that u < max{||gll.~ @), exp(l|Inw + a f|l L= @)}

Elol:;ﬂ
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For all N > 1, define the set Ry = {x € Q | u(x) > N}. By way of contradiction,
we assume that |Ry| > 0 forall N > 1. Now, consider the following function in L°°:

un(x) = min{N, u(x)} > 0. (A.30)

We claim that if N > esssup, 5o g(x), then uy € K. Begin by choosing {u,,} C
C'(Q) such that u,, — u (strongly in H'()) and define u := min{N, u,,}. The
existence of u,, follows from the assumption that €2 is Lipschitz; see, e.g., [4, 3.22
Theorem]. Recall that y denotes the trace operator. Next let v € L°°(92) and consider
that

/ V(MZ)U dH,—1 = / yum)vdH,1 + N vdH,_1.
%2 {y(um)=N} {y um)>N}

Along a subsequence, denoted still by m, y (u,,) converges pointwise almost every-
where to y(u) = g. Then, by hypothesis, the sequence of characteristic functions
Sfm = X{ym>N} — 0 pointwise almost everywhere. It follows from Lebesgue’s
dominated convergence theorem that

N vdH,—_1 — 0 asm — +o0.
{y (um)>N}

Continuing, we appeal to the proof of [117, Thm A.1] and, e.g., [134, Cor. 18.4],
to argue that min{N, u,,} — min{N, u} weakly in H'(Q) and y (min{N, u,,}) —
y (min{N, u}) strongly in L2(3$2), which in turn yields

lim V(um)vdHn_1=/ ywn)vdH,_1.
Mm=>+00 J{y () <N} aQ

Since v is essentially bounded, we have
ly wm)v —y @] = vlly um) —y @) < [[vlizely wm) —y @)l

Hence, y (u,,)v converges strongly in L2(3Q) to y (u)v. Similar to the above, we can
argue that f,, := X{y (<N} = Xse = 1 in L*(9Q). It follows that

/ V(MN)UdHn—l :/ V(M)UdHn—l :/ gvdHn—l'
02 a2 02

By the density of L*°(3€2) in L2(32) and the fundamental lemma of the calculus
of variations [69, Theorem 1.32], we deduce y (uy) = g a.e. on 9Q2. Consequently,
uy € K and for sufficiently large N, it holds that

Du,w)+oEW) < D(uy, w) +aE(uy) (A.31)
because u is the unique global minimizer of A, over K.
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Note, however, that

oEW) —aE(uy) = a/ %|Vu|2 —(u—N)fdx

Ry

and

D(u,w) — D(uy, w) =/ ulnu — NInN — (1 +Inw)(u — N)dx
Ry

1
= (u—N)(/ ln(N+t(u—N))dt—lnw)dx
Ry 0

> (InN —Inw)(u — N)dx.
RN

Combining these observations, we see that

D@, w) +aE) — D(uy,w) —aE(uy)
o
> §||Vu||i2(RN) +(nN —af —Inw,u— N)2gy)-

Therefore, for any N > max{[|gllz=@o), exp(llaf + Inw| =)}, we have
D(u,w)+aEw) > D(uy, w) +aE(uy), (A.32)

which contradicts the optimality of u. Hence, there exists some Ng > 0 such that
|[Ry| = 0forall N > Np,and,inturn,u € L* withu < max{||gllz~e), exp(|laf+
Inwllze @)}
Step 3. Show that u > min{essinf, yq g(x), exp(—|Inw + « f| L= (@))}. Thus, u €
H; () Nint L (Q).

For all € > 0, define the set S¢ = {x € Q | u(x) < €}. By way of contradiction,
we assume that |S¢| > O for all € > 0. Now, consider the following function in
H'(Q) Nint L2(Q):

ue(x) = max{e, u(x)}. (A.33)

The fact that ue € int L° follows from Proposition A.7.

Continuing, we can emulate the arguments of Step 2. above to show that if € <
essinf, 50 g(x), then u, € H; Nint LY. The steps and justifications are almost
identical and are therefore omitted. In turn, for sufficiently small € > 0, it holds that

D(u, w) +aEW) < D(ue, w) + o E(ue). (A.34)
As above, we obtain the lower bound

D(u, w) +aEW) — D(ue, w) — aE(ue)
= a”VM”iz(Se) + (”C(f +In wlLo + Ine, u — 6)LZ(SE)
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As a result, once € < exp(—|laf + Inw|r~), we again contradict the optimality
of u. Thus, there exists some €g > 0 such that |[S¢] = O for all ¢ < ¢y and u €
H, () Nint LY () by Proposition A.7.

Step 4. Derive the variational equation.
Lett > 0 and v € K N L*°(L2). Then, by definition,

oaE(u)+ D(u,w) <aEW)+ D(v, w).
Clearly, u 4 t(v — u) € K, and consequently,

0< oaE(u+t(v —t u)) —oE(u) n D(u+t(v— u)l, w) — D(u, w)

Since, u € H'(Q) Nint L(RQ) and v — u € H'(Q) N L>(), Theorem 4.1 allows
us to expand and pass to the limit as ¢ |, 0. This yields the variational inequality:

O0<aE'w)w—u)+Sww—u)—(nw,v—u) (A.35)

for all v € H; (R2) N LP(K2). As a result of Step 3, there exists a constant € > 0

such that u > € a.e. in 2. In particular, for all y € HO1 (R2) N L*°() there exists a
sufficiently small § > O suchthatu+ry € H; (RNLE(R) forallt € [8, §]. Setting
v = u £ §y in the variational inequality (A.35) and rescaling the result by 1/§, we
arrive at the following variational equation with test functions y € HO1 ()N L>®(Q):

O0=aFE W)y + S wy— (Inw,y).

The first summand is equivalent to (¢Vu, Vy) — (¢ f, y) and the second and third
summands together have the form (Inu — In w, y). Since u#, w € int Lof(Q), the map

¥+ (Inu —In w, y) defines a bounded linear functional on HO1 (R2). Finally, by virtue
of the inclusion C2°(Q) C Hy () N L>(R), we deduce

(@Vu,Vy)+ (nu,y) = (af,y)+ (Inw, y) forall y € HOI(Q), (A.36)

as was to be shown.
Step 5. Prove that the entropic Poisson equation has a unique solution in H; Q)N
int LE°(2).

Conversely, suppose u € H gl (2) Nint L?f(Q) such that (A.36) holds. Then for any
y € Hy(Q) N L®(Q), setting v = y —u € Hj(R) N L®(Q) C Hj(R) in (A.36)
yields

Ay )(y —u) = (@Vu, VIy —ul) + (Inu,y —u) — (@f,y —u) = (Inw, y —u)
=0.
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Since Ay is differentiable at u with respect to variations in H L(Q) N L>®() and
convex on Hé} (2), we have

Aa(y) = Ag@) + AL @)(y —u) = Ag(u) forall y € H}(Q) N L®(Q).

Taking the closure of Hgl () N L>®(R) with respect to the H'-norm, it follows from
the continuity of A, on H () that u is a minimizer of A, over Hg1 (£2). Uniqueness
follows from strict convexity of Ag. O

Remark A.9 (Maximum principle) Inspecting the proof above, we see that

min{gmin, eXp(—[l I w + o fllz)} < u < max{gmax, exp(| Inw + a flL=)},

(A.37a)
or, equivalently,
min{In gmin, =M w + @ fllre} < Inu < max{In gmax, [ INw + a flLx},
(A.37b)

where gmin = essinf, g g(x) and gmax = esssup, 5o g(X).

Proof of Corollary 4.9 The proof follows that of Theorem 4.7. Here, Corollary 4.2 plays
the same role as Theorem 4.1.

Existence and uniqueness follows the homogeneous case in light of the implications
of Corollary 4.2. We only need argue that K is nonempty. Since g, ¢ € H "@n
C(Q) the function v := max{g, ¢} = g + max{0, ¢ — g} isin H'(Q) N C(Q) and
satisfies v > ¢. The trace of w is merely the evaluation on the boundary. Then since
essinf y (g — ¢) > 0 on 92 by assumption, we have y (v) = y(g) and consequently
v e Ky.

Setting w = w — ¢, we can now readily argue that u = & + ¢ where ¥ is the
solution of

min %nv’ﬂuiz —(f+42¢, %) +a 'D®, )
overv € H;_d,(Q) subject to v > 0 in . (A.38)
Theorem 4.7 then guarantees that i solves
(@Vil, Vo) 4 (In%, v) = (af +aAp,v) + (Ini,v) forall v e Hy(Q).
Substituting u — ¢ = ¥ and w — ¢ = w yields (4.33). O
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A.4 Convergence of the Latent Variable Proximal Point Method

In this subsection, we establish arbitrary convergence rates for the continuous-level
proximal point algorithm (4.38) to solve the obstacle problem. We begin by proving
the following lemma.

Lemma A.10 Under the assumptions of Theorem 4.7, the second-order problem

Find u € H,(Q) Nint LY(Q) such that — Au+1Inu = f in H~(Q),
(A.39)

is equivalent to the saddle-point problem

—AT+¢=f inH(Q),
H—expy =0 inL*(R).
(A.39b)

Find ii € H}(Q) and € L™() such that !

More specifically, both problems admit unique solutions that coincide in the sense that
u=1uandlnu =y a.ein Q.

Proof First of all, we know from Theorem 4.7 that there exists a unique solution
to (A.39a). Using Proposition A.7, we know that exp: L®(Q) — int LT(R2) is an
isomorphism. Thus, ¥ = Inu and & = u form a solution to (A.39b). Now, assume
that € H 5} (2) and {l; € L°°(2) form an arbitrary solution to (A.39b). By the second
equation in (A.39b), we know that

#=expy aec.in. (A.40)

Now, by Proposition A.7, we know that exp @ € int LL(RQ). Thus, i € Hg1 N

int L5°(€2). Moreover, by applying In to both sides of (A.40), we find that J =1Inu.
Thus, u € HS} (€2)Nint L (£2) solves (A.39a). Since the solution of (A.39a) is unique,

we find that & = u and, in turn, ¥ = Inu. O
We now move on to proving the convergence theorem.

Proof of Theorem 4.13 The proof has three main steps, the first two of which build off
of Lemma A.10. Without loss of generality, we focus on the case where ¢ = 0. The
statement for general obstacles ¢ # 0 can be recovered by making the change of
variables u — ¢ = i and w — ¢ = W used in the proof of Corollary 4.9.

Step 0. By Lemma A.10, the sequence of iterates u* coming from (4.38) and

(41 VT Vo) 4+ (It v) = (appr f +Inuk, v) forall v e HJ (Q2)
(A41)

are equal a.e. in Q2. We take advantage of this fact throughout the proof below. In
particular, given u® = exp ¥ as in the hypotheses, we suppose that sequence {1*} is
FoC
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generated by the proximal point method, where each uk solves (A4, k=1,2,...
By Theorem 4.7, u¥ € H; (@) Nint L(Q) forallk =0, 1,2,....

Step 1. Inequality (4.39) is proved by exploiting the fact that D(u, w) > 0 with
equality if and only if u = w. In particular,

E@ < EG™) + D@, ub) jags

A.42
< E@®) + DX, ub) jagy1 = E@P), (42

where the second inequality follows from the optimality of #41.

Step 2. Since u’/ € H;(Q) Nint LY(Q) for all j = 1,2,...,k, the definition of
D as a true Bregman distance according to (4.16) is justified and consequently, the
three-points identity (4.19) is as well. This leads to

D(w,u’) — D(w, /™" + D@/, u/ ™" = (§' W) — S/, ul —w),
(A.43)

where w € H; (£2) such that w > 0 a.e. Next, notice that (A.41) is equivalent to
(S'?), v) — (' /™", v) = —a; E'(u/)v forall ve H}(Q). (Ad4)

Clearly, we have uw —we H(} (R2). Therefore, (A.44) and the subgradient inequality
for E at u/ imply

(S'w!y — '™, u — w) = (@ E'w!), w —u!) < a;E(w) —a;E@l).
(A.45)

Together, (A.43) and (A.45) imply that

k k
Dw,u) + > D@/ ul™)+ ) e [E@!) — Ew)] < D(w, u’). (A46)
j=1 j=1

Now, given D(w, u*) > 0, D@**!, u*) > 0 for all k and Eu*) < E(u’) for all
Jj <k, by (4.39), along with (A.46), we deduce the bound

0
Eb) < E(w) + 2, (A4T)
j=1%j

for all w € H; (Q2) satisfying w > 0. This step is completed by setting w = u™* in

the inequality above and using strong convexity of E': HOI(SZ) — R. In particular,
FoCT
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observe that

D(@u*, u® 1
—%?13zEmh—EWﬂzuﬂwxﬁ—uﬂ+;Wﬁ—vMﬁz
2 =19 (A.48)
1
> SIVu* = Vi,

where, we have used the first-order optimality condition (E’(«*), v — u*) > 0 for all
v € K in the final inequality.

Step 3. Finally, we prove the first equality in (4.41). To this end, consider the two
equations

(Vuk, Vo) — (f,v) = 05, v) forall v e HJ (), (A.49a)
and

(Vu*, Vu) — (f,v) = (A%, v) forall v e Hy (). (A.49D)
Combining these two equations, we find that

.k (A* = Ak, v) (Vu* — Vuk, Vv)
A" — A ||H_1(Q) = sup ———— = sup .(A.50)
veH (@) VullL2q veHL () Vvl

We now find ||A* — A% | -1 @ = IVu*— Vuk| 12(q) by applying the triangle inequality
to the numerator of the third expression above. Likewise, we find || Vu* — VuX | 2@ =
[IA* — )»k||H71(Q) by considering the candidate function v = u* — u*. O

We now turn to studying the iteration complexity of LVPP for various step size
sequences. To this end, we first recall the standard definitions of Q- and R-convergence.

Definition A.11 (Convergence orders and rates) Let X be a Banach space with norm
[ -l x. We say that a sequence {x;};2, C X converges to x* € X’ with order ¢ > 1
and rate r > 0 if

Xfg1 — x*
[l Xk+1 gx _ (A51)
koo g — x* %

If ¢ = 1 and r = 1, then we say x; converges Q-sublinearly to x*. If ¢ = 1 and
r € (0, 1), then we say x; converges Q-linearly to x*. If g > lorg = 1 and r = 0,
then we say x; converges Q-superlinearly to x*.

If || xx — x*||x < € for all k, where ¢ converges Q-sublinearly (linearly, superlin-
early) to zero, then we say that x; converges R-sublinearly (linearly, superlinearly) to
x*.

The following corollary establishes convergence orders associated to various step
size sequences.

EOE';W
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Corollary A.12 (Prescribed convergence orders) Fix C > 0. Under the assumptions
of Theorem 4.13, consider the following candidate sequences of step sizes:

Case 1: Fixm € N and set
ay =Ckk+1)---(k+m) forall k=1,2,... (A.52a)
Case 2: Fix n > 1 and set
ap = Cpf forall k=1,2, ... (A.52b)
Case 3: Seta; = C and
g4 = Ckk! forall k=1,2,... (A.52¢)
Case4: Fix u,q,r > 1 and set 1 = rl/(q_l),u and
gt = rl/(q_l);ﬂk — oy forall k=2,3,... (A.52d)
Then sequence (A.52a) delivers a sublinear R-convergence, sequence (A.52b) deliv-
ers R-linear convergence with rate 1/u; sequence (A.52c) delivers R-superlinear
convergence with order 1 and rate 0; and sequence (A.52d) delivers R-superlinear
convergence with order q and rate r.
Proof Throughout the proof, we use the definition ¢, = D(u*, u®)/ Zl;zl aj.
Case 1: For this case, we can use Chu’s theorem [156, Theorem 1.5.2] to show that
k
m+2)Y jG+DGm=kk+1)-(k+m+1).  (AS53)
Jj=1
Thus, if oy = Ck(k + 1) - - - (k + m) for all k, then

et kKA D--Gm) Kk L so. (AS4)
€k k+Dk+2)---(k+m+1) k+m+1

Case 2: For this case, we use the well-known finite geometric series identity

k k
. -1
St = “—1 (A.55)
j=1 a
Thus, if o = Cuf~! for all k, then
k
-1 1
il _ K — — ask — oo. (A.56)

€k Mk+l -1 m
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Case 3: For this case, we use the identity
k
D it= e+ D1, (A.57)
j=1

which is readily verified by mathematical induction. Thus, if o = C(k — 1)(k — 1)!
forall k > 2 and @1 = C, then

€kl k! _ 1
&  (k+D! k+1

— 0 ask — oo. (A.58)

Case 4: In this case, we use the fact that ZI;'=1 oj_1 = ag—1 is a telescoping sum by

design. Thus, if a1 = /@D pd" — g forall k > 1 and o = /@Dy, then

ra/@=Dud" e

€k+1
= = for all k > 1. A.59
€/ r1/@=1 ya* rooral k= ( )
m]

A.5 The Entropic Poisson Equation in the Zero-Temperature Limit

We close this section by showing that the one-parameter family of solutions to the
entropic Poisson equation with “temperature” § = o~! converge strongly (in H'(2))
to the solution of the obstacle problem as 6 — 0.

Theorem A.13 Assuﬂe Q C R" is an open, bounded Lipschitz domain, n > 1, and
let g € H'(2) N C(RQ) such that min g0 > 0. Let ug € Hy () Nint LY () denote
the solution of the entropic Poisson equation,

(Vug, Vw) + 0(nug, w) = (f,v) forallw € H(} (), (A.60)
and let
u* = argmin E(u) subjecttou > 0in Qandu = g on 982. (A.61)
ueH\(Q)

Then ug — u* in H(Q) linearly with respect to 0. In particular,
L1V = Vg g < 6(SG) + 12D (A.62)
S IVu uglly2 gy = u . .

Proof For all functions u € LE°(2), v, w € int L°(£2), the representation theorem,
Theorem 4.1, and the three-points identity (4.19), together, give us

D(u,v) — D(u,w)+ D(v,w) = (VS(v) — VS(w), v — u). (A.63)
EOE';W
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Moreover, the characterization theorem, Theorem 4.7, tell us that (A.60) is equivalent
to

1
S (ug) = —EE/(ug). (A.64)

Next, notice that VS(1) = In1 = 0 and, provided u € H! (),
(E"(ug), u — ug) < E(u) — E(up), (A.65)

by convexity. Thus, taking u € Hé} ()N L?ro(Q) and setting v = up and w = 1
in (A.63) leads to
D(u,ug) — D(u, 1) + D(ug, 1) = (VS(ug) — VS(1), ug — u)
= (S (ug), ug — u)

= é(E’(ue), U —ug)

1
E(E(u) — E(up)) .

IA

Rerranging the inequality above and invoking Proposition 4.6, we find that
E(ug) — E(u) <60(D(u, 1) — D(u,ug) — D(ug, 1)) =6D(u, 1), (A.06)

where the second inequality arises because both D(u, ug) and D(ug, 1) are non-
negative. The proof is completed by setting u = u* and exploiting the strong convexity
of E, as done in (A.48), and noting that D(u, 1) = S(u) + |<2|. O

Appendix B Mathematical Results Il: Elementary Finite Element Error
Analysis

The purpose of this appendix is to establish certain minor a priori error analysis results
related to the stability of the subproblems encountered upon linearizing (4.44). These
results are necessary to motivate the finite elements proposed in (4.48a) and (4.48b).
In short, the main outcome of this appendix is that the finite elements are stable and,
therefore, we expect optimal high-order convergence rates for the solutions of certain
linearized subproblems. We intentionally stop short of providing a full a priori error
analysis of the nonlinear subproblems or the complete proximal Galerkin method.
Such analysis is planned for a forthcoming paper in which we additionally aim to
prove that the Proximal Galerkin method is mesh-independent.

B.1 Stability of the Linearized Subproblems

The first result of this section is that linearizations of the subproblems in Algorithm 3

are stable at the continuous level. We begin with analyzing linearizations of the
Elol:;ﬂ
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continuous-level algorithm given in (4.38). The proof uses standard Hilbert space
arguments for singularly-perturbed saddle-point problems; cf. [34, Chapter 4.3.2].

TheoremB.1 Let € L°°(Q). Then, for every f € H™'(Q), g € L*(Q), and
¢ € H& (R2), the saddle-point problem

{ (Vu, Vo) + (8, v) = (f,v) forall ve H} (), B

(u,w) — (Sexp¥,w) = (¢, w) + (g, w) forall we LZ(Q),
has a unique solution u € H(} (Q), § € L*(Q) that satisfies the stability bound

IVullp2 @) + 181 g-1() + lexp(¥/2)8l12(q)
= C(If 1@ +1V9l2@ + lexp(—¥/Dgl @), (B2)

for a constant C > 0 that is independent of \ and Q2.

Remark B.2 (Choice of norms) We are generally interested in the setting where g =
Zexp ¥, for some § € L?(), as this is the setting that appears in Newton methods,
as well as in the a priori error analysis carried out in Appendix B.2 below. In this
case, notice that the upper bounds on || Vu/||;2(q) and [|8]| -1 () are uniform in the
limit essinf ¥ — —oo. On the other hand, the stability bound on the (unweighted)
L*(2)-norm of 8, arising from (B.2) and the inequality

18172y < I exp(=¥)llzoe () Il exp(¥/2)8117 (B.3)

degenerates as essinf v — —oo, even if g = 0.

Proof of Theorem B.1 The proof proceeds in two steps.
Step 1. Existence and uniqueness of u € HOl (), 8 € LE() follows readily from the
Lax—Milgram theorem. Indeed, notice that (B.1) may be rewritten as

B((u,$), (v,w)) =(f,v) — (¢, w) — (g, w) forall ve HOI(Q) and w € LZ(Q),
(B.4)
where B((u, §), (v, w)) = (Vu, Vv) + (§,v) — (u, w) + (6 exp ¥, w) is a bounded

bilinear map B: (HJ () x L*(Q)) x (H}(Q) x L*(2)) — R. Setting v = u and
w = § in (B.4), we find that

Applying (B.3), we find that

IVull2a g, + lexp(=) I 74 o) 18122, < B((.8). .8).  (B.6)

for all (u, 8) € H& (Q) x L?(£2), which establishes the coercivity condition necessary
to apply the theorem.
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Step 2. The remainder of the proof centers on (B.5) assuming u € HO1 (R),8 € L3(Q)
are the unique solutions of (B.1). From the first equation in (B.1), we observe that

6, v) (Vu, Vv) (f,v)
Il = sup — < V) g S
UEHOI(Q) ”vv”LZ(Q) UeH()l(Q) ”VU”LZ(Q) veHOl(Q) ”vv”LZ(Q)

= |Vul 2 + 1 f -1
(B.7)

Thus, we deduce from submultiplicativity and Young’s inequality that

(@.8) = IVOl 218l -1y = IVOll L2 IVull 2@y + IVl 2@l f -1

1 1
2 2 2
= J/||V¢||L2(Q) + g”V””LZ(Q) + g”f“H—l(Q) )
for every y > 0. By similar arguments, we notice that

1 1
(frw) < W l-r@Valliag) < S0 I + S 1Vul g2,

and

A

(8,8) = llexp(=¥/2)gll 2@ exp(¥/2)8] 12(e)

1 1
SHexp(=v/2813 g, + 311 XP(/23132 .

IA

Together with (B.5), these inequalities imply that

1 1 1
2 2 2 2

1 1 2 1 2
+5<1 - ;) IVull 72 gy + 5 I exp =1/ 28172 .

Setting y > 1, we find that

Vull 2 + lexp(¥/2)8 1| L2
< C(IVOlir2@ + I1f 1) + llexp(=¥/2)gll12q))

forsome C > 0. The required result follows from combining this inequality with (B.7).
]

Our next result is that the finite elements (4.48) are uniformly stable in H'(2) x
H~'(Q); i.e., they satisfy the Ladyzhenskaya—Babuska—Brezzi (LBB) stability con-
dition

(v, w)

Bn = inf sup > 0, (B.8)
weWy, veVy, ”Vv”Lz(Q)”w”H*I(Q)
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and, furthermore, B, is strictly bounded away from zero for all mesh sizes h > 0
and (clearly) independent of 1/. Note that here and throughout, we typically treat the
symbol C > 0 as a generic mesh-independent constant.

Lemma B.3 Assume that Ty, is a shape-regular sequence of affine meshes covering
Q= UTeTh T. Let Vi, and Wy, be the finite element spaces defined in (4.48). Then
there is a constant By such that for all h > 0,

(v, w)
inf sup > By > 0. (B.9)
wew, vV, VU2 lwllg-1()

Remark B.4 (Idea of the proof) The proof proceeds independently for each finite ele-
ment pairing by constructing a so-called Fortin operator I1j, : H (2) = Vj, satisfying

ITThvll 1) = Cliviig ) (B.10a)
for some h-independent constant C > 0, and
(v, w) = (v, w) forall v e H () and w € W,. (B.10b)

It is well-known that the existence of such an operator on a fixed mesh 7, implies the
LBB stability condition (B.8); see, e.g., [73] and [34, Proposition 5.4.3]. See also [67,
Theorem 1] for the converse. Likewise, #-independence of the constant C in (B.10a)
implies the existence of the uniform discrete stability constant By in (B.9).

We employ a standard technique to construct our Fortin operators that involves
splitting the operator into two terms; cf. [34, Section 5.4.4]. In partlcular for each pair
of subspaces (Vj,, Wj,), we define I1;, = Ih + 1'[;,(1 — Ih) where Ih (SZ) — Wy
is a quasi-interpolation operator (see, e.g., [69, Section 22.4]) and 1'[;, %(Q) — Wy
is a linear operator satisfying

(ﬁhv, w) = (v, w) forall ve Lz(Q) and w € Wy, (B.10c¢)

and ||ﬁh(1 - fh)vHHl(Q) < Clvllgi(g forall v e HOI(Q). It is easy to check that
such an operator satisfies (B.10a) and (B.10b). Indeed,

ITThvll g @) < 1Znvllgr ) + I = Z)vll gy < Clivligig), (B.11)
and, moreover,

My, w) = v, w) + (7 = Z)v, w) = v, w) + (I = Tpv, w) = (v, w),
(B.12)

where the second equality follows from (B.10c).
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Proof of Lemma B.3 For simplicity, we consider only the two-dimensional setting n =
2.

Case 1. We first consider the (P p;bubble, IP,,_1-broken) finite elements defined
in (4.48a). In this setting, we define IT; satisfying (B.10c) element-wise by solving
the following local variational problem at each element 7 € 7j,:

! Find (T1,v)7 := vy € B, 12(T) such that B1%)

(vr, @)1 = (v, @)r forall ¢ € P, (7).

Recall that every function in I@’pH(T) is a polynomial vanishing on 97; cf. [76,
Section 5.1.3]. Thus, every function in this set is divisible by linear functions vanishing
on some edge of T. For instance, consider the three linear vertex functions, which
vanish at two vertices and evaluate to one at the third vertex. Define b7 to be the product
of these three functions and notice that it is positive everywhere, except on 7', and
that every function in I(E)‘)erz(T) is divisible by it. We conclude that ¢ /by € P, _1(T)

for all g € P,1»(T) and, further, |2, 2(T)| = p(p + 1)/2 = [P,_i(T)|, implying

Ppi2(T) = {bre | ¢ € Pp_1(T)).

We now consider ﬁh defined in (B.13). Let {¢; } be a basis for P,_1(T) and {br¢;}

be the corresponding basis for I?)p+2(T). Upon writing vy = br Zf(:pl—H)ﬂ Cjpj, we

see that the variational problem (B.13) is equivalent to the invertible linear system
M,’jCj:di, i=12,...,p(p+1)/2, (B.14)
where M;; = (bre;, ¢i)r,and d; = (v, ¢;)7.
Norm equivalence on R”(?*+1/2 and standard scaling arguments (see, e.g., the proof

of [70, Proposition 28.5]) can be used to show that ||M_1 Iz < C|T|~'. Meanwhile,
Holder’s inequality can be used to show that

di = / vr dx < max [lgill oo | T2 0l 2. (B.15)
T i

foreachi =1,2,..., p(p + 1)/2. Thus, we conclude that
< M7 2ldll,2 < CIT|7'/? B.16
liclez < |l lle2lldll2 < CITI™ "Nl 21y (B.16)

Shape-regularity and a similar scaling argument (see, e.g., [69, Lemmas 11.1 and
11.7]) implies that

b1 @il iy < Chy' TV, (B.17)
Combining (B.16) and (B.17), we find that
1Tl gy = ozl oy < Chyllvll 2 - (B.18)
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The next step is to specify the quasi-interpolation operator Tn: HO1 () = V. We
choose to use the operator defined in [68, Equation 6.10], which, by [68, Theorem 6.4],
has the property that

[[¢4 —fh)UHLZ(T) < Chr|Vvl2q,) forall ve HOI(Q), (B.19)
where Q7 C 2 is the union of mesh cells neighboring 7. We now find that
[T = Zwlgery < ChE' 1A = Twll oy < ClIVl2ig,) (B.20)

Note that the maximum number of elements in Q7 is bounded uniformly in 4 owing
to the regularity of the mesh sequence. Likewise, we find that

T = Tvly g < C Y IVVlla g, < ClIVUITag  (B21)
TeT

We have succeeded in checking the conditions outlined in Remark B.4 and the proof
is complete.

Case 2. We now consider the (QQ,-bubble, Q,_1-broken) finite elements defined
in (4.48b). In this case, we define ﬁhv := v € Vj element-wise by solving the local
variational problems

Find vy 7 € @pH(T) such that (B.22)
(vn, @)1 = (v, )7 forall ¢ € Q,_((T). '

Here, we notice that |(@ p+1(T)| = PP=1Q p—1(T)| and arrive at the conclusion that

Qp1(T) = {dro | ¢ € Qp_1(T)},

where dy a non-zero bubble function in Q(7") N Hé (T). Thus, for every element
T € Ty, the variational problem (B.22) is equivalent to an invertible p> x p? linear
system, and so [ := vy € Vj is well-posed. The remainder of the proof proceeds
as done in Case 1. O

Remark B.5 (Alternative subspaces) Notice that Lemma B.3 implies that the pairing
(Vi, Wp) is uniformly stable for any subspace Vj, C H(} (2) containing Vj,. Indeed,
observe that

sup —(v, w) > sup —(v, w)

> Bollwllg-1q), (B.23)
veV, HVUHU(Q) vev, ||VU||L2(Q) &

for all w € Wj,. Thus, other elements such as the (Q,4+1,Q,—1-broken) pair

proposed in Remark 4.23, are also stable owing to the embedding Qngl(T) =
Qp(T) © Qp1(T) € Qpe1 ().
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B.2 Convergence of the Linearized Subproblems

This subsection is devoted to a proof that the (IP,-bubble,P,_i-broken) and
(Qp-bubble, Q,_1-broken) elements defined in (4.48) converge at optimal rates
toward the solutions of the linearized subproblems (B.1). We note that the existence and
uniqueness of u;, and dy in the theorem below follow from a Lax—Milgram argument
similar to Step 1 of the proof of Theorem Theorem B.1.

Theorem B.6 Letuy, € V), and §, € Wy, to be the discrete solutions of the saddle-point
problem

Find uy € Vy, and 8, € W), such that

(Vup, Vv) + 6, v) = (f, v) forall v € Vj, (B.24)
(up, w) — Spexp ¥, w) = (¢, w) + (g, w) forall we W,

where Vi, and Wy, are the (P ,-bubble, P, _|-broken) and (Q ,-bubble, Q,_-broken)
finite element spaces defined in (4.48). Likewise, let r > 1 be an integer and assume
that the unique solutions of the continuous-level variational problem

Find u € H} () and § € L*(2) such that

(Vu, Vv) + (8,v) = (f, v) forall v e H}(Q), (B.25)
(u,w) — (Sexpy, w) = (¢, w) + (g, w) forall we LZ(Q),

are sufficiently regular that u € H™ 7' (Q) and § € H' (). Then, if Ty, is a shape-
regular sequence of affine meshes, it holds that

lu — unll gy + 18 = nll -1y < Crh*(Julgs+1(qy + 18las (@), (B.26)

forall 1 < s < min{r, p}, where Cy is a mesh-independent constant that remains
bounded as essinf y — —oo. Furthermore, there exists a mesh-independent constant
Cy such that

|6 — ‘Sl’lHLZ(Q) < Czhs(|u|Hs+1(Q) + |8|HS(Q)). (B.27)

However, Co — 00 as essinf y — —o0.

Proof The proof consists of two steps.
Step 1. Deriving discrete stability estimates.

Letu; € Vi, and §; € W), and define e, = uj, — u; and es = 85, — §7. Observe that
ey € Vi and es € W), are the unique solutions to

(Vey, Vo) + (es,v) = (V(u —uy), Vo) + (§ — 67, v) forall veV,,
(eu, w) — (esexpy,w) = (u —uy,w) + (8 —dp)expy,w)  forall we W,.
FolCT
e
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Setting v = ¢, and w = —es and summing the two equations, we find that
IVeull7o ) + llexp(¥/2)esl 72 q) < (R1, ew) = (Ra, €5) = (Ra, es),

where (R1,v) = (V(u—uy), Vv)+(§—687,v), Ro =u—uj,and R3 = (§—87) exp .
From Lemma B.3, we find that there exists a constant 8y > 0 such that

(es, w) (Vey, Vv) (R1,v)
Bollesllg-1(qy < sup ~o——— < —_— —_—
veVy IVl ™~ vev, VU2 vev, VY2

IA

IVeull 2y + 1R 1) -

We may now proceed to bound (R», es), (R1, e,), and (R3, es) as was done for (¢, 3),
(f,u),and (g, &), respectively, in the proof of Theorem Theorem B.1. By these means,
we arrive at the following upper bound:

IVeullr2() + lesll g-1(q) + Ilexp(¥/2)es |l 2(q)
= C(IRiln-1) + VR 2@ + | XP(=¥/2) Rsll 20y

= C(IV@ = unllg + 18 = 811 + 1 expW/26 = 8Dl 120y )

where C > 0 is a generic constant depending on Sy but not on 4 or . Finally, using
the triangle inequality and the fact that «; and §; were arbitrary, we arrive at

lu —unll i) + 118 = Snllg-1(q) + 1 exp(¥/2)(8 — dn)llL2(q)

<C (inf lu —vligiq + Inf (”fS —wllg-1o + llexp(¥/2)(6 — w)||L2(SZ))>

veVy weW),

=C (inf lu = vligr (@) + (1 + llexp(¥/2)lIL=g)) inf (I8 — w||L2(Q)) .

vevy, weW),

(B.28)

Step 2. We now bound the two terms on the right-hand side of (B.28).

The remaining part of the proof is standard, so we only consider the setting of
the (P,-bubble, P,,_;-broken) triangular finite elements defined in (4.48a). Given
that P, (7,) N HO1 () C Vi, we employ the order-p nodal interpolation operator
In: HPHQ) N HY(Q) — Pp(T;) N H(RQ); see, e.g., [69, Section 19.3]. By shape-
regularity of the mesh sequence and [69, Corollary 19.8], we have that

||U — Ihv”Hl(Q) < ChS|U|Hx+l(Q), 1 <s =< min{r, p} (B29)
Thus, we find that

inf lu— vl gy < i —Znull gy < CH* lul yosi. (B.30)
veV),
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The second term on the right-hand side of (B.28) is likewise treated with the L3()-
orthogonal projection operator Pj,: L>(Q) — W), = P,_1(7), which has the
following property [69, Theorem 18.16]:

lw—Prwl 2@ < Ch'lwlps@), 0=<s <minfr, p}. (B.31)

Error estimates (B.26) and (B.27) now follow by collecting the above bounds and
applying (B.3). O

B.3 Approximability Result

We finish this appendix with a proof of Proposition 4.19.

Proof of Proposition 4.19 Recall that u = exp v and, therefore,

Vi
Up —u=expyy —expy = ] exp s ds (B.32)
v
1
= n — w)/o exp(¥ + s(Yn — ¥))ds (B.33)
1
= (Yn — ¥)exp 1#/0 (exp(¥n — ¥))* ds. (B.34)

As such, it holds that

1
lu —nllLoe < 1Y — YnllLoell exp ¥rliLee /0 (exp Iy — YnliLe)’ds  (B.35)

= lexpyrlizee(exp | — YnllLe — 1), (B.36)

where the last line follows from the identity fol a*ds =(a—1)/Ina. O

Extended Dedication from B. Keith

Feynman once said that calculus is “the language God talks” [213]. Expanding on this
mystical statement, Strogatz has suggested that all physical laws are “sentences” in
this “language of the universe” [191]. From my perspective, if the above is true, it
must be the case that God has written his sentences in variational form.

The present work deals centrally with variational methods and a seemingly divine
entropy functional that has never failed to surprise me since the day I began this
project with Thomas. In turn, I have frequently been reminded of von Neumann’s
famous quote to Shannon: “No one knows what entropy really is” [201]. Reflecting
back on Feynman and Strogatz’s perspectives, it is helpful to think that at least God
knows, even if we do not. As such, and on the occasion of his 70th birthday, it feels only
fitting that I dedicate this work to Leszek Demkowicz; the kind and deeply religious
man who not so long ago taught me a variational perspective on the universe.
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