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MRL/MpJ mice elicit a strong macrophage response post knee injury.
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Post-traumatic osteoarthritis (PTOA) is a painful joint disease characterized by the
degradation of bone, cartilage, and other connective tissues in the joint. PTOA is
initiated by trauma to joint-stabilizing tissues, such as the anterior cruciate ligament,
medial meniscus, or by intra-articular fractures. In humans, ~50% of joint injuries
progress to PTOA, while the rest spontaneously resolve. To better understand
molecular programs contributing to PTOA development or resolution, we examined
injury-induced fluctuations in immune cell populations and transcriptional shifts by
single-cell RNA sequencing of synovial joints in PTOA-susceptible C57BL/6J (B6) and
PTOA-resistant MRL/MpJ (MRL) mice. We identified significant differences in
monocyte and macrophage subpopulations between MRL and B6 joints. A potent
myeloid-driven anti-inflammatory response was observed in MRL injured joints that
significantly contrasted the pro-inflammatory signaling seen in B6 joints. Multiple
CD206+ macrophage populations classically described as M2 were found enriched in
MRL injured joints. These CD206+ macrophages also robustly expressed Trem2, a
receptor involved in inflammation and myeloid cell activation. These data suggest that
the PTOA resistant MRL mouse strain displays an enhanced capacity of clearing
debris and apoptotic cells induced by inflammation after injury due to an increase in
activated M2 macrophages within the synovial tissue and joint space.
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Abstract

Post-traumatic osteoarthritis (PTOA) is a painful joint disease characterized by the degradation of
bone, cartilage, and other connective tissues in the joint. PTOA is initiated by trauma to joint-
stabilizing tissues, such as the anterior cruciate ligament, medial meniscus, or by intra-articular
fractures. In humans, ~50% of joint injuries progress to PTOA, while the rest spontaneously resolve.
To better understand molecular programs contributing to PTOA development or resolution, we
examined injury-induced fluctuations in immune cell populations and transcriptional shifts by
single-cell RNA sequencing of synovial joints in PTOA-susceptible C57BL/6J (B6) and PTOA-
resistant MRL/MpJ (MRL) mice. We identified significant differences in monocyte and macrophage
subpopulations between MRL and B6 joints. A potent myeloid-driven anti-inflammatory response
was observed in MRL injured joints that significantly contrasted the pro-inflammatory signaling
seen in B6 joints. Multiple CD206" macrophage populations classically described as M2 were found
enriched in MRL injured joints. These CD206™ macrophages also robustly expressed Trem2, a
receptor involved in inflammation and myeloid cell activation. These data suggest that the PTOA
resistant MRL mouse strain displays an enhanced capacity of clearing debris and apoptotic cells
induced by inflammation after injury due to an increase in activated M2 macrophages within the

synovial tissue and joint space.

Keywords: Osteoarthritis; Cartilage; PTOA; Joint; Knee; Macrophage; sScRNA-seq; Inflammation;

ACL,; Trem2; MRL/MpJ; C57BL/6J
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Introduction

In humans, nearly half of traumatic knee joint injuries progress to post-traumatic osteoarthritis
(PTOA), while the remainder spontaneously resolve without progressive cartilage degeneration,
independent of whether corrective surgery occurs. The pathogenesis and onset of the PTOA are still
not fully understood, but multiple factors such as genetics, epigenetics, and immune responses have
been implicated in disease progression [1]. This study examined the immune system’s responses to
anterior crucial ligament (ACL) injury in C57BL/6J (B6), a PTOA vulnerable mouse strain and
‘super-healer’ MRL/MpJ (MRL) mice that are resistant to PTOA [2] to better understand the
immune-driven mechanisms of resistance to joint degeneration. The MRL strain has been described
to have an extraordinary capacity for regenerating soft tissues after damage, as well as repairing
injured cartilage [2-10]. In a noninvasive tibial compression injury model, our group previously
showed that MRL joints remain resistant to cartilage degradation for at least 12 weeks post injury,
the latest time point examined [9]. These injured MRL joints also developed significantly less
osteophyte formation and displayed comparable OARSI scores to uninjured controls, indicating a
non-arthritic joint resolution post injury [9]. While the MRL joint has been histologically evaluated,
cellular and molecular interactions leading to this resistant phenotype have not yet been fully

elucidated.

The timeline of PTOA progression following joint injury can be classified into several phases
starting at trauma. After the immediate sequelae of injury, an acute/subacute phase, dominated by
inflammation, leukocyte infiltration, and tissue remodeling occurs. This inflammatory phase can
spontaneously resolve after a few weeks or months, or progress to a chronic phase that can last for

years, during which metabolic changes in the tissue progress through a clinically asymptomatic
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period that eventually leads to PTOA with severe joint pain and restricted mobility [11] that may

become debilitating without surgical intervention [12].

An increasing number of studies have shown that arthritis progression is dependent on the
immune system’s response to injury [13-17] and have implicated multiple immune cell types
including macrophages, monocytes, neutrophils, dendritic cells, B and T cells in the pathogenesis of
osteoarthritis [18-20]. Macrophages are the major immune cell type present in healthy synovial
tissues of the joint; they are essential in maintaining the integrity of the synovial cavity to keep
articular cartilage unperturbed by endogenous damage-associated molecular patterns (DAMPS) that
form from wear and tear of the joint [21]. During acute inflammation, as in the case of injury, there
is an increase in monocytes, activated macrophages, and synovial fibroblasts that enter the joint
space due to a disruption of the synovial lining [22, 23]. This influx leads to an expansion of the
synovial pannus and degradation of the articular cartilage due to a spike in metalloproteinases
secreted by infiltrating monocyte-derived macrophages [24]. Some subpopulations such as the
Trem2* (Triggering Receptor Expressed On Myeloid Cells 2) alternatively activated macrophages
have been described as anti-inflammatory and are likely to promote healing and repair of damaged
tissues [25-27]. Previously, we identified Trem2* macrophages as a major subpopulation in B6 mice
that expands in response to knee injury [28]. Characterizing key cell types like Trem2* macrophages
that prompt an anti-inflammatory phenotype is crucial in understanding immune cell function that
aids healing and prevents PTOA development, post injury. Additionally, these subpopulations have
clinical relevance as potential cell-based therapies where macrophages of appropriate phenotypes
can directly improve healing or enable the production of macrophage-derived therapeutic proteins

for long term damage control.
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To enhance our understanding of the role the immune system plays in PTOA progression we
employed single-cell RNA sequencing (sScCRNA-seq) analysis of injured and uninjured knee joints
from MRL and B6, which allowed us to characterize tissue resident and infiltrating immune cell
populations. We were able to highlight significant differences in myeloid subpopulations in the
synovial capsule and infrapatellar fat pad of MRLs after injury. The immune characterization of
‘PTOA-resistant” MRL and ‘PTOA-vulnerable’ B6 joints presented here identified several strain-
specific differences that correlate with a disease protection phenotype and should be further explored

mechanistically and therapeutically.

Materials and Methods

Experimental Animals and ACL Injury Model

MRL (MRL/MpJ, Stock # 000486) and B6 (C57BL/6J, Stock # 000664) animals were purchased
from Jackson Laboratory and bred in house using standard procedures. Ten-week-old male MRL and
B6 were anesthetized using isoflurane inhalation and subjected to non-invasive knee joint injury as
previously described [29]. Briefly, the right lower leg was placed between two platens and was
subjected to single tibial compression overload (~10-16N) at 1 mm/s displacement rate to induce an
ACL rupture using an electromagnetic material testing system (ElectroForce 3200, TA Instruments,
New Castle, DE, USA). Mice were administered a 50 pL dose of 0.9% sterile saline (Becton,
Dickinson and Company, Franklin Lakes, NJ, USA), and a body mass dependent dose of
buprenorphine (0.01 mg/kg) immediately post-injury for pain relief. Mice were then allowed normal
cage activity while on 12h light/dark cycles prior to euthanasia at terminal time points. All animal
experimental procedures were completed in accordance with the Institutional Animal Care and Use
Committee (IACUC) guidance at Lawrence Livermore National Laboratory and the University of

California, Davis in AAALAC-accredited facilities.
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Histological assessment of the articular joint

After ACL injury, right hindlimbs (n=5/group) were collected from uninjured day 0 (DO0) and injured
mice at day 7 (D7) and 4 weeks (4W) post-injury and processed for histological evaluation as
previously described [28]. Briefly, whole hindlimbs were fixed in 10% Neutral Buffered Formalin
(NBF), decalcified using 0.5 M EDTA using the weight loss-weight gain method for measuring
decalcification status [30] and processed for paraffin embedding. Joints were sectioned in the sagittal
plane at 6 pm and serial medial sections were prepared for histological assessment of joint tissue
integrity at all timepoints. Sections were stained on charged glass slides using 0.1% Safranin-O
(0.1%, Sigma, St. Louis, MO, USA; S8884) and 0.05% Fast Green (0.05%, Sigma, St. Louis, MO,
USA; F7252) using standard procedures (IHC World, Woodstock, MD, USA). Slides were imaged
using a Leica DM5000 microscope (Leica Microsystems, Wetzlar, Germany). ImagePro Plus V7.0
Software, a QIClick CCD camera (QImaging, Surrey, BC, Canada), and ImageJ VV1.53 Software

were used for imaging and photo editing [31]

OARSI Histological Scoring of Joint Degradation

Serial medial sections from B6 and MRL (n=5/strain) were stained using Safranin-O and Fast Green
as described above and subjected to a blinded semi-quantitative scoring by five individual scientists
using the OARSI Histopathology Scoring System [32]. All scores were averaged and mean score

was plotted to determine the grade of joint damage that had occurred at 4W post injury.

Immunohistochemistry
Serial medial sections from B6 and MRL (n=5/strain) were subjected to antigen retrieval with
Unitrieve (NB325 Innovex Biosciences, Richmond, CA. USA) and blocking using Background

Buster (NB306 Innovex Biosciences, Richmond, CA. USA) per manufacturer’s instructions.



132 Samples were stained with primary antibodies and incubated overnight at 4°C in a dark, humid
133 chamber. Samples were washed and incubated for 2 hours at room temperature in a dark, humid
134  chamber with secondary antibodies at 1:500. Negative control slides were incubated with secondary
135  antibody only. Stained slides were mounted with Prolong Gold with DAPI for nuclei staining

136  (Molecular Probes, Eugene, OR. USA). Slides were imaged using a Leica DM5000 microscope.
137  ImagePro Plus V7.0 Software, QIClick CCD camera (QImaging, Surrey, BC, Canada) and ImageJ
138  V1.53 Software were used for imaging and photo editing. Primary antibodies included: Trem2
139  [1:100; ab95470 Abcam, Cambridge, UK], CD206 [1:100; ab64693, Abcam, Cambridge, UK],
140  S100a8 [1:100; ab92331 Abcam, Cambridge, UK], Lyvel [1:100; ab218535 Abcam, Cambridge,
141  UK], Ly6G [1:100; ab238132 Abcam, Cambridge, UK]. Secondary antibodies included goat anti-
142 rabbit 594 (1:1000; A11037, Thermofisher, Waltham, MA. USA), donkey anti-goat 488 (1:1000;

143 A11055, ThermoFisher, Waltham, MA. USA).

144  Single cell RNA sequencing (sScCRNA-seq)

145 DO (uninjured) and joints (n>4/time point/strain) from day 1 (D1), D3, D7, 2 weeks (2W), and 4W
146  post-injury were collected from MRL and B6 mice for ScCRNA-seq analysis. Mice were euthanized
147  humanely under CO- and entire hindlimbs were dissected free of any superficial tissues such as the
148  muscle, retaining the synovial fluid between the tibia and femur. To obtain immune cells from the
149  joint without any bone marrow contamination, joint-residing cells from intact joints were released by
150  digesting the soft tissues around the joint. Cells residing in the synovial capsule were collected by
151  separating the joint between the femur and tibia into 7.5 mL of DMEM/F12 containing 3%

152  Collagenase 1 solution (Worthington Biochemical, Lakewood, NJ; CLS-1) and 100 pg/mL DNase |
153  (Roche, Basel, Switzerland; 11284932001). Hindlimbs with joint tissues were then digested while

154  shaking at 37°C for two 1-hour digests and then filtered through a 100um nylon cell strainer to
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remove large tissue fragments. After digestion, red blood cell lysis was performed with ammonium-
chloride-potassium (ACK) lysis buffer (ThermoFisher Scientific, Waltham, MA, USA; A1049201)
then CD45+ immune cells were enriched using CD45-conjugated magnetic microbeads (Miltenyi
Biotech, Bergisch Gladbach, Germany; 130-052-301) followed by Miltenyi Biotech MACS
separation with LC columns. For bone marrow cell isolation, femur and tibia were first isolated from
uninjured, 10-week-old male BL6 mice. The bones were then gently crushed to expose the marrow
cavity and thoroughly rinsed with PBS until all the marrow was flushed out of the bone. Bone
marrow cells were then pelleted, and ACK red blood cell lysis was performed. All final cell
preparations were resuspended in PBS with 1% FBS for sScRNA-seq preparation. Each SCRNA-seq
sample was comprised of pooled 3-5 mouse replicates to mitigate biological variability. Immune
(CD45") joint populations were sequenced using a Chromium Single Cell 3* V3 Reagent Kit and
Chromium instrument (10x Genomics, Pleasanton, CA). Library preparation was performed
according to the manufacturer’s protocol and sequenced on an Illumina NextSeq 500 (Illumina, San

Diego, CA, USA).

ScRNA-seq data analysis

Raw scRNA-seq data were processed using the Cell Ranger software (10x Genomics, Pleasanton,
CA, USA) as described before [28]. Raw count matrices generated with Cell Ranger were loaded
into R (v4.3.2) and merged into a single object for downstream analysis using Seurat (v4.3.0) [33].
Cells were retained based on the following filtering criteria: number of counts > 500; number of
genes > 200; mitochondrial gene percentage < 10. Genes expressed in less than 10 cells were
removed. Data was normalized using the "NormalizeData™ function with default parameters. Three
thousand highly variable genes (HVGs) were identified using the “vst” method. Before dimension

reduction the data was scaled using only HVGs with following variables regressed out: number of
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counts and mitochondrial percentage. After scaling principal component analysis (PCA) was
performed and principal components (PCs) 1-50 were used for subsequent analysis. Data integration
i.e. batch correction was performed using Harmony with the grouping variable being “orig.ident”
which contained all individual samples [34]. Clusters were identified using "FindNeighbors™ and
"FindClusters™ with the reduction parameter set to “harmony” and resolution 0.2 which was used for
labeling the clusters. A non-linear dimensional reduction was then performed via uniform manifold
approximation and projection (UMAP) with the following parameter modifications: reduction =
“harmony”’; umap.method = “uwot”; spread=4. Cluster marker genes were identified using
"FindAllIMarkers™ with the parameter only.pos set to true. Monocytes and macrophages (Mono/Mac)
and neutrophils were all extracted and analyzed further following the same methods as above with
the following differences: Mono/Mac (2000 HVGs, 1-40 PCs, resolution 0.5); Neutrophils (2000
HVGs, 1:40 PCs, resolution 0.5). Differential gene expression analysis between mouse strains was
conducted by isolating the relevant cell type, assigning subset identity to strain, and applying
"FindAllIMarkers™ with only.pos set to true. For neutrophil subpopulations, gene ontology (GO)
enrichment analysis was performed on up to 100 differentially expressed genes per cluster using
clusterProfiler(v4.10.0) [35, 36]. For genes differentially expressed between MRL and B6 in specific
macrophage subpopulations (log2FC > 0.25; FDR <0.05), GO analysis was performed using
ToppGene Suite [37] and enrichment dot plots were generated using custom R scripts. Pathway and
transcription factor activity inferences were performed and visualized with decoupleR (v2.8.0) and
SCpubr (v2.0.2) [38, 39]. All data wrangling and analysis was performed in R (v4.3.2) using
tidyverse (v2.0.0) functions. Data visualization leveraged tools already mentioned above and a

mixture of khroma (v1.11.0), ggthemes (5.0.0), and Rcolorbrewer (v1.1.3) for color palettes [40, 41].
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Neutrophils from DO B6 joints were compared to those from DO bone marrow (BM) isolates. BM
immune scCRNA-seq data was integrated with immune scRNA-seq data from DO B6 joints using
Seurat’s anchor-based canonical correlation analysis (CCA) integration method. CCA integration
was performed by identifying 2000 HVGs per dataset, followed by applying
“SelectIntegrationFeatures’, "FindIntegrationAnchors’, and "IntegrateData” functions using default
parameters. After CCA based integration data processing followed the steps previously described
above.

Single cell trajectory analysis

Single cell pseudo-time trajectories of immune cell subpopulations were constructed with Monocle
[42]. Following analysis of ScRNA-seq data in the Seurat object format; the expression data,
phenotype data, and feature data were extracted for constructing Monocle's “CellDataSet” object
utilizing the “newCellDataSet” function. Highly variable genes from within the Seurat object were
selected as ordering genes. The Monocle “reduceDimension” function was used to reduce the
dataset's dimensionality using the DDR algorithm. Ordering of cells along the computed trajectory

was carried out using the “orderCells” function with default parameters.

Perfusion of mice

For the perfusion of blood, mice were anesthetized by administering isoflurane (4-5% in 100%
oxygen via a nose cone. Once mice were no longer responsive to tail pinch reflex, the thoracic cavity
was opened through the diaphragm, and ribs were cut bilaterally to expose the heart. A butterfly
needle was then inserted into the left ventricle and secured. Next, a small incision was made in the
right atrium to create an outlet for effluent. With the aid of a perfusion pump (flow set at 10ml/min),

mice were perfused with 20ml of sterile PBS + 0.1% heparin.

Flow cytometry analysis
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Single cell suspensions from injured and uninjured knee joints were generated as described above in
the sScCRNA-seq section (n=3-5/group). Cells were blocked using rat anti-mouse CD16/CD32 (Stock
# 14-0161-82, Mouse Fc Block; Thermo Fisher, Waltham, MA. USA) at 4°C for 10 minutes then
incubated with an antibody cocktail (Thermo Fisher) specific for macrophage characterization
containing the following antibodies at a 1:100 dilution: PerCP CD45 monoclonal antibody (Clone:
EM-05, Stock# MA110234), eFluor 506 CD11b monoclonal antibody (Clone: M1/70, Stock# 69-
0112-82), PE F4/80 monoclonal antibody (Clone: QA17A29, Stock 157304), APC CD206/MMR
monoclonal antibody (Clone: MR6F3, Stock# 17-2061-82), FITC TREM2 monoclonal antibody
(Clone: 78.18, Stock# MA528223) and DAPI for viability staining. To identify proportions of
myeloid cells, isolated cells from the knee joints at all timepoints were stained using Biolegend
antibodies at 1:100 dilution: APC/Cy7 anti-mouse CD45 antibody (Clone: 30-F11), FitC anti-
mouse/human CD11b antibody (Clone: M1/70), Brilliant Violet 510 anti-mouse Ly-6C (Clone:
HKZ1.4), APC anti-mouse Ly-6G (Clone: 1A8) and DAPI for viability staining. Flow cytometry was
also performed on perfused mice and neutrophil populations were identified within the joint cell
suspensions using the following antibodies (BioLegend, San Diego, CA USA): anti-mouse APC
CD45 antibody (Clone: 30-F11), anti-mouse FITC CD11b (Clone: M1/70), and anti-mouse
APC/Cyanine7 Ly6g (Clone: 1A8) at a 1:100 dilution in PBS +1% FBS and DAPI was used as a

viability stain. All flow cytometric analyses were performed on a BD FACSMelody system.

Analysis software and statistical analysis

Statistical analyses were performed using GraphPad Prism (n=3-5 biological replicates per strain). A
one-way ANOVA and post-hoc Bonferroni’s Test were used to assess statistically significant
differences of mean expression values. OARSI scoring is presented from 4 biological replicates per

strain and scored by 5 individual scientists. A one-way ANOVA and post-hoc Bonferroni’s Test
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were used to assess statistically significant differences of mean expression values. uCT statistical
analysis was performed using two-way ANOVA and Student’s T-test with a two-tailed distribution,
with two-sample equal variance (homoscedastic test). Post-hoc Bonferroni’s Tests were used to
assess statistically significant differences of mean expression values. All results were considered

statistically significant for p-values <0.05.

Results

ScRNA-seq reveals differences in knee joint immune landscape after injury in MRL and B6 mice.
Consistent with prior reports [6, 43-45], B6 mice showed visible proteoglycan loss, fibrillation, and
significant erosion to the calcified cartilage layer by 4W post injury, while injured MRLs retained
their pre-injury cartilage thickness with non-significant decreases in proteoglycan staining (Figure
1A, B). Single cell analysis of immune (CD45") cells from uninjured (DO0), and D1, D3, D7, 2W, and
4W post injury joints identified changes in the immune profile of B6 and MRL mice before and after
knee injury (Figure 1C, D). Seven immune cell clusters including: (1) Neutrophils, (2)
Monocyte/Macrophages (Mono/Mac), (3) B cells, (4) Proliferating Neutrophils, (5) Proliferating
Myeloid cells, (6) T/NK cells, and (7) Dendritic cells were identified and had specific changes to
their populations over the injury time course (Figure 1D-F). All clusters were assigned identities
based on the expression of known immune markers (Figure 1F). Specifically, cluster 1 was labeled
as neutrophils due to high expression of S100a8 and S100a9. Cluster 2 was labeled as
monocytes/macrophages (Mono/Mac) due to high expression levels of Csfrl, Cd14 and Adgrel.
Cluster 3 was labeled B cells for robust expression of Ighm, Cd19 and Cd79a. Clusters 4 and 5 were
high in makers of proliferation and cell cycle (Top2a, Mki67) and cytoskeleton rearrangement
(Stmn1, Tubb), and were classified as proliferating neutrophils and myeloid, respectively based on

their distinct expression of neutrophil markers S100a8/9 in 4 and macrophage marker Csfrl in 5.
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T/NK cells clustered together in population 6 and were labeled based on their expression of Nkg7
and Thyl. Lastly, cells in cluster 7 were classified as dendritic cells due to their high expression of

Siglech and Ccr9 (Figure 1F).

Figure 1. Assessment of changes associated with PTOA onset in MRL and B6. (A) PTOA resistant
MRL (top row) showed little loss of staining after injury in the articular cartilage of the femur and
tibia (red) indicating little to no loss of proteoglycan content in the cartilage matrix (top right, *
asterisk). PTOA susceptible B6 (bottom row) showed severe degradation of bone (blue,) and
cartilage (red) in the tibia, and loss of some cartilage in the femur after injury (bottom right, A
triangle). Scale bar = 100um. Magnification 20X. F-Femur, T-Tibia. n=5/ group. (B) Blinded
OARSI scoring of uninjured (DO0) and injured (4W) B6 and MRL joints. (*** p<0.001;
****n<0.0001). (C) Schematic of the scRNA-seq pipeline. Uninjured murine joints were collected at
Day 0 (D0), injured joints were collected at Days 1- (D1), 3- (D3), 7- (D7) days, 2- (2W) and 4-
(4W) weeks following tibial compression and all prepared for ScRNA-seq. Digested immune cells
(CD45+) were enriched before conducting scRNA-seq. (D) Uniform Manifold Approximation and
Projection (UMAP) plot representing seven immune cell types within the synovial joint at all
timepoints examined. (E) UMAP plot from panel D colored based on experimental groups. (F) Dot
plots identifying specific markers for each cell type. Size of the dot indicates cellular abundance and

color indicates expression.

In uninjured joints, the proportion of the immune cell population represented by neutrophils
was the largest in both strains, accounting for 58.7% and 71.9% of the total immune cells sequenced
in B6 and MRL, respectively (Figure 2A). The remainder of the populations segregated as follows

in uninjured B6 and MRLs: 10.1% and 9.1% Mono/Macs, 18.8% and 7.6% B cells, 3% and 3.5%
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proliferating myeloid, 5.3% and 3.5% proliferating neutrophils; 3% and 3.9% T/NK; ~1% and 0.5%
dendritic cells. After injury, strain specific trends were observed for several cell types, with the
largest population shifts occurring at D3 for nearly all identified cell types (Figure 2A, Table S1).
Prior to injury, the Mono/Mac populations were comparable in both strains, but a significant shift
was observed at D3 post injury, where the proportion of these cells increased to 62.4% in MRL, and
35.5% in B6, then decreased by D7 (Figure 2A, Table S1). At D3, the proportion of neutrophils
sequenced decreased by 48.5% and 14.2% from baseline levels, in MRL and B6, respectively
(Figure 2A). Additionally, the proportion of total proliferating myeloid cells increased by 5.2% from

baseline in MRL, and 2.4% in B6 (Table S1).

Figure 2. Time course of immune cell population changes post injury. (A) Percent of total for each
immune population identified through scRNA-seq, determined as a proportion of all immune cells
sequenced. Colors based on immune cluster identities denoted in Fig. 1D. (B) Flow cytometry gating
strategy for Ly6c+ monocytes/macrophages (Mono/Mac) and neutrophil populations. (C) Trend of

Ly6c™ monocytes and macrophages after injury. (D) Trend of Ly6g™ neutrophils after injury.

Since neutrophils and Mono/Macs showed the most dramatic population shifts and strain
differences after injury, we focused our analysis on these two cell types. Flow cytometry confirmed
that the proportion of CD45"CD11b*Ly6c* Mono/Macs in the synovial joint gradually increased in
both strains, peaking at D3, and returning close to pre-injury levels by 4W (Figure 2B, C). A
corresponding decrease in neutrophils was also observed by flow cytometry (Figure 2B, D). We also
noted that MRLs had a significantly higher proportion of Mono/Macs at D1, D3 and D7 compared to

B6 while B6 mice had more neutrophils than MRL specifically at D3 (Figure 2A, C, D).

Neutrophils display strain specific changes in response to knee injury.



314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

Neutrophils were the major immune cell type identified in both MRL and B6 joints. These
cells showed enrichment for several immune modulators including 111b, a key cytokine implicated in
osteoarthritis pathogenies and Csf1, a key regulator of monocyte to macrophage differentiation
(Figure 2A, D, S1A). To rule out the possibility that the neutrophils identified in the single cell
digests were from circulation and determine whether the decrease in neutrophil proportion observed
after injury corresponds to a true reduction in total neutrophils or is merely a consequence of an
increase in infiltrating cells, such as Mono/Macs, flow cytometry was performed following perfusion
on an additional cohort of B6. The absolute and relative number of neutrophils was analyzed at DO
and D6 post injury. We found neutrophils to contribute to ~70% of the immune cells at DO after
perfusion and a reduction in the proportion of neutrophils was observed at D6 compared to DO via
flow cytometric analysis (Figure 3A). However, our analysis showed that the total neutrophil
counts were not significantly different between DO and D6 joints (Figure 3B), suggesting that the
reduction in the relative proportion of neutrophils after injury is likely due to infiltration of other

immune cells into the joint.

Figure 3. Injury induced changes in MRL and B6 neutrophils. A) Flow cytometry data showing
the abundance of neutrophils relative to total immune cells in the knee joint digest after perfusion.
B) Flow cytometry data showing the absolute counts of neutrophils in the knee joint digest after
perfusion. C) UMAP plot showing the neutrophil subpopulations identified by sSCRNA-seq. D)
Feature plots showing key markers of various neutrophil subpopulations. E) Changes in the
proportion of various neutrophil subpopulations in response to injury in B6 and MRL, relative to
total immune cells sequenced. F) Dot plot showing ontology processes enriched in each neutrophil
subtype. G) Heatmap showing key genes differentially expressed between neutrophil subpopulations

and between mouse strains.
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Neutrophils are highly heterogeneous with several developmental stages [46]. Re-clustering
of all neutrophils (cluster 1 in Figure 1D) identified four subtypes with distinct transcriptional
profiles: (1) Ccrl2" neutrophils which showed strong enrichment for 111b; (2) Mmp8™ neutrophils; (3)
Chil3* neutrophils and (4) IfnR* neutrophils (Figure 3C-D, S1B-C). Relative proportions of all
neutrophil subtypes were lower in MRL at D3 compared to BL6 (Figure 3E). Furthermore, gene
expression signatures of Chil3™ neutrophils (Chil3, Cebpe, Ngp, Ltf, Cd177) correlated with
previously established signatures of immature neutrophils while genes enriched in Ccrl2* and IfnR*
neutrophils (Ccl6, Csf3r, I11b, Fthl, Ifitm1, Ifitm2, Btgl, Srgn, Msrb1) correlated with mature
neutrophils. Mmp8™ neutrophils had a signature (Mmp8, Lgals3, Retnlg) of an intermediate stage of
neutrophil differentiation [47] (Figure S1C, Table S2). A gene ontology analysis identified
enrichment of ‘neutrophil activation’ related genes in Mmp8™* and Chil3" neutrophils while Ccrl2*
neutrophils showed enrichment for processes such as ‘cell migration” and ‘response to chemokines’
(Figure 3F).

Further analysis of differentially expressed genes between various neutrophil subtypes
showed that Ccrl2" and IfnR™ neutrophils in B6 joints expressed higher levels of inflammatory
cytokines, including 1114, Tnf and 1115, when compared to MRL. Meanwhile, 1118rap, Mmp9 and
I11rn, an endogenous IL1 receptor antagonist, [48] were highly expressed in MRL joints (Figure
3G, Table S3). MRL joints also had increased expression of Csfl, a critical regulator of macrophage

differentiation, when compared to B6 (Figure S1D).

Although neutrophils constituted ~70% of immune cells at DO in both our scRNA-seq and
flow cytometry data, immunohistochemical analysis of joint tissue sections only showed a
substantial number of cells expressing neutrophil markers S100a8 or Ly6g in the joint after injury

(Figure S2A-B). To determine if the neutrophils in our digests were bone marrow-derived, we



360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

computationally compared scRNA-seq derived transcriptome profiles of the neutrophil populations
from the DO synovial joint digest to BM derived neutrophils. Similar to synovial joints, Ccrl2*,
Mmp8™, Chil3™, IfnR and proliferating neutrophils were also detected in BM however, the synovial
joint had a significantly higher proportion of mature Ccrl2* neutrophils while the BM had more
proliferating and immature neutrophils (Figure S2C-F). We also found that synovial neutrophils
expressed higher levels of inflammatory cytokines such as Tnf, 1114, Ccl3 and Ccl4 when compared
to BM derived neutrophils. BM derived neutrophils also showed enrichment for immature neutrophil
markers Elane, Mpo, Chil3, Lcn2 and Ly6g (Figure S2G) [47], suggesting that neutrophils from the
joint have a different molecular profile than the BM neutrophils. Additionally, histological analysis
of the digested synovial joint indicated that the bones remained intact after digestion while the soft
tissue around the knee joint was completely digested (Figure S2H). This suggests that the
neutrophils in our digest likely originate from tissues around the synovial joint and not from BM

contamination.

Injured MRL joints harbor significantly more macrophages than B6 injured joints

The Mono/Mac population showed the most dramatic increase in both B6 and MRL after
injury. To enhance our understanding of the roles that monocytes and macrophages have in PTOA
onset, Mono/Mac cells from the single cell analysis were extracted and further analyzed to
investigate strain-specific changes in these cell populations, longitudinally. Eleven subpopulations
(Figure 4A-B) with distinct gene expression profiles (Figure 4C, Table S4) were identified; all
cells shared high expression of monocyte and macrophage markers Csflr and Cd14 (Figure S3A).
Of these eleven subpopulations, clusters 4, 5, 7, 8 and 10 had transcriptomic profiles representative
of monocytes (Figure 4A, C). Clusters 4 was identified as Ly6c2" monocytes based on the robust

expression of Ly6c2 [49] and Plac8 [50] (Figure 4C, D). Cluster 5 expressed high levels of
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neutrophil markers S100a8 and S100a9, in addition to Ly6¢c2 and Plac8 (Figure 4A, C, Figure S3A-
B) and was named S100a8" monocytes. Cluster 8 cells displayed a unique expression profile. These
cells showed low-moderate expression of monocyte markers such as Ly6c2 and Plac8, as well as
enrichment for neutrophil markers such as S100a8 and S100a9 and B cell markers such as Cd79a
and Igkc. It has previously been reported that pre/pro-B cells can differentiate into macrophages [51]
and this cluster was identified as S100a8*Cd79a*. Cluster 7 expressed both monocyte and
macrophage markers as well as high levels of genes involved in interferon signaling (Figure 4C-D,
S1A-B). This cluster was identified as interferon responsive Mono-Mac (IfnR Mono-Mac). Cluster
10 showed enrichment for genes such as Cd300e, Ace and Fabp4, in addition to moderate Plac8
expression and was identified as Cd300e* (Figure 4C, S3C). When examining changes in various
monocyte populations in response to injury, we observed a sharp increase in Ly6c2" and S100a8*
monocytes immediately after injury, in both strains (Figure 4D, Table S5). Interestingly, B6 had a
higher proportion of Ly6c2* monocytes relative to MRL at most timepoints examined while MRL

had higher proportion of S100a8" monocytes (Figure 4D, Table S5).

Figure 4. Distinct gene expression profiles of monocyte and macrophage subpopulations.

(A) UMAP plot of monocyte and macrophage subpopulations identified from the parent Mono/Mac
single cell cluster, colored by cell type. (B) UMAP plot of monocyte and macrophage subpopulations
identified from the parent Mono/Mac single cell cluster, colored by experimental group. (C) Dot
plots representing genes used to distinguish monocyte and macrophage subpopulations. (D) Feature
plots of key monocyte and macrophage markers. (E) Changes of monocyte and macrophage
subpopulations after injury from scRNA-seq data of B6 (solid line) and MRL (dashed line). The cell
type proportions were calculated relative to all immune cells sequenced. Colors representative of

clusters in Panel A.



406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

Cluster 6, monocyte-derived Dendritic Cells (MoDCs), were high in Cd209a, Cd14 as well
as MHC class Il genes involved in antigen presentation such as Cd74, H2-Abl and H2-Aa (Figure
4C, S3A-B). We also identified another small dendritic cell cluster (DC; cluster 9) which had high
expression of MHC class 11 genes including Cd74 and H2-Ab1 and accounted for less than 2% of

Mono/Macs at any timepoint examined (Figure 4C, S3A-C).

Clusters 1 and 3 expressed high levels of macrophage marker Adgrel (F4/80) and the
proportions of both clusters increased dramatically after injury in both strains (Figure 4C-E).
Moreover, both subpopulations had high expression of Trem2, a gene that has been previously
shown to promote myeloid cell phagocytosis [52-54], but Trem2 was significantly enriched in cluster
1 (Figure 4C, S3A-B). Cluster 1 also showed enrichment for Fcrls, Gas6, Apoe, C1ga and C1gb and
was named Trem2*Fcrls™. Cluster 2 highly expressed Cavl (Caveolin-1) (Figure 4C), a gene shown
to promote monocyte to macrophage differentiation [55] as well as Spp1, Vim, Argl, and S100a4;
these macrophages were labeled Spp1™Cavl™. We also noted that clusters 1 and 2 were moderately
comparable transcriptionally (Figure S3B) and clustered closely together in UMAP projections
(Figure 4A). Mrcl (Cd206), a marker of alternatively activated macrophages, also known as M2
macrophages, was highly expressed in the Trem2*Fcrls™ cells, while the Spp1*Cavl* population had
very low expression (Figure 4D, S3B). The proportion of Spp1*Cav1l" population peaked at D1 in
B6 while both Trem2*Fcrlsand Sppl*Cavl macrophage populations peaked at D3 in MRL (Figure
4E, Table S5). Together these two macrophage subpopulations accounted for over 45% of all

Mono/Macs at D3 in both strains (Figure S3C).

Cluster 2 had high expression of Mrc1, as well as several tissue resident macrophage markers

including Lyvel, Folr2, Vsig4 and Timd4 [56, 57]. This cluster was identified as Lyvel*Folr2*
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macrophages. Trem2 and its ligand Apoe were robustly expressed in this cluster (Figure 4C, S3A-
B). MRLs had a significantly higher proportion of Lyvel*Folr2" macrophages compared to B6 at
nearly all timepoints examined (Figure 4E). Previously, our group identified that resident Lyve1Mo"
macrophages localize primarily at the synovial lining within the uninjured knee joints of B6 mice in
a highly organized fashion but infiltrate the synovium following injury and appear disorganized in
the tissue (Figure S4) [28]. In this study, we also identified Lyvel® cells at the synovial lining of the
MRL joint (Figure S4) but unlike B6, these cells remained highly organized post injury.
Lyvel*Folr2" macrophages expressed high levels of bone and cartilage anabolic growth factors,
including Bmp2 and Igfl (Figure S3B), suggesting that they may have a protective role in PTOA

onset [27, 54, 58, 59] and may contribute to the resistance to PTOA seen in MRL joints.

Trem2*" macrophages have decreased inflammatory signaling in MRLs

While Trem2* Fcrls* and Sppl*Cavl® subpopulations were essentially nonexistent in the
uninjured joint, these populations displayed the largest shifts post injury in both strains (Figure 4D)
suggesting that they are recruited to the joint tissue after injury. We observed Ly6c2 expression in
Trem2™ Fcrls™ and Spp1™Cavl* macrophages at D1 (Figure S4A) as well as an increase in Mrcl
expression primarily in Trem2™ Fcrls™ cells at D3-D7 suggesting that they are monocyte-derived,
M2 polarized macrophages (Figure 5A, Figure S4B). This observation matched the population
shifts observed in the Ly6c™ Mono and Trem2* Fcrls* subpopulations (Figure 4E). However, it has
been suggested that resident synovial macrophages may also polarize into Trem2™ Fcrls* and
Sppl*Cavl* macrophage subpopulations [60]. To determine the differentiation trajectory of these
recruited Trem2*™ macrophage subpopulations, we conducted a pseudo-time trajectory analysis with
Trem2™ Fcrls*, Sppl*Cavl®, IfnR* and Lyvel™ macrophages and Ly6c2* monocytes; S100a8*

monocytes were excluded from this analysis as they appeared to be highly distant from Trem2*
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macrophages [28]. Pseudo-time analysis showed an expansion of Ly6c2" monocytes along the
differentiation trajectory in the direction of Trem2* Fcrls™ and Sppl*Cavl* macrophages, primarily
at D1 and D3 (Figure 5A, S5). Also, Ly6c2 expression in these expanding cells coincided with the
expression of Trem2, Argl, a gene enriched in Spp1*Cav1™ specifically at D1 and D3, and
macrophage marker Adgrel (F4/80) (Figure 5, S5). We observed an increase in Mrcl expression in
these expanding cells primarily at D3, suggesting a monocytic origin for Trem2* Fcrls* and
Sppl*Cavl® macrophages (Figure S5). However, Lyvel® resident macrophages may also polarize
into Trem2*Fcrls™ and Sppl*Cavl* phenotype especially at later post-injury timepoints (Figure 5,
S5).

Figure 5. Pseudo-time differentiation trajectory analysis of Trem2*Fcrls* and Spp1*Cavl*
macrophages from MRL and B6. (A) Pseudo-time trajectory analysis was conducted to determine
potential origin of Trem2*Fcrls* and Sppl*Cavl* macrophages from Ly6c2* monocytes or tissue
resident macrophages. The relative position of cells across the pseudo-time differentiation trajectory
is depicted in the figure. Each point is a cell and is colored according to its cluster identity. For both
MRL and B6, cells along the trajectory were divided into six groupings based on experimental
timepoints (D0-4W). An expansion of Ly6c2* monocytes along the trajectory towards macrophages
was observed after injury, primarily at D1 and D3 in both strains (indicated by arrows). B)
Superimposition of the expression of monocyte marker Ly6¢c2 on the pseudo-time trajectory. Each
point is a cell and is colored according to its pseudo-time value. Circle size represents the gene
expression level. C) Superimposition of the expression of Argl, a gene specifically enriched in
Sppl*Cavl™ macrophages at D1-D3, on the pseudo-time trajectory. Expansion of cell populations
expressing high levels of Argl in the monocyte to macrophage direction was observed after injury

(indicated by arrows).
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To better understand transcriptomic changes in Trem2*Fcrls™ and Spp1*Cavl* macrophages
between strains and in response to injury, we performed differential expression analysis using Seurat
(Table S6). Our analysis showed that Trem2*Fcrls* and Spp1*Cav1" macrophage subpopulations
from B6 expressed significantly higher levels of genes associated with cytokine and pro-
inflammatory signaling including Ccl3, Ccl4, Ccl6, Ccl9, 1l11b, Osm and Tnf relative to MRL
(Figure 6A). Gene ontology analysis of genes upregulated in B6 Trem2*Fcrls* compared to MRL
identified enrichment for biological processes such as ‘leukocyte migration’, ‘cytokine production’,
‘inflammatory response’, ‘type Il interferon production’ and ‘tumor necrosis factor production’
(Figure 6B), indicating an enrichment of pro-inflammatory functions. These processes were also
enriched in B6 Spp1*Cav1* macrophages compared to MRL. In addition, Spp1™Cav1l* macrophages
from B6 showed enrichment for genes associated with ‘chronic inflammatory response’, ‘leukocyte
proliferation’ and ‘regulation of interleukin-6 production’ compared to MRL (Figure 6B).

Genes upregulated in MRL Trem2*Fcrls* and Spp1™Cavl* macrophages compared to B6
showed enrichment for processes such as ‘wound healing’, ‘leukocyte activation’, ‘osteoclast
differentiation’, ‘phagocytosis’, ‘mature B cell differentiation’, ‘response to oxidative stress’,
‘regulation of cell shape’, ‘membrane organization’ and ‘glutathione metabolic process’ (Figure
6B). In addition, Spp1*Cav1l" macrophages from MRL showed enrichment for several lipid-
associated processes including lipid transport’, ‘lipid storage’ and ‘lipid localization’ (Figure 6B).
Lipid transport or metabolism-associated genes enriched in MRL included Cavl, Pltp, Trem2,
Abcgl, Plin2, Aigl and Vps13c (Table S7). We also identified multiple genes that were significantly
higher (Vwaba and Glol) or exclusively (Hal, and 1fi202b) expressed in MRLs (Figure 6A, C).

Many of these genes appeared to be differentially expressed between all MRL and B6 myeloid
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subpopulations and these genes may represent inherent strain specific differences (Figure 6A, C,

STA).

Figure 6. Trem2 expressing macrophages have distinct transcriptional profiles and activation
states in MRL and B6. (A) Heatmap of a subset of genes differentially expressed in Trem2™ Fcrls™
and Sppl*Cavl* macrophage populations from MRL and B6 joints (B) Enriched ontology terms
associated with genes differentially expressed between MRL and B6 in Trem2* Fcrls™ and
Sppl*Cavl™ clusters. (C) Selected genes that are highly or exclusively expressed in MRL Trem2™*
Fcrls™ and Sppl* Cavl™ populations. (D) Pathways enriched in Trem2-expressing macrophage

subpopulations.

A pathway enrichment analysis revealed differential enrichment for several pathways
between macrophage subpopulations and mouse strains (Figure 6D). Trem2*Fcrls* macrophages
from B6 showed strong enrichment for TNF, NFKB, JAK/STAT and EGFR signaling compared to
MRL, while MRL macrophages showed enrichment for VEGF signaling (Figure 6D). B6
Sppl*Cavl® macrophages showed enrichment for hypoxia pathway, MAPK, TNF, NFKB, EGFR,
PI3K and JAK/STAT signaling compared to MRL (Figure 6D). We also observed that, in both
strains, TNF, NFKB, JAK/STAT and EGFR signaling was enriched in Trem2* Fcrls™ macrophages
relative to Spp1™Cavl* macrophages while Spp1*Cavl* macrophages showed enrichment for
hypoxia, MAPK and VEGF signaling (Figure 6D). Consistent with this, a transcription factor
binding motif analysis identified hypoxia transcription factors Hifla and Hif2a (Epasl) as enriched
in Sppl*Cavl™ macrophages, with the highest enrichment in B6 mice (Figure S7B). Hifla gene
expression was also enriched in Sppl™Cavl* macrophages along with multiple genes encoding for
glycolytic enzymes such as Ldha and Enol, potentially regulated by Hifla [61, 62] (Figure S7C).

In addition to Mrcl, Trem2*Fcrls* macrophages showed strong enrichment for several other genes
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highly expressed in M2 macrophages such as 1110, Marcks and Cd83, which were also shared by

Lyvel™Folr2" resident macrophages (Figure S7C, S3B).

Sustained Trem2* M2 macrophage populations in MRLs may promote tissue repair

To further identify trends in macrophage infiltration and M2 activation that may contribute to
MRL’s resilience to PTOA development, Mrcl- and Trem2— expressing macrophage subpopulations
from scRNA-seq data were compared between B6 and MRL across all timepoints (Figure 7A).
Uninjured MRL joints had a higher proportion of Mrc1™ cells than B6 and sustained a consistently
higher proportion at all timepoints indicating an increase in macrophage polarize towards an M2
phenotype in this strain (Figure 7A). The majority of Mrc1™ cells also expressed high levels of
Trem2 in both strains (Figure 7A, S3B). The increased levels of Mrc1*Trem2* cells in the MRL
joints suggest that M2 macrophages expressing Trem2 may play a vital role in injury response and

promote the enhanced healing associated with this strain.

Figure 7. Flow cytometry and immunohistochemistry analysis confirm an increased presence of
CD206*Trem2* macrophages in MRL knee joints. A) Proportion of Mrc1™ and Mrc1*Trem2*
Mono/Macs relative to total immune cells sequenced in both B6 (solid red line) and MRL (dotted
blue line) across all injury timepoints. (B) Representative gating scheme for the analysis of
macrophages (CD45"F4/80™) that have shifts in CD206 and Trem2 expression between strains
within digested synovial joint immune populations at D7. (C) Proportion of cells in B6 and MRL
with macrophage expression profiles of CD45"F4/80"CD206 " Trem2*, n=5; **p<0.01,
***p<0.001, ****p<0.0001, n=3-5/ group. (D) Immunohistochemistry evaluation of macrophages
expressing Trem2 in MRL and B6 at DO (uninjured), D7 post injury and 4W post injury. n=5/

group. Scale Bars = 200um, 20x Magnification, Red — CD206, Green — Trem2, Blue — Nuclei.
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Further validation of Mrcl (CD206) and Trem2 expression was conducted by flow cytometry
(Figure 7B-C). Viable CD45"F4/80" cells were gated as the macrophage population and then
analyzed for shifts in CD206 (Mrcl) and Trem2 protein expression in uninjured and D7 post injury
joints (Figure 7B-C). Consistent with the SSRNA-seq data, we observed a large spike in the
CD206"Trem2" population at D7 in both strains. In addition, MRLs had significantly more
CD206"Trem2" macrophages than B6 at D7 post injury (Figure 7C). Shifts in CD206"Trem2*
macrophages were also validated at the protein level through immunofluorescence of synovial joints
(Figure 7D). In uninjured joints, MRL had a stronger Trem2 expression than B6 (Figure 7D; DO0),
and robust expression of CD206 was seen throughout the synovium of the knee joint compared to
B6. At D7, CD206"Trem2* expression was higher in MRL joints than B6 as indicated by the yellow
co-expression of Trem2 and CD206 (Figure 7D).

Discussion

This study sheds new light on the important modulatory role immune cells have in the prevention or
onset of chronic joint degeneration. SCRNA-seq and a non-surgical injury method allowed the
unbiased examination of the immune heterogeneity in the synovial knee joint of PTOA-susceptible
B6 mice and PTOA-resistant MRL mice [28, 45, 63, 64]. Previous studies have implicated
infiltrating myeloid-derived populations, such as neutrophils and monocytes, as culprits of a pro-
inflammatory joint state during osteoarthritis progression [1, 65, 66]. These cells are responsible for
the production of inflammatory cytokines and chemokines, such as IL-15, TNFa, IL-6, IL-10, and IL-
15, as well as many others from the CCL/CXCL family [66]. Many of these molecular signals may
be responsible for the infiltration of innate (macrophages, neutrophils, NK) and adaptive (T, B)
immune cells into the synovial joint. Here, we characterized resident and infiltrating monocyte and

macrophage subpopulations as well as neutrophils present in the synovial knee joint of MRL and B6



565 mice. Previously, Ly6c"9" monocytes have been shown to be recruited to the joint in response to
566  traumatic knee injury and act as pro-inflammatory effector cells in tissues with perturbed

567 homeostasis [67]. We found B6 joints to consistently have higher numbers of Ly6¢c* monocytes than
568  MRL while the MRLs had an increased number of M2 macrophages.

569 A major M2-like macrophage population identified in the synovial joint was the resident
570  Lyvel™ macrophages. In addition to established tissue resident macrophage markers such as Lyvel,
571 Folr2 and Vsig4, Lyvel+ macrophages expressed Trem2, its ligand Apoe and several growth factors
572  with potential chondroprotective functions such as Igfl and Bmp2 [68, 69]. Trem2 expression has
573  previously been associated with macrophages responsible for forming a protective barrier in synovial
574  joints [21, 28]. Trem2" alternatively activated macrophages have been shown to drive an anti-

575 inflammatory tissue environment and to promote damage repair via stromal cell interactions in RA
576  joints as well as in other tissues [70, 71], therefore the increase in the Trem2* M2-like macrophage
577  population after an injury is likely to confer a protective phenotype. Although the proportion of

578  Lyvel® macrophages did not change considerably over time, MRL constantly had more Lyvel®

579  macrophages than B6 at all timepoints. We also found that Lyvel™ macrophages from B6 expressed
580 higher levels of inflammatory cytokines (Tnf, Ccl3, Ccl4) than MRL, suggesting that Lyvel®

581  macrophages in B6 are likely proinflammatory.

582 In addition to resident Lyvel® macrophages, Trem2 was also expressed in Trem2*Fcrls™ and
583  Sppl*Cavl® macrophage clusters, with significantly higher expression in Trem2*Fcrls* cluster than
584  Sppl*Cavl® cluster. Starting at D1 post injury, MRL and B6 synovium experienced an increase in
585 the proportion of both Trem2*Fcrls* and Spp1™Cavl* macrophages. Both these clusters expressed
586 low levels of Ly6c2 at D1 indicating these cells were monocyte derived and emerged into the

587  synovial joints after injury. Further gene and ontology enrichment analysis of Trem2* recruited



588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

macrophages identified a more pro-inflammatory molecular phenotype in B6 cells. Specifically,
Trem2" infiltrating macrophages in B6 were highly associated with proinflammatory cytokine
expression and ontologies associated with inflammatory response. In contrast, several genes highly
expressed in MRLs were associated with biological processes such as wound healing and response to

oxidative stress.

Trem2*Fcrls* macrophages also expressed high levels of M2 marker Mrc1 (CD206) and
several other genes enriched in M2 macrophages including Cd83, Marcks and Apoe suggesting that
this population shares some similar functions with the Lyvel* population. Flow cytometry analysis
confirmed that MRL has significantly more CD206* Trem2*macrophages than B6 at D7. The
sustained level of Trem2™ macrophages in MRLs suggests that MRLs are better equipped to respond
to injury through recruitment of hematopoietic progenitors and M2 polarization via cytokine
signaling, such that phagocytosis of apoptotic cells induced by initial joint inflammation is more

effective and promotes healing [72, 73].

Sppl*Cavl® macrophages shared molecular signatures (Sppl, Fn1, Argl, Capg etc.) with
previously described Spp1* pro-fibrotic macrophages [74]. In line with the findings by Hoeft et al,
Sppl™ macrophages showed strong enrichment for Hypoxia-inducible factor 1o (Hifla) signaling
[74]. Hifla promotes the switch from oxidative phosphorylation to glycolysis so that cells can
continue to produce ATP when oxygen is limited, as oxygen is not required for glycolysis [75].
Consistent with Hifla activation, we observed an increase in the expression of glycolytic enzymes
including Ldha, Enol and Aldoa in Sppl*Cavl* macrophages, all of which had higher expression in
MRL compared to B6. Further studies are required to understand if increased expression of these

glycolytic enzymes helps with the enhanced healing or PTOA resistance observed in MRL. Knight
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et al suggested that these pro-fibrotic macrophages arise from synovial resident macrophages after

injury [60]. However, our monocle trajectory analysis suggested that Ly6c2* monocytes could also
differentiate into Spp1™ macrophages especially at early post-injury timepoints, which is consistent
with the findings by Ramachandran et al, in liver cirrhosis [76]. Thorough in vivo fate mapping

studies are required to elucidate the true origins of these cells.

We also identified several genes consistently upregulated in all monocytes and macrophages
from MRL, many of which had the highest expression in Trem2+ macrophages. Specifically, Glol
has been shown to help inhibit inflammation by managing methylglyoxal levels produced by
macrophages, thus inhibiting cell death and cytokine production [77]. An increase in Glol
expression in Trem2" macrophages from MRL indicates that these cells may play an essential role in
dampening proinflammatory signaling in MRL most likely through reactive oxygen compounds or

metabolites by locally damaged cells.

Neutrophils were a major immune population identified in our data. Although we failed to
detect a considerable number of neutrophils in the knee joint tissues via IHC, we were able to rule
out contamination from the circulation or the BM as possible origins of these neutrophils. This
suggests that these neutrophils likely reside within the joint or adjacent tissues such as fat pad or the
bone. Neutrophils expressed high levels of inflammatory cytokines (I111b, Tnf, Osm etc.) and matrix
degrading enzymes (Mmp8, Mmp9 etc.) in both MRL and B6. We also noted that MRL neutrophils
had lower expression of 1115 compared to B6 but, had higher expression of endogenous 111 receptor
antagonist 111rn. In addition, MRL neutrophils expressed higher levels of Csfl, a key growth factor
required for macrophage differentiation [78], than B6, which may have contributed to the increased

presence of macrophages in MRL joints. This indicates that the presence of neutrophils in the joint
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may contribute to differences in injury outcomes observed in MRL and B6. Our data highlights gene
expression changes in response to injury and strain specific differences in neutrophils. However,
further studies are needed to localize neutrophils in the articular joint forming tissues and understand
their specific role in PTOA pathogenesis.
Conclusions

This study represents the first report describing fundamental molecular and cellular
differences in neutrophil and macrophage subpopulations and macrophage polarization in the injured
joint that may set the super-healer MRL strain apart from B6. The significant enrichment and
sustained high levels of tissue-resident CD206" Trem2* macrophages in this strain may be an
essential characteristic for successful cartilage tissue remodeling, macrophage turnover, and joint
protection during early injury responses, preventing transition to the chronic phase of PTOA. Further
exploration of these polarized macrophages in patients and animal models will help us determine
why some individuals fully recover from an ACL injury without developing PTOA, while others
succumb to this degenerative disorder.
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