



LAWRENCE  
LIVERMORE  
NATIONAL  
LABORATORY

LLNL-JRNL-840836

# MRL/MpJ Mice Joints Exhibit Alternatively Activated Macrophage Phenotype in Response to ACL Rupture and Post-Traumatic Osteoarthritis Onset

J. L. McCool, A. Sebastian, N. R. Hum, S. P. Wilson, D. K. Murugesh, B. Amiri, B. A. Christiansen, G. G. Loots

October 5, 2022

PlosONE

## **Disclaimer**

---

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

**CD206+Trem2+ Macrophage Accumulation in the Murine Knee Joint After Injury is Associated with Protection Against Post-Traumatic Osteoarthritis in MRL/MpJ Mice**  
 --Manuscript Draft--

|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Manuscript Number:</b>                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>Article Type:</b>                        | Research Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <b>Full Title:</b>                          | CD206+Trem2+ Macrophage Accumulation in the Murine Knee Joint After Injury is Associated with Protection Against Post-Traumatic Osteoarthritis in MRL/MpJ Mice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>Short Title:</b>                         | MRL/MpJ mice elicit a strong macrophage response post knee injury.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>Corresponding Author:</b>                | Gabriela G Loots<br>University of California Davis<br>Sacramento, CA UNITED STATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>Keywords:</b>                            | Osteoarthritis; Cartilage; PTOA; Joint; Knee; Macrophage; scRNA-seq; Inflammation; ACL; Trem2; MRL/MpJ; C57BL/6J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <b>Abstract:</b>                            | Post-traumatic osteoarthritis (PTOA) is a painful joint disease characterized by the degradation of bone, cartilage, and other connective tissues in the joint. PTOA is initiated by trauma to joint-stabilizing tissues, such as the anterior cruciate ligament, medial meniscus, or by intra-articular fractures. In humans, ~50% of joint injuries progress to PTOA, while the rest spontaneously resolve. To better understand molecular programs contributing to PTOA development or resolution, we examined injury-induced fluctuations in immune cell populations and transcriptional shifts by single-cell RNA sequencing of synovial joints in PTOA-susceptible C57BL/6J (B6) and PTOA-resistant MRL/MpJ (MRL) mice. We identified significant differences in monocyte and macrophage subpopulations between MRL and B6 joints. A potent myeloid-driven anti-inflammatory response was observed in MRL injured joints that significantly contrasted the pro-inflammatory signaling seen in B6 joints. Multiple CD206+ macrophage populations classically described as M2 were found enriched in MRL injured joints. These CD206+ macrophages also robustly expressed Trem2, a receptor involved in inflammation and myeloid cell activation. These data suggest that the PTOA resistant MRL mouse strain displays an enhanced capacity of clearing debris and apoptotic cells induced by inflammation after injury due to an increase in activated M2 macrophages within the synovial tissue and joint space. |
| <b>Order of Authors:</b>                    | Jillian L McCool, Ph.D<br>Aimy Sebastian, Ph.D<br>Nicholas R Hum, Ph.D<br>Stephen P Wilson, Ph.D<br>Oscar A Davalos, Ph.D<br>Deepa K Murugesh, B.S.<br>Beheshta Amiri, B.S.<br>Cesar Morfin, Ph.D<br>Blaine A Christiansen, Ph.D<br>Gabriela G Loots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>Opposed Reviewers:</b>                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>Additional Information:</b>              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>Question</b>                             | <b>Response</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>Financial Disclosure</b>                 | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Enter a financial disclosure statement that |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| <p>describes the sources of funding for the work included in this submission. Review the <a href="#">submission guidelines</a> for detailed requirements. View published research articles from <a href="#">PLOS ONE</a> for specific examples.</p> <p>This statement is required for submission and <b>will appear in the published article</b> if the submission is accepted. Please make sure it is accurate.</p>                                                                                                                                                                                        |                                                                                                                             |
| <p><b>Funded studies</b></p> <p>Enter a statement with the following details:</p> <ul style="list-style-type: none"> <li>Initials of the authors who received each award</li> <li>Grant numbers awarded to each author</li> <li>The full name of each funder</li> <li>URL of each funder website</li> <li>Did the sponsors or funders play any role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript?</li> </ul>                                                                                                                                    |                                                                                                                             |
| <p>Did you receive funding for this work?</p> <p>Please add funding details.<br/>as follow-up to "<a href="#">Financial Disclosure</a></p> <p>Enter a financial disclosure statement that describes the sources of funding for the work included in this submission. Review the <a href="#">submission guidelines</a> for detailed requirements. View published research articles from <a href="#">PLOS ONE</a> for specific examples.</p> <p>This statement is required for submission and <b>will appear in the published article</b> if the submission is accepted. Please make sure it is accurate.</p> | <p>Department of Defense Awards PR180268, PR180268P1 and PR192271.<br/>National Institute of Health grant R01 AR075013.</p> |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| <p><b>Funded studies</b></p> <p>Enter a statement with the following details:</p> <ul style="list-style-type: none"> <li>• Initials of the authors who received each award</li> <li>• Grant numbers awarded to each author</li> <li>• The full name of each funder</li> <li>• URL of each funder website</li> <li>• Did the sponsors or funders play any role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript?</li> </ul>            |                                                                     |
| <p>Did you receive funding for this work?"</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |
| <p>Please select the country of your main research funder (please select carefully as in some cases this is used in fee calculation).</p> <p>as follow-up to "<b>Financial Disclosure</b></p> <p>Enter a financial disclosure statement that describes the sources of funding for the work included in this submission. Review the <a href="#">submission guidelines</a> for detailed requirements. View published research articles from <a href="#">PLOS ONE</a> for specific examples.</p> | <p>UNITED STATES - US</p>                                           |
| <p>This statement is required for submission and <b>will appear in the published article</b> if the submission is accepted. Please make sure it is accurate.</p>                                                                                                                                                                                                                                                                                                                              |                                                                     |
| <p><b>Funded studies</b></p> <p>Enter a statement with the following details:</p> <ul style="list-style-type: none"> <li>• Initials of the authors who received each award</li> <li>• Grant numbers awarded to each author</li> <li>• The full name of each funder</li> <li>• URL of each funder website</li> <li>• Did the sponsors or funders play any role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript?</li> </ul>            |                                                                     |
| <p>Did you receive funding for this work?"</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |
| <p><b>Competing Interests</b></p>                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <p>The authors have declared that no competing interests exist.</p> |

Use the instructions below to enter a competing interest statement for this submission. On behalf of all authors, disclose any [competing interests](#) that could be perceived to bias this work—acknowledging all financial support and any other relevant financial or non-financial competing interests.

This statement is **required** for submission and **will appear in the published article** if the submission is accepted. Please make sure it is accurate and that any funding sources listed in your Funding Information later in the submission form are also declared in your Financial Disclosure statement.

View published research articles from [PLOS ONE](#) for specific examples.

#### NO authors have competing interests

Enter: *The authors have declared that no competing interests exist.*

#### Authors with competing interests

Enter competing interest details beginning with this statement:

*I have read the journal's policy and the authors of this manuscript have the following competing interests: [insert competing interests here]*

\* typeset

#### Ethics Statement

Enter an ethics statement for this submission. This statement is required if the study involved:

- Human participants
- Human specimens or tissue
- Vertebrate animals or cephalopods
- Vertebrate embryos or tissues

All animal work was conducted in accordance to IACUC standards at LLNL and UCD. Details on animal studies are in Material and Methods section.

- Field research

Write "N/A" if the submission does not require an ethics statement.

General guidance is provided below.

Consult the [submission guidelines](#) for detailed instructions. **Make sure that all information entered here is included in the Methods section of the manuscript.**

## Format for specific study types

### Human Subject Research (involving human participants and/or tissue)

- Give the name of the institutional review board or ethics committee that approved the study
- Include the approval number and/or a statement indicating approval of this research
- Indicate the form of consent obtained (written/oral) or the reason that consent was not obtained (e.g. the data were analyzed anonymously)

### Animal Research (involving vertebrate animals, embryos or tissues)

- Provide the name of the Institutional Animal Care and Use Committee (IACUC) or other relevant ethics board that reviewed the study protocol, and indicate whether they approved this research or granted a formal waiver of ethical approval
- Include an approval number if one was obtained
- If the study involved *non-human primates*, add *additional details* about animal welfare and steps taken to ameliorate suffering
- If anesthesia, euthanasia, or any kind of animal sacrifice is part of the study, include briefly which substances and/or methods were applied

### Field Research

Include the following details if this study involves the collection of plant, animal, or other materials from a natural setting:

- Field permit number
- Name of the institution or relevant body that granted permission

### Data Availability

Authors are required to make all data underlying the findings described fully available, without restriction, and from the time of publication. PLOS allows rare exceptions to address legal and ethical concerns. See the [PLOS Data Policy](#) and [FAQ](#) for detailed information.

Yes - all data are fully available without restriction

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| <p>A Data Availability Statement describing where the data can be found is required at submission. Your answers to this question constitute the Data Availability Statement and <b>will be published in the article</b>, if accepted.</p> <p><b>Important:</b> Stating 'data available on request from the author' is not sufficient. If your data are only available upon request, select 'No' for the first question and explain your exceptional situation in the text box.</p> <p>Do the authors confirm that all data underlying the findings described in their manuscript are fully available without restriction?</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                 |
| <p><b>Describe where the data may be found in full sentences. If you are copying our sample text, replace any instances of XXX with the appropriate details.</b></p> <ul style="list-style-type: none"> <li>• If the data are <b>held or will be held in a public repository</b>, include URLs, accession numbers or DOIs. If this information will only be available after acceptance, indicate this by ticking the box below. For example: <i>All XXX files are available from the XXX database (accession number(s) XXX, XXX).</i></li> <li>• If the data are all contained <b>within the manuscript and/or Supporting Information files</b>, enter the following: <i>All relevant data are within the manuscript and its Supporting Information files.</i></li> <li>• If neither of these applies but you are able to provide <b>details of access elsewhere</b>, with or without limitations, please do so. For example:</li> </ul> <p><i>Data cannot be shared publicly because of [XXX]. Data are available from the XXX Institutional Data Access / Ethics Committee (contact via XXX) for researchers who meet the criteria for access to confidential data.</i></p> <p><i>The data underlying the results presented in the study are available from (include the name of the third party</i></p> | <p>The datasets generated for this study can be found in the Gene Expression Omnibus (GEO) under accession numbers GSE200843 and GSE220167.</p> |

|                                                                                                                                                                                                                          |                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p><i>and contact information or URL).</i></p> <ul style="list-style-type: none"> <li>• This text is appropriate if the data are owned by a third party and authors do not have permission to share the data.</li> </ul> |                                                                                                                                                                                         |
| <p><b>* typeset</b></p> <p>Additional data availability information:</p>                                                                                                                                                 | <p>Tick here if the URLs/accession numbers/DOIs will be available only after acceptance of the manuscript for publication so that we can ensure their inclusion before publication.</p> |

1 **CD206<sup>+</sup> Trem2<sup>+</sup> Macrophage Accumulation in the Murine Knee Joint After Injury is**  
2 **Associated with Protection Against Post-Traumatic Osteoarthritis in MRL/MpJ Mice**

3 Jillian L. McCool<sup>1,2</sup>, Aimy Sebastian<sup>1</sup>, Nicholas R. Hum<sup>1</sup>, Stephen P. Wilson<sup>1</sup>, Oscar A. Davalos<sup>1</sup>,  
4 Deepa K. Murugesh<sup>1</sup>, Beheshta Amiri<sup>1</sup>, Cesar Morfin<sup>1,3</sup>, Blaine A. Christiansen<sup>3</sup>, Gabriela G.  
5 Loots<sup>1,2,3\*</sup>

6

7 <sup>1</sup>*Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA.*

8 <sup>2</sup>*University of California Merced, School of Natural Sciences, Merced, CA.*

9 <sup>3</sup>*University of California Davis Health, Department of Orthopaedic Surgery, Sacramento, CA.*

10

11

12

13

14 <sup>1</sup>Biology and Biotechnology Division,

15 Lawrence Livermore National Laboratory

16 7000 East Avenue, L-452

17 Livermore, CA 94551

18

19 \*Author for correspondence (e-mail: gloots@ucdavis.edu)

20

21 **Disclosure**

22 Authors have nothing to disclose.

23 **Abstract**

24 Post-traumatic osteoarthritis (PTOA) is a painful joint disease characterized by the degradation of  
25 bone, cartilage, and other connective tissues in the joint. PTOA is initiated by trauma to joint-  
26 stabilizing tissues, such as the anterior cruciate ligament, medial meniscus, or by intra-articular  
27 fractures. In humans, ~50% of joint injuries progress to PTOA, while the rest spontaneously resolve.  
28 To better understand molecular programs contributing to PTOA development or resolution, we  
29 examined injury-induced fluctuations in immune cell populations and transcriptional shifts by  
30 single-cell RNA sequencing of synovial joints in PTOA-susceptible C57BL/6J (B6) and PTOA-  
31 resistant MRL/MpJ (MRL) mice. We identified significant differences in monocyte and macrophage  
32 subpopulations between MRL and B6 joints. A potent myeloid-driven anti-inflammatory response  
33 was observed in MRL injured joints that significantly contrasted the pro-inflammatory signaling  
34 seen in B6 joints. Multiple CD206<sup>+</sup> macrophage populations classically described as M2 were found  
35 enriched in MRL injured joints. These CD206<sup>+</sup> macrophages also robustly expressed *Trem2*, a  
36 receptor involved in inflammation and myeloid cell activation. These data suggest that the PTOA  
37 resistant MRL mouse strain displays an enhanced capacity of clearing debris and apoptotic cells  
38 induced by inflammation after injury due to an increase in activated M2 macrophages within the  
39 synovial tissue and joint space.

40

41 **Keywords:** Osteoarthritis; Cartilage; PTOA; Joint; Knee; Macrophage; scRNA-seq; Inflammation;  
42 ACL; Trem2; MRL/MpJ; C57BL/6J

43     **Introduction**

44     In humans, nearly half of traumatic knee joint injuries progress to post-traumatic osteoarthritis  
45     (PTOA), while the remainder spontaneously resolve without progressive cartilage degeneration,  
46     independent of whether corrective surgery occurs. The pathogenesis and onset of the PTOA are still  
47     not fully understood, but multiple factors such as genetics, epigenetics, and immune responses have  
48     been implicated in disease progression [1]. This study examined the immune system's responses to  
49     anterior crucial ligament (ACL) injury in C57BL/6J (B6), a PTOA vulnerable mouse strain and  
50     ‘super-healer’ MRL/MpJ (MRL) mice that are resistant to PTOA [2] to better understand the  
51     immune-driven mechanisms of resistance to joint degeneration. The MRL strain has been described  
52     to have an extraordinary capacity for regenerating soft tissues after damage, as well as repairing  
53     injured cartilage [2-10]. In a noninvasive tibial compression injury model, our group previously  
54     showed that MRL joints remain resistant to cartilage degradation for at least 12 weeks post injury,  
55     the latest time point examined [9]. These injured MRL joints also developed significantly less  
56     osteophyte formation and displayed comparable OARSI scores to uninjured controls, indicating a  
57     non-arthritic joint resolution post injury [9]. While the MRL joint has been histologically evaluated,  
58     cellular and molecular interactions leading to this resistant phenotype have not yet been fully  
59     elucidated.

60           The timeline of PTOA progression following joint injury can be classified into several phases  
61     starting at trauma. After the immediate sequelae of injury, an acute/subacute phase, dominated by  
62     inflammation, leukocyte infiltration, and tissue remodeling occurs. This inflammatory phase can  
63     spontaneously resolve after a few weeks or months, or progress to a chronic phase that can last for  
64     years, during which metabolic changes in the tissue progress through a clinically asymptomatic

65 period that eventually leads to PTOA with severe joint pain and restricted mobility [11] that may  
66 become debilitating without surgical intervention [12].

67 An increasing number of studies have shown that arthritis progression is dependent on the  
68 immune system's response to injury [13-17] and have implicated multiple immune cell types  
69 including macrophages, monocytes, neutrophils, dendritic cells, B and T cells in the pathogenesis of  
70 osteoarthritis [18-20]. Macrophages are the major immune cell type present in healthy synovial  
71 tissues of the joint; they are essential in maintaining the integrity of the synovial cavity to keep  
72 articular cartilage unperturbed by endogenous damage-associated molecular patterns (DAMPs) that  
73 form from wear and tear of the joint [21]. During acute inflammation, as in the case of injury, there  
74 is an increase in monocytes, activated macrophages, and synovial fibroblasts that enter the joint  
75 space due to a disruption of the synovial lining [22, 23]. This influx leads to an expansion of the  
76 synovial pannus and degradation of the articular cartilage due to a spike in metalloproteinases  
77 secreted by infiltrating monocyte-derived macrophages [24]. Some subpopulations such as the  
78 *Trem2<sup>+</sup>* (Triggering Receptor Expressed On Myeloid Cells 2) alternatively activated macrophages  
79 have been described as anti-inflammatory and are likely to promote healing and repair of damaged  
80 tissues [25-27]. Previously, we identified *Trem2<sup>+</sup>* macrophages as a major subpopulation in B6 mice  
81 that expands in response to knee injury [28]. Characterizing key cell types like *Trem2<sup>+</sup>* macrophages  
82 that prompt an anti-inflammatory phenotype is crucial in understanding immune cell function that  
83 aids healing and prevents PTOA development, post injury. Additionally, these subpopulations have  
84 clinical relevance as potential cell-based therapies where macrophages of appropriate phenotypes  
85 can directly improve healing or enable the production of macrophage-derived therapeutic proteins  
86 for long term damage control.

87 To enhance our understanding of the role the immune system plays in PTOA progression we  
88 employed single-cell RNA sequencing (scRNA-seq) analysis of injured and uninjured knee joints  
89 from MRL and B6, which allowed us to characterize tissue resident and infiltrating immune cell  
90 populations. We were able to highlight significant differences in myeloid subpopulations in the  
91 synovial capsule and infrapatellar fat pad of MRLs after injury. The immune characterization of  
92 ‘PTOA-resistant’ MRL and ‘PTOA-vulnerable’ B6 joints presented here identified several strain-  
93 specific differences that correlate with a disease protection phenotype and should be further explored  
94 mechanistically and therapeutically.

## 95 **Materials and Methods**

### 96 *Experimental Animals and ACL Injury Model*

97 MRL (MRL/MpJ, Stock # 000486) and B6 (C57BL/6J, Stock # 000664) animals were purchased  
98 from Jackson Laboratory and bred in house using standard procedures. Ten-week-old male MRL and  
99 B6 were anesthetized using isoflurane inhalation and subjected to non-invasive knee joint injury as  
100 previously described [29]. Briefly, the right lower leg was placed between two platens and was  
101 subjected to single tibial compression overload (~10-16N) at 1 mm/s displacement rate to induce an  
102 ACL rupture using an electromagnetic material testing system (ElectroForce 3200, TA Instruments,  
103 New Castle, DE, USA). Mice were administered a 50  $\mu$ L dose of 0.9% sterile saline (Becton,  
104 Dickinson and Company, Franklin Lakes, NJ, USA), and a body mass dependent dose of  
105 buprenorphine (0.01 mg/kg) immediately post-injury for pain relief. Mice were then allowed normal  
106 cage activity while on 12h light/dark cycles prior to euthanasia at terminal time points. All animal  
107 experimental procedures were completed in accordance with the Institutional Animal Care and Use  
108 Committee (IACUC) guidance at Lawrence Livermore National Laboratory and the University of  
109 California, Davis in AAALAC-accredited facilities.

110 ***Histological assessment of the articular joint***

111 After ACL injury, right hindlimbs (n=5/group) were collected from uninjured day 0 (D0) and injured  
112 mice at day 7 (D7) and 4 weeks (4W) post-injury and processed for histological evaluation as  
113 previously described [28]. Briefly, whole hindlimbs were fixed in 10% Neutral Buffered Formalin  
114 (NBF), decalcified using 0.5 M EDTA using the weight loss-weight gain method for measuring  
115 decalcification status [30] and processed for paraffin embedding. Joints were sectioned in the sagittal  
116 plane at 6  $\mu$ m and serial medial sections were prepared for histological assessment of joint tissue  
117 integrity at all timepoints. Sections were stained on charged glass slides using 0.1% Safranin-O  
118 (0.1%, Sigma, St. Louis, MO, USA; S8884) and 0.05% Fast Green (0.05%, Sigma, St. Louis, MO,  
119 USA; F7252) using standard procedures (IHC World, Woodstock, MD, USA). Slides were imaged  
120 using a Leica DM5000 microscope (Leica Microsystems, Wetzlar, Germany). ImagePro Plus V7.0  
121 Software, a QIClick CCD camera (QImaging, Surrey, BC, Canada), and ImageJ V1.53 Software  
122 were used for imaging and photo editing [31]

123 ***OARSI Histological Scoring of Joint Degradation***

124 Serial medial sections from B6 and MRL (n=5/strain) were stained using Safranin-O and Fast Green  
125 as described above and subjected to a blinded semi-quantitative scoring by five individual scientists  
126 using the OARSI Histopathology Scoring System [32]. All scores were averaged and mean score  
127 was plotted to determine the grade of joint damage that had occurred at 4W post injury.

128 ***Immunohistochemistry***

129 Serial medial sections from B6 and MRL (n=5/strain) were subjected to antigen retrieval with  
130 Unitribe (NB325 Innovex Biosciences, Richmond, CA. USA) and blocking using Background  
131 Buster (NB306 Innovex Biosciences, Richmond, CA. USA) per manufacturer's instructions.

132 Samples were stained with primary antibodies and incubated overnight at 4°C in a dark, humid  
133 chamber. Samples were washed and incubated for 2 hours at room temperature in a dark, humid  
134 chamber with secondary antibodies at 1:500. Negative control slides were incubated with secondary  
135 antibody only. Stained slides were mounted with Prolong Gold with DAPI for nuclei staining  
136 (Molecular Probes, Eugene, OR. USA). Slides were imaged using a Leica DM5000 microscope.  
137 ImagePro Plus V7.0 Software, QIClick CCD camera (QImaging, Surrey, BC, Canada) and ImageJ  
138 V1.53 Software were used for imaging and photo editing. Primary antibodies included: Trem2  
139 [1:100; ab95470 Abcam, Cambridge, UK], CD206 [1:100; ab64693, Abcam, Cambridge, UK],  
140 S100a8 [1:100; ab92331 Abcam, Cambridge, UK], Lyve1 [1:100; ab218535 Abcam, Cambridge,  
141 UK], Ly6G [1:100; ab238132 Abcam, Cambridge, UK]. Secondary antibodies included goat anti-  
142 rabbit 594 (1:1000; A11037, Thermofisher, Waltham, MA. USA), donkey anti-goat 488 (1:1000;  
143 A11055, ThermoFisher, Waltham, MA. USA).

144 ***Single cell RNA sequencing (scRNA-seq)***

145 D0 (uninjured) and joints (n≥4/time point/strain) from day 1 (D1), D3, D7, 2 weeks (2W), and 4W  
146 post-injury were collected from MRL and B6 mice for scRNA-seq analysis. Mice were euthanized  
147 humanely under CO<sub>2</sub> and entire hindlimbs were dissected free of any superficial tissues such as the  
148 muscle, retaining the synovial fluid between the tibia and femur. To obtain immune cells from the  
149 joint without any bone marrow contamination, joint-residing cells from intact joints were released by  
150 digesting the soft tissues around the joint. Cells residing in the synovial capsule were collected by  
151 separating the joint between the femur and tibia into 7.5 mL of DMEM/F12 containing 3%  
152 Collagenase 1 solution (Worthington Biochemical, Lakewood, NJ; CLS-1) and 100 µg/mL DNase I  
153 (Roche, Basel, Switzerland; 11284932001). Hindlimbs with joint tissues were then digested while  
154 shaking at 37°C for two 1-hour digests and then filtered through a 100µm nylon cell strainer to

155 remove large tissue fragments. After digestion, red blood cell lysis was performed with ammonium-  
156 chloride-potassium (ACK) lysis buffer (ThermoFisher Scientific, Waltham, MA, USA; A1049201)  
157 then CD45+ immune cells were enriched using CD45-conjugated magnetic microbeads (Miltenyi  
158 Biotech, Bergisch Gladbach, Germany; 130-052-301) followed by Miltenyi Biotech MACS  
159 separation with LC columns. For bone marrow cell isolation, femur and tibia were first isolated from  
160 uninjured, 10-week-old male BL6 mice. The bones were then gently crushed to expose the marrow  
161 cavity and thoroughly rinsed with PBS until all the marrow was flushed out of the bone. Bone  
162 marrow cells were then pelleted, and ACK red blood cell lysis was performed. All final cell  
163 preparations were resuspended in PBS with 1% FBS for scRNA-seq preparation. Each scRNA-seq  
164 sample was comprised of pooled 3-5 mouse replicates to mitigate biological variability. Immune  
165 (CD45<sup>+</sup>) joint populations were sequenced using a Chromium Single Cell 3' V3 Reagent Kit and  
166 Chromium instrument (10x Genomics, Pleasanton, CA). Library preparation was performed  
167 according to the manufacturer's protocol and sequenced on an Illumina NextSeq 500 (Illumina, San  
168 Diego, CA, USA).

169 ***ScRNA-seq data analysis***

170 Raw scRNA-seq data were processed using the Cell Ranger software (10x Genomics, Pleasanton,  
171 CA, USA) as described before [28]. Raw count matrices generated with Cell Ranger were loaded  
172 into R (v4.3.2) and merged into a single object for downstream analysis using Seurat (v4.3.0) [33].  
173 Cells were retained based on the following filtering criteria: number of counts  $\geq$  500; number of  
174 genes  $\geq$  200; mitochondrial gene percentage  $<$  10. Genes expressed in less than 10 cells were  
175 removed. Data was normalized using the `NormalizeData` function with default parameters. Three  
176 thousand highly variable genes (HVGs) were identified using the "vst" method. Before dimension  
177 reduction the data was scaled using only HVGs with following variables regressed out: number of

178 counts and mitochondrial percentage. After scaling principal component analysis (PCA) was  
179 performed and principal components (PCs) 1-50 were used for subsequent analysis. Data integration  
180 i.e. batch correction was performed using Harmony with the grouping variable being “orig.ident”  
181 which contained all individual samples [34]. Clusters were identified using `FindNeighbors` and  
182 `FindClusters` with the reduction parameter set to “harmony” and resolution 0.2 which was used for  
183 labeling the clusters. A non-linear dimensional reduction was then performed *via* uniform manifold  
184 approximation and projection (UMAP) with the following parameter modifications: reduction =  
185 “harmony”; `umap.method = “uwot”`; `spread=4`. Cluster marker genes were identified using  
186 `FindAllMarkers` with the parameter `only.pos` set to true. Monocytes and macrophages (Mono/Mac)  
187 and neutrophils were all extracted and analyzed further following the same methods as above with  
188 the following differences: Mono/Mac (2000 HVGs, 1-40 PCs, resolution 0.5); Neutrophils (2000  
189 HVGs, 1:40 PCs, resolution 0.5). Differential gene expression analysis between mouse strains was  
190 conducted by isolating the relevant cell type, assigning subset identity to strain, and applying  
191 `FindAllMarkers` with `only.pos` set to true. For neutrophil subpopulations, gene ontology (GO)  
192 enrichment analysis was performed on up to 100 differentially expressed genes per cluster using  
193 `clusterProfiler(v4.10.0)` [35, 36]. For genes differentially expressed between MRL and B6 in specific  
194 macrophage subpopulations ( $\log_{2}\text{FC} > 0.25$ ;  $\text{FDR} < 0.05$ ), GO analysis was performed using  
195 ToppGene Suite [37] and enrichment dot plots were generated using custom R scripts. Pathway and  
196 transcription factor activity inferences were performed and visualized with `decoupleR (v2.8.0)` and  
197 `SCpubr (v2.0.2)` [38, 39]. All data wrangling and analysis was performed in R (v4.3.2) using  
198 `tidyverse (v2.0.0)` functions. Data visualization leveraged tools already mentioned above and a  
199 mixture of `khroma (v1.11.0)`, `ggthemes (5.0.0)`, and `Rcolorbrewer (v1.1.3)` for color palettes [40, 41].

200 Neutrophils from D0 B6 joints were compared to those from D0 bone marrow (BM) isolates. BM  
201 immune scRNA-seq data was integrated with immune scRNA-seq data from D0 B6 joints using  
202 Seurat's anchor-based canonical correlation analysis (CCA) integration method. CCA integration  
203 was performed by identifying 2000 HVGs per dataset, followed by applying  
204 `SelectIntegrationFeatures`, `FindIntegrationAnchors`, and `IntegrateData` functions using default  
205 parameters. After CCA based integration data processing followed the steps previously described  
206 above.

207 ***Single cell trajectory analysis***

208 Single cell pseudo-time trajectories of immune cell subpopulations were constructed with Monocle  
209 [42]. Following analysis of scRNA-seq data in the Seurat object format; the expression data,  
210 phenotype data, and feature data were extracted for constructing Monocle's "CellDataSet" object  
211 utilizing the "newCellDataSet" function. Highly variable genes from within the Seurat object were  
212 selected as ordering genes. The Monocle "reduceDimension" function was used to reduce the  
213 dataset's dimensionality using the DDR algorithm. Ordering of cells along the computed trajectory  
214 was carried out using the "orderCells" function with default parameters.

215 ***Perfusion of mice***

216 For the perfusion of blood, mice were anesthetized by administering isoflurane (4-5% in 100%  
217 oxygen *via* a nose cone. Once mice were no longer responsive to tail pinch reflex, the thoracic cavity  
218 was opened through the diaphragm, and ribs were cut bilaterally to expose the heart. A butterfly  
219 needle was then inserted into the left ventricle and secured. Next, a small incision was made in the  
220 right atrium to create an outlet for effluent. With the aid of a perfusion pump (flow set at 10ml/min),  
221 mice were perfused with 20ml of sterile PBS + 0.1% heparin.

222 ***Flow cytometry analysis***

223 Single cell suspensions from injured and uninjured knee joints were generated as described above in  
224 the scRNA-seq section (n=3-5/group). Cells were blocked using rat anti-mouse CD16/CD32 (Stock  
225 # 14-0161-82, Mouse Fc Block; Thermo Fisher, Waltham, MA. USA) at 4°C for 10 minutes then  
226 incubated with an antibody cocktail (Thermo Fisher) specific for macrophage characterization  
227 containing the following antibodies at a 1:100 dilution: PerCP CD45 monoclonal antibody (Clone:  
228 EM-05, Stock# MA110234), eFluor 506 CD11b monoclonal antibody (Clone: M1/70, Stock# 69-  
229 0112-82), PE F4/80 monoclonal antibody (Clone: QA17A29, Stock 157304), APC CD206/MMR  
230 monoclonal antibody (Clone: MR6F3, Stock# 17-2061-82), FITC TREM2 monoclonal antibody  
231 (Clone: 78.18, Stock# MA528223) and DAPI for viability staining. To identify proportions of  
232 myeloid cells, isolated cells from the knee joints at all timepoints were stained using Biolegend  
233 antibodies at 1:100 dilution: APC/Cy7 anti-mouse CD45 antibody (Clone: 30-F11), FitC anti-  
234 mouse/human CD11b antibody (Clone: M1/70), Brilliant Violet 510 anti-mouse Ly-6C (Clone:  
235 HK1.4), APC anti-mouse Ly-6G (Clone: 1A8) and DAPI for viability staining. Flow cytometry was  
236 also performed on perfused mice and neutrophil populations were identified within the joint cell  
237 suspensions using the following antibodies (BioLegend, San Diego, CA USA): anti-mouse APC  
238 CD45 antibody (Clone: 30-F11), anti-mouse FITC CD11b (Clone: M1/70), and anti-mouse  
239 APC/Cyanine7 Ly6g (Clone: 1A8) at a 1:100 dilution in PBS +1% FBS and DAPI was used as a  
240 viability stain. All flow cytometric analyses were performed on a BD FACSMelody system.

241 ***Analysis software and statistical analysis***

242 Statistical analyses were performed using GraphPad Prism (n=3-5 biological replicates per strain). A  
243 one-way ANOVA and post-hoc Bonferroni's Test were used to assess statistically significant  
244 differences of mean expression values. OARSI scoring is presented from 4 biological replicates per  
245 strain and scored by 5 individual scientists. A one-way ANOVA and post-hoc Bonferroni's Test

246 were used to assess statistically significant differences of mean expression values. µCT statistical  
247 analysis was performed using two-way ANOVA and Student's T-test with a two-tailed distribution,  
248 with two-sample equal variance (homoscedastic test). Post-hoc Bonferroni's Tests were used to  
249 assess statistically significant differences of mean expression values. All results were considered  
250 statistically significant for *p*-values <0.05.

251 **Results**

252 ***ScRNA-seq reveals differences in knee joint immune landscape after injury in MRL and B6 mice.***  
253 Consistent with prior reports [6, 43-45], B6 mice showed visible proteoglycan loss, fibrillation, and  
254 significant erosion to the calcified cartilage layer by 4W post injury, while injured MRLs retained  
255 their pre-injury cartilage thickness with non-significant decreases in proteoglycan staining (**Figure**  
256 **1A, B**). Single cell analysis of immune (CD45<sup>+</sup>) cells from uninjured (D0), and D1, D3, D7, 2W, and  
257 4W post injury joints identified changes in the immune profile of B6 and MRL mice before and after  
258 knee injury (**Figure 1C, D**). Seven immune cell clusters including: (1) Neutrophils, (2)  
259 Monocyte/Macrophages (Mono/Mac), (3) B cells, (4) Proliferating Neutrophils, (5) Proliferating  
260 Myeloid cells, (6) T/NK cells, and (7) Dendritic cells were identified and had specific changes to  
261 their populations over the injury time course (**Figure 1D-F**). All clusters were assigned identities  
262 based on the expression of known immune markers (**Figure 1F**). Specifically, cluster 1 was labeled  
263 as neutrophils due to high expression of *S100a8* and *S100a9*. Cluster 2 was labeled as  
264 monocytes/macrophages (Mono/Mac) due to high expression levels of *Csfr1*, *Cd14* and *Adgre1*.  
265 Cluster 3 was labeled B cells for robust expression of *Ighm*, *Cd19* and *Cd79a*. Clusters 4 and 5 were  
266 high in makers of proliferation and cell cycle (*Top2a*, *Mki67*) and cytoskeleton rearrangement  
267 (*Stmn1*, *Tubb*), and were classified as proliferating neutrophils and myeloid, respectively based on  
268 their distinct expression of neutrophil markers *S100a8/9* in 4 and macrophage marker *Csfr1* in 5.

269 T/NK cells clustered together in population 6 and were labeled based on their expression of *Nkg7*  
270 and *Thy1*. Lastly, cells in cluster 7 were classified as dendritic cells due to their high expression of  
271 *Siglech* and *Ccr9* (**Figure 1F**).

272

273 **Figure 1. Assessment of changes associated with PTOA onset in MRL and B6.** (A) PTOA resistant  
274 MRL (top row) showed little loss of staining after injury in the articular cartilage of the femur and  
275 tibia (red) indicating little to no loss of proteoglycan content in the cartilage matrix (top right, \*  
276 asterisk). PTOA susceptible B6 (bottom row) showed severe degradation of bone (blue,) and  
277 cartilage (red) in the tibia, and loss of some cartilage in the femur after injury (bottom right, ▲  
278 triangle). Scale bar = 100 $\mu$ m. Magnification 20X. F-Femur, T-Tibia. n=5 / group. (B) Blinded  
279 OARSI scoring of uninjured (D0) and injured (4W) B6 and MRL joints. (\*\*\*p<0.001;  
280 \*\*\*p<0.0001). (C) Schematic of the scRNA-seq pipeline. Uninjured murine joints were collected at  
281 Day 0 (D0), injured joints were collected at Days 1- (D1), 3- (D3), 7- (D7) days, 2- (2W) and 4-  
282 (4W) weeks following tibial compression and all prepared for scRNA-seq. Digested immune cells  
283 (CD45+) were enriched before conducting scRNA-seq. (D) Uniform Manifold Approximation and  
284 Projection (UMAP) plot representing seven immune cell types within the synovial joint at all  
285 timepoints examined. (E) UMAP plot from panel D colored based on experimental groups. (F) Dot  
286 plots identifying specific markers for each cell type. Size of the dot indicates cellular abundance and  
287 color indicates expression.

288 In uninjured joints, the proportion of the immune cell population represented by neutrophils  
289 was the largest in both strains, accounting for 58.7% and 71.9% of the total immune cells sequenced  
290 in B6 and MRL, respectively (**Figure 2A**). The remainder of the populations segregated as follows  
291 in uninjured B6 and MRLs: 10.1% and 9.1% Mono/Macs, 18.8% and 7.6% B cells, 3% and 3.5%

292 proliferating myeloid, 5.3% and 3.5% proliferating neutrophils; 3% and 3.9% T/NK; ~1% and 0.5%  
293 dendritic cells. After injury, strain specific trends were observed for several cell types, with the  
294 largest population shifts occurring at D3 for nearly all identified cell types (**Figure 2A, Table S1**).  
295 Prior to injury, the Mono/Mac populations were comparable in both strains, but a significant shift  
296 was observed at D3 post injury, where the proportion of these cells increased to 62.4% in MRL, and  
297 35.5% in B6, then decreased by D7 (**Figure 2A, Table S1**). At D3, the proportion of neutrophils  
298 sequenced decreased by 48.5% and 14.2% from baseline levels, in MRL and B6, respectively  
299 (**Figure 2A**). Additionally, the proportion of total proliferating myeloid cells increased by 5.2% from  
300 baseline in MRL, and 2.4% in B6 (**Table S1**).

301 **Figure 2. Time course of immune cell population changes post injury.** (A) *Percent of total for each*  
302 *immune population identified through scRNA-seq, determined as a proportion of all immune cells*  
303 *sequenced. Colors based on immune cluster identities denoted in Fig. 1D.* (B) *Flow cytometry gating*  
304 *strategy for Ly6c<sup>+</sup> monocytes/macrophages (Mono/Mac) and neutrophil populations.* (C) *Trend of*  
305 *Ly6c<sup>+</sup> monocytes and macrophages after injury.* (D) *Trend of Ly6g<sup>+</sup> neutrophils after injury.*

306 Since neutrophils and Mono/Macs showed the most dramatic population shifts and strain  
307 differences after injury, we focused our analysis on these two cell types. Flow cytometry confirmed  
308 that the proportion of CD45<sup>+</sup>CD11b<sup>+</sup>Ly6c<sup>+</sup> Mono/Macs in the synovial joint gradually increased in  
309 both strains, peaking at D3, and returning close to pre-injury levels by 4W (**Figure 2B, C**). A  
310 corresponding decrease in neutrophils was also observed by flow cytometry (**Figure 2B, D**). We also  
311 noted that MRLs had a significantly higher proportion of Mono/Macs at D1, D3 and D7 compared to  
312 B6 while B6 mice had more neutrophils than MRL specifically at D3 (**Figure 2A, C, D**).

313 **Neutrophils display strain specific changes in response to knee injury.**

314 Neutrophils were the major immune cell type identified in both MRL and B6 joints. These  
315 cells showed enrichment for several immune modulators including *Il1b*, a key cytokine implicated in  
316 osteoarthritis pathogenies and *Csf1*, a key regulator of monocyte to macrophage differentiation  
317 (**Figure 2A, D, S1A**). To rule out the possibility that the neutrophils identified in the single cell  
318 digests were from circulation and determine whether the decrease in neutrophil proportion observed  
319 after injury corresponds to a true reduction in total neutrophils or is merely a consequence of an  
320 increase in infiltrating cells, such as Mono/Macs, flow cytometry was performed following perfusion  
321 on an additional cohort of B6. The absolute and relative number of neutrophils was analyzed at D0  
322 and D6 post injury. We found neutrophils to contribute to ~70% of the immune cells at D0 after  
323 perfusion and a reduction in the proportion of neutrophils was observed at D6 compared to D0 *via*  
324 flow cytometric analysis (**Figure 3A**). However, our analysis showed that the total neutrophil  
325 counts were not significantly different between D0 and D6 joints (**Figure 3B**), suggesting that the  
326 reduction in the relative proportion of neutrophils after injury is likely due to infiltration of other  
327 immune cells into the joint.

328 **Figure 3. Injury induced changes in MRL and B6 neutrophils.** A) Flow cytometry data showing  
329 the abundance of neutrophils relative to total immune cells in the knee joint digest after perfusion.  
330 B) Flow cytometry data showing the absolute counts of neutrophils in the knee joint digest after  
331 perfusion. C) UMAP plot showing the neutrophil subpopulations identified by scRNA-seq. D)  
332 Feature plots showing key markers of various neutrophil subpopulations. E) Changes in the  
333 proportion of various neutrophil subpopulations in response to injury in B6 and MRL, relative to  
334 total immune cells sequenced. F) Dot plot showing ontology processes enriched in each neutrophil  
335 subtype. G) Heatmap showing key genes differentially expressed between neutrophil subpopulations  
336 and between mouse strains.

337                   Neutrophils are highly heterogeneous with several developmental stages [46]. Re-clustering  
338 of all neutrophils (cluster 1 in Figure 1D) identified four subtypes with distinct transcriptional  
339 profiles: (1) *Ccrl2*<sup>+</sup> neutrophils which showed strong enrichment for *Il1b*; (2) *Mmp8*<sup>+</sup> neutrophils; (3)  
340 *Chil3*<sup>+</sup> neutrophils and (4) *IfnR*<sup>+</sup> neutrophils (**Figure 3C-D, S1B-C**). Relative proportions of all  
341 neutrophil subtypes were lower in MRL at D3 compared to BL6 (**Figure 3E**). Furthermore, gene  
342 expression signatures of *Chil3*<sup>+</sup> neutrophils (*Chil3*, *Cebpe*, *Ngp*, *Ltf*, *Cd177*) correlated with  
343 previously established signatures of immature neutrophils while genes enriched in *Ccrl2*<sup>+</sup> and *IfnR*<sup>+</sup>  
344 neutrophils (*Ccl6*, *Csf3r*, *Il1b*, *Fth1*, *Ifitm1*, *Ifitm2*, *Btg1*, *Srgn*, *Msrb1*) correlated with mature  
345 neutrophils. *Mmp8*<sup>+</sup> neutrophils had a signature (*Mmp8*, *Lgals3*, *Retnlg*) of an intermediate stage of  
346 neutrophil differentiation [47] (**Figure S1C, Table S2**). A gene ontology analysis identified  
347 enrichment of ‘neutrophil activation’ related genes in *Mmp8*<sup>+</sup> and *Chil3*<sup>+</sup> neutrophils while *Ccrl2*<sup>+</sup>  
348 neutrophils showed enrichment for processes such as ‘cell migration’ and ‘response to chemokines’  
349 (**Figure 3F**).

350                   Further analysis of differentially expressed genes between various neutrophil subtypes  
351 showed that *Ccrl2*<sup>+</sup> and *IfnR*<sup>+</sup> neutrophils in B6 joints expressed higher levels of inflammatory  
352 cytokines, including *Il1β*, *Tnf* and *Il15*, when compared to MRL. Meanwhile, *Il1rap*, *Mmp9* and  
353 *Il1rn*, an endogenous IL1 receptor antagonist, [48] were highly expressed in MRL joints (**Figure**  
354 **3G, Table S3**). MRL joints also had increased expression of *Csf1*, a critical regulator of macrophage  
355 differentiation, when compared to B6 (**Figure S1D**).

356                   Although neutrophils constituted ~70% of immune cells at D0 in both our scRNA-seq and  
357 flow cytometry data, immunohistochemical analysis of joint tissue sections only showed a  
358 substantial number of cells expressing neutrophil markers S100a8 or Ly6g in the joint *after* injury  
359 (**Figure S2A-B**). To determine if the neutrophils in our digests were bone marrow-derived, we

360 computationally compared scRNA-seq derived transcriptome profiles of the neutrophil populations  
361 from the D0 synovial joint digest to BM derived neutrophils. Similar to synovial joints, *Ccrl2*<sup>+</sup>,  
362 *Mmp8*<sup>+</sup>, *Chil3*<sup>+</sup>, *IfnR* and proliferating neutrophils were also detected in BM however, the synovial  
363 joint had a significantly higher proportion of mature *Ccrl2*<sup>+</sup> neutrophils while the BM had more  
364 proliferating and immature neutrophils (**Figure S2C-F**). We also found that synovial neutrophils  
365 expressed higher levels of inflammatory cytokines such as *Tnf*, *Il1 $\beta$* , *Ccl3* and *Ccl4* when compared  
366 to BM derived neutrophils. BM derived neutrophils also showed enrichment for immature neutrophil  
367 markers *Elane*, *Mpo*, *Chil3*, *Lcn2* and *Ly6g* (**Figure S2G**) [47], suggesting that neutrophils from the  
368 joint have a different molecular profile than the BM neutrophils. Additionally, histological analysis  
369 of the digested synovial joint indicated that the bones remained intact after digestion while the soft  
370 tissue around the knee joint was completely digested (**Figure S2H**). This suggests that the  
371 neutrophils in our digest likely originate from tissues around the synovial joint and not from BM  
372 contamination.

373 ***Injured MRL joints harbor significantly more macrophages than B6 injured joints***

374 The Mono/Mac population showed the most dramatic increase in both B6 and MRL after  
375 injury. To enhance our understanding of the roles that monocytes and macrophages have in PTOA  
376 onset, Mono/Mac cells from the single cell analysis were extracted and further analyzed to  
377 investigate strain-specific changes in these cell populations, longitudinally. Eleven subpopulations  
378 (**Figure 4A-B**) with distinct gene expression profiles (**Figure 4C**, **Table S4**) were identified; all  
379 cells shared high expression of monocyte and macrophage markers *Csf1r* and *Cd14* (**Figure S3A**).  
380 Of these eleven subpopulations, clusters 4, 5, 7, 8 and 10 had transcriptomic profiles representative  
381 of monocytes (**Figure 4A, C**). Clusters 4 was identified as *Ly6c2*<sup>+</sup> monocytes based on the robust  
382 expression of *Ly6c2* [49] and *Plac8* [50] (**Figure 4C, D**). Cluster 5 expressed high levels of

383 neutrophil markers *S100a8* and *S100a9*, in addition to *Ly6c2* and *Plac8* (**Figure 4A, C, Figure S3A-**  
384 **B**) and was named *S100a8<sup>+</sup>* monocytes. Cluster 8 cells displayed a unique expression profile. These  
385 cells showed low-moderate expression of monocyte markers such as *Ly6c2* and *Plac8*, as well as  
386 enrichment for neutrophil markers such as *S100a8* and *S100a9* and B cell markers such as *Cd79a*  
387 and *Igkc*. It has previously been reported that pre/pro-B cells can differentiate into macrophages [51]  
388 and this cluster was identified as *S100a8<sup>+</sup>Cd79a<sup>+</sup>*. Cluster 7 expressed both monocyte and  
389 macrophage markers as well as high levels of genes involved in interferon signaling (**Figure 4C-D,**  
390 **S1A-B**). This cluster was identified as interferon responsive Mono-Mac (*IfnR* Mono-Mac). Cluster  
391 10 showed enrichment for genes such as *Cd300e*, *Ace* and *Fabp4*, in addition to moderate *Plac8*  
392 expression and was identified as *Cd300e<sup>+</sup>* (**Figure 4C, S3C**). When examining changes in various  
393 monocyte populations in response to injury, we observed a sharp increase in *Ly6c2<sup>+</sup>* and *S100a8<sup>+</sup>*  
394 monocytes immediately after injury, in both strains (**Figure 4D, Table S5**). Interestingly, B6 had a  
395 higher proportion of *Ly6c2<sup>+</sup>* monocytes relative to MRL at most timepoints examined while MRL  
396 had higher proportion of *S100a8<sup>+</sup>* monocytes (**Figure 4D, Table S5**).

397 **Figure 4. Distinct gene expression profiles of monocyte and macrophage subpopulations.**

398 (A) UMAP plot of monocyte and macrophage subpopulations identified from the parent Mono/Mac  
399 single cell cluster, colored by cell type. (B) UMAP plot of monocyte and macrophage subpopulations  
400 identified from the parent Mono/Mac single cell cluster, colored by experimental group. (C) Dot  
401 plots representing genes used to distinguish monocyte and macrophage subpopulations. (D) Feature  
402 plots of key monocyte and macrophage markers. (E) Changes of monocyte and macrophage  
403 subpopulations after injury from scRNA-seq data of B6 (solid line) and MRL (dashed line). The cell  
404 type proportions were calculated relative to all immune cells sequenced. Colors representative of  
405 clusters in Panel A.

406 Cluster 6, monocyte-derived Dendritic Cells (MoDCs), were high in *Cd209a*, *Cd14* as well  
407 as MHC class II genes involved in antigen presentation such as *Cd74*, *H2-Ab1* and *H2-Aa* (**Figure**  
408 **4C, S3A-B**). We also identified another small dendritic cell cluster (DC; cluster 9) which had high  
409 expression of MHC class II genes including *Cd74* and *H2-Ab1* and accounted for less than 2% of  
410 Mono/Macs at any timepoint examined (**Figure 4C, S3A-C**).

411 Clusters 1 and 3 expressed high levels of macrophage marker *Adgre1* (*F4/80*) and the  
412 proportions of both clusters increased dramatically after injury in both strains (**Figure 4C-E**).  
413 Moreover, both subpopulations had high expression of *Trem2*, a gene that has been previously  
414 shown to promote myeloid cell phagocytosis [52-54], but *Trem2* was significantly enriched in cluster  
415 1 (**Figure 4C, S3A-B**). Cluster 1 also showed enrichment for *Fcrls*, *Gas6*, *Apoe*, *C1qa* and *C1qb* and  
416 was named *Trem2<sup>+</sup>Fcrls<sup>+</sup>*. Cluster 2 highly expressed *Cav1* (Caveolin-1) (**Figure 4C**), a gene shown  
417 to promote monocyte to macrophage differentiation [55] as well as *Spp1*, *Vim*, *Arg1*, and *S100a4*;  
418 these macrophages were labeled *Spp1<sup>+</sup>Cav1<sup>+</sup>*. We also noted that clusters 1 and 2 were moderately  
419 comparable transcriptionally (**Figure S3B**) and clustered closely together in UMAP projections  
420 (**Figure 4A**). *Mrc1* (*Cd206*), a marker of alternatively activated macrophages, also known as M2  
421 macrophages, was highly expressed in the *Trem2<sup>+</sup>Fcrls<sup>+</sup>* cells, while the *Spp1<sup>+</sup>Cav1<sup>+</sup>* population had  
422 very low expression (**Figure 4D, S3B**). The proportion of *Spp1<sup>+</sup>Cav1<sup>+</sup>* population peaked at D1 in  
423 B6 while both *Trem2<sup>+</sup>Fcrls<sup>+</sup>* and *Spp1<sup>+</sup>Cav1* macrophage populations peaked at D3 in MRL (**Figure**  
424 **4E, Table S5**). Together these two macrophage subpopulations accounted for over 45% of all  
425 Mono/Macs at D3 in both strains (**Figure S3C**).

426 Cluster 2 had high expression of *Mrc1*, as well as several tissue resident macrophage markers  
427 including *Lyve1*, *Folr2*, *Vsig4* and *Timd4* [56, 57]. This cluster was identified as *Lyve1<sup>+</sup>Folr2<sup>+</sup>*

428 macrophages. *Trem2* and its ligand *Apoe* were robustly expressed in this cluster (**Figure 4C, S3A-**  
429 **B**). MRLs had a significantly higher proportion of *Lyve1*<sup>+</sup>*Folr2*<sup>+</sup> macrophages compared to B6 at  
430 nearly all timepoints examined (**Figure 4E**). Previously, our group identified that resident *Lyve1*<sup>high</sup>  
431 macrophages localize primarily at the synovial lining within the uninjured knee joints of B6 mice in  
432 a highly organized fashion but infiltrate the synovium following injury and appear disorganized in  
433 the tissue (**Figure S4**) [28]. In this study, we also identified *Lyve1*<sup>+</sup> cells at the synovial lining of the  
434 MRL joint (**Figure S4**) but unlike B6, these cells remained highly organized post injury.  
435 *Lyve1*<sup>+</sup>*Folr2*<sup>+</sup> macrophages expressed high levels of bone and cartilage anabolic growth factors,  
436 including *Bmp2* and *Igf1* (**Figure S3B**), suggesting that they may have a protective role in PTOA  
437 onset [27, 54, 58, 59] and may contribute to the resistance to PTOA seen in MRL joints.

### 438 **Trem2<sup>+</sup> macrophages have decreased inflammatory signaling in MRLs**

439 While *Trem2*<sup>+</sup>*Fcrls*<sup>+</sup> and *Spp1*<sup>+</sup>*Cav1*<sup>+</sup> subpopulations were essentially nonexistent in the  
440 uninjured joint, these populations displayed the largest shifts post injury in both strains (**Figure 4D**)  
441 suggesting that they are recruited to the joint tissue after injury. We observed *Ly6c2* expression in  
442 *Trem2*<sup>+</sup>*Fcrls*<sup>+</sup> and *Spp1*<sup>+</sup>*Cav1*<sup>+</sup> macrophages at D1 (**Figure S4A**) as well as an increase in *Mrc1*  
443 expression primarily in *Trem2*<sup>+</sup>*Fcrls*<sup>+</sup> cells at D3-D7 suggesting that they are monocyte-derived,  
444 M2 polarized macrophages (**Figure 5A, Figure S4B**). This observation matched the population  
445 shifts observed in the *Ly6c*<sup>+</sup> Mono and *Trem2*<sup>+</sup>*Fcrls*<sup>+</sup> subpopulations (**Figure 4E**). However, it has  
446 been suggested that resident synovial macrophages may also polarize into *Trem2*<sup>+</sup>*Fcrls*<sup>+</sup> and  
447 *Spp1*<sup>+</sup>*Cav1*<sup>+</sup> macrophage subpopulations [60]. To determine the differentiation trajectory of these  
448 recruited *Trem2*<sup>+</sup> macrophage subpopulations, we conducted a pseudo-time trajectory analysis with  
449 *Trem2*<sup>+</sup>*Fcrls*<sup>+</sup>, *Spp1*<sup>+</sup>*Cav1*<sup>+</sup>, *IfnR*<sup>+</sup> and *Lyve1*<sup>+</sup> macrophages and *Ly6c2*<sup>+</sup> monocytes; *S100a8*<sup>+</sup>  
450 monocytes were excluded from this analysis as they appeared to be highly distant from *Trem2*<sup>+</sup>

451 macrophages [28]. Pseudo-time analysis showed an expansion of *Ly6c2<sup>+</sup>* monocytes along the  
452 differentiation trajectory in the direction of *Trem2<sup>+</sup> Fcrls<sup>+</sup>* and *Spp1<sup>+</sup>Cav1<sup>+</sup>* macrophages, primarily  
453 at D1 and D3 (**Figure 5A, S5**). Also, *Ly6c2* expression in these expanding cells coincided with the  
454 expression of *Trem2*, *Arg1*, a gene enriched in *Spp1<sup>+</sup>Cav1<sup>+</sup>* specifically at D1 and D3, and  
455 macrophage marker *Adgre1* (F4/80) (**Figure 5, S5**). We observed an increase in *Mrc1* expression in  
456 these expanding cells primarily at D3, suggesting a monocytic origin for *Trem2<sup>+</sup> Fcrls<sup>+</sup>* and  
457 *Spp1<sup>+</sup>Cav1<sup>+</sup>* macrophages (**Figure S5**). However, *Lyve1<sup>+</sup>* resident macrophages may also polarize  
458 into *Trem2<sup>+</sup>Fcrls<sup>+</sup>* and *Spp1<sup>+</sup>Cav1<sup>+</sup>* phenotype especially at later post-injury timepoints (**Figure 5, S5**).  
459

460 **Figure 5. Pseudo-time differentiation trajectory analysis of Trem2<sup>+</sup>Fcrls<sup>+</sup> and Spp1<sup>+</sup>Cav1<sup>+</sup>**  
461 **macrophages from MRL and B6.** (A) Pseudo-time trajectory analysis was conducted to determine  
462 potential origin of *Trem2<sup>+</sup>Fcrls<sup>+</sup>* and *Spp1<sup>+</sup>Cav1<sup>+</sup>* macrophages from *Ly6c2<sup>+</sup>* monocytes or tissue  
463 resident macrophages. The relative position of cells across the pseudo-time differentiation trajectory  
464 is depicted in the figure. Each point is a cell and is colored according to its cluster identity. For both  
465 MRL and B6, cells along the trajectory were divided into six groupings based on experimental  
466 timepoints (D0-4W). An expansion of *Ly6c2<sup>+</sup>* monocytes along the trajectory towards macrophages  
467 was observed after injury, primarily at D1 and D3 in both strains (indicated by arrows). B)  
468 Superimposition of the expression of monocyte marker *Ly6c2* on the pseudo-time trajectory. Each  
469 point is a cell and is colored according to its pseudo-time value. Circle size represents the gene  
470 expression level. C) Superimposition of the expression of *Arg1*, a gene specifically enriched in  
471 *Spp1<sup>+</sup>Cav1<sup>+</sup>* macrophages at D1-D3, on the pseudo-time trajectory. Expansion of cell populations  
472 expressing high levels of *Arg1* in the monocyte to macrophage direction was observed after injury  
473 (indicated by arrows).

474 To better understand transcriptomic changes in *Trem2<sup>+</sup>Fcrls<sup>+</sup>* and *Spp1<sup>+</sup>Cav1<sup>+</sup>* macrophages  
475 between strains and in response to injury, we performed differential expression analysis using Seurat  
476 (**Table S6**). Our analysis showed that *Trem2<sup>+</sup>Fcrls<sup>+</sup>* and *Spp1<sup>+</sup>Cav1<sup>+</sup>* macrophage subpopulations  
477 from B6 expressed significantly higher levels of genes associated with cytokine and pro-  
478 inflammatory signaling including *Ccl3*, *Ccl4*, *Ccl6*, *Ccl9*, *Il1b*, *Osm* and *Tnf* relative to MRL  
479 (**Figure 6A**). Gene ontology analysis of genes upregulated in B6 *Trem2<sup>+</sup>Fcrls<sup>+</sup>* compared to MRL  
480 identified enrichment for biological processes such as ‘leukocyte migration’, ‘cytokine production’,  
481 ‘inflammatory response’, ‘type II interferon production’ and ‘tumor necrosis factor production’  
482 (**Figure 6B**), indicating an enrichment of pro-inflammatory functions. These processes were also  
483 enriched in B6 *Spp1<sup>+</sup>Cav1<sup>+</sup>* macrophages compared to MRL. In addition, *Spp1<sup>+</sup>Cav1<sup>+</sup>* macrophages  
484 from B6 showed enrichment for genes associated with ‘chronic inflammatory response’, ‘leukocyte  
485 proliferation’ and ‘regulation of interleukin-6 production’ compared to MRL (**Figure 6B**).

486 Genes upregulated in MRL *Trem2<sup>+</sup>Fcrls<sup>+</sup>* and *Spp1<sup>+</sup>Cav1<sup>+</sup>* macrophages compared to B6  
487 showed enrichment for processes such as ‘wound healing’, ‘leukocyte activation’, ‘osteoclast  
488 differentiation’, ‘phagocytosis’, ‘mature B cell differentiation’, ‘response to oxidative stress’,  
489 ‘regulation of cell shape’, ‘membrane organization’ and ‘glutathione metabolic process’ (**Figure**  
490 **6B**). In addition, *Spp1<sup>+</sup>Cav1<sup>+</sup>* macrophages from MRL showed enrichment for several lipid-  
491 associated processes including ‘lipid transport’, ‘lipid storage’ and ‘lipid localization’ (**Figure 6B**).  
492 Lipid transport or metabolism-associated genes enriched in MRL included *Cav1*, *Pltp*, *Trem2*,  
493 *Abcg1*, *Plin2*, *Aig1* and *Vps13c* (**Table S7**). We also identified multiple genes that were significantly  
494 higher (*Vwa5a* and *Glo1*) or exclusively (*Hal*, and *Ifi202b*) expressed in MRLs (**Figure 6A, C**).  
495 Many of these genes appeared to be differentially expressed between all MRL and B6 myeloid

496 subpopulations and these genes may represent inherent strain specific differences (**Figure 6A, C,**  
497 **S7A**).

498 **Figure 6. Trem2 expressing macrophages have distinct transcriptional profiles and activation**  
499 **states in MRL and B6.** (A) Heatmap of a subset of genes differentially expressed in *Trem2<sup>+</sup> Fcrls<sup>+</sup>*  
500 and *Spp1<sup>+</sup> Cav1<sup>+</sup>* macrophage populations from MRL and B6 joints (B) Enriched ontology terms  
501 associated with genes differentially expressed between MRL and B6 in *Trem2<sup>+</sup> Fcrls<sup>+</sup>* and  
502 *Spp1<sup>+</sup> Cav1<sup>+</sup>* clusters. (C) Selected genes that are highly or exclusively expressed in MRL *Trem2<sup>+</sup>*  
503 *Fcrls<sup>+</sup>* and *Spp1<sup>+</sup> Cav1<sup>+</sup>* populations. (D) Pathways enriched in *Trem2*-expressing macrophage  
504 subpopulations.

505 A pathway enrichment analysis revealed differential enrichment for several pathways  
506 between macrophage subpopulations and mouse strains (**Figure 6D**). *Trem2<sup>+</sup> Fcrls<sup>+</sup>* macrophages  
507 from B6 showed strong enrichment for TNF, NFKB, JAK/STAT and EGFR signaling compared to  
508 MRL, while MRL macrophages showed enrichment for VEGF signaling (**Figure 6D**). B6  
509 *Spp1<sup>+</sup> Cav1<sup>+</sup>* macrophages showed enrichment for hypoxia pathway, MAPK, TNF, NFKB, EGFR,  
510 PI3K and JAK/STAT signaling compared to MRL (**Figure 6D**). We also observed that, in both  
511 strains, TNF, NFKB, JAK/STAT and EGFR signaling was enriched in *Trem2<sup>+</sup> Fcrls<sup>+</sup>* macrophages  
512 relative to *Spp1<sup>+</sup> Cav1<sup>+</sup>* macrophages while *Spp1<sup>+</sup> Cav1<sup>+</sup>* macrophages showed enrichment for  
513 hypoxia, MAPK and VEGF signaling (**Figure 6D**). Consistent with this, a transcription factor  
514 binding motif analysis identified hypoxia transcription factors *Hif1a* and *Hif2a* (Epas1) as enriched  
515 in *Spp1<sup>+</sup> Cav1<sup>+</sup>* macrophages, with the highest enrichment in B6 mice (**Figure S7B**). *Hif1a* gene  
516 expression was also enriched in *Spp1<sup>+</sup> Cav1<sup>+</sup>* macrophages along with multiple genes encoding for  
517 glycolytic enzymes such as *Ldha* and *Eno1*, potentially regulated by *Hif1a* [61, 62] (**Figure S7C**).  
518 In addition to *Mrc1*, *Trem2<sup>+</sup> Fcrls<sup>+</sup>* macrophages showed strong enrichment for several other genes

519 highly expressed in M2 macrophages such as *Il10*, *Marcks* and *Cd83*, which were also shared by  
520 *Lyve1*<sup>+</sup>*Folr2*<sup>+</sup> resident macrophages (**Figure S7C, S3B**).

521 **Sustained Trem2<sup>+</sup> M2 macrophage populations in MRLs may promote tissue repair**

522 To further identify trends in macrophage infiltration and M2 activation that may contribute to  
523 MRL's resilience to PTOA development, *Mrc1*- and *Trem2*- expressing macrophage subpopulations  
524 from scRNA-seq data were compared between B6 and MRL across all timepoints (**Figure 7A**).  
525 Uninjured MRL joints had a higher proportion of *Mrc1*<sup>+</sup> cells than B6 and sustained a consistently  
526 higher proportion at all timepoints indicating an increase in macrophage polarize towards an M2  
527 phenotype in this strain (**Figure 7A**). The majority of *Mrc1*<sup>+</sup> cells also expressed high levels of  
528 *Trem2* in both strains (**Figure 7A, S3B**). The increased levels of *Mrc1*<sup>+</sup>*Trem2*<sup>+</sup> cells in the MRL  
529 joints suggest that M2 macrophages expressing *Trem2* may play a vital role in injury response and  
530 promote the enhanced healing associated with this strain.

531

532 **Figure 7. Flow cytometry and immunohistochemistry analysis confirm an increased presence of**  
533 **CD206<sup>+</sup>Trem2<sup>+</sup> macrophages in MRL knee joints.** A) Proportion of *Mrc1*<sup>+</sup> and *Mrc1*<sup>+</sup>*Trem2*<sup>+</sup>  
534 Mono/Macs relative to total immune cells sequenced in both B6 (solid red line) and MRL (dotted  
535 blue line) across all injury timepoints. (B) Representative gating scheme for the analysis of  
536 macrophages (CD45<sup>+</sup>F4/80<sup>+</sup>) that have shifts in CD206 and Trem2 expression between strains  
537 within digested synovial joint immune populations at D7. (C) Proportion of cells in B6 and MRL  
538 with macrophage expression profiles of CD45<sup>+</sup>F4/80<sup>+</sup>CD206<sup>+</sup>*Trem2*<sup>+</sup>, n=5; \*\*p<0.01,  
539 \*\*\*p<0.001, \*\*\*\*p<0.0001, n=3-5 / group. (D) Immunohistochemistry evaluation of macrophages  
540 expressing Trem2 in MRL and B6 at D0 (uninjured), D7 post injury and 4W post injury. n=5 /  
541 group. Scale Bars = 200 $\mu$ m, 20x Magnification, Red – CD206, Green – Trem2, Blue – Nuclei.

542 Further validation of *Mrc1* (CD206) and *Trem2* expression was conducted by flow cytometry  
543 (**Figure 7B-C**). Viable CD45<sup>+</sup>F4/80<sup>+</sup> cells were gated as the macrophage population and then  
544 analyzed for shifts in CD206 (*Mrc1*) and *Trem2* protein expression in uninjured and D7 post injury  
545 joints (**Figure 7B-C**). Consistent with the scRNA-seq data, we observed a large spike in the  
546 CD206<sup>+</sup>*Trem2*<sup>+</sup> population at D7 in both strains. In addition, MRLs had significantly more  
547 CD206<sup>+</sup>*Trem2*<sup>+</sup> macrophages than B6 at D7 post injury (**Figure 7C**). Shifts in CD206<sup>+</sup>*Trem2*<sup>+</sup>  
548 macrophages were also validated at the protein level through immunofluorescence of synovial joints  
549 (**Figure 7D**). In uninjured joints, MRL had a stronger *Trem2* expression than B6 (**Figure 7D**; D0),  
550 and robust expression of CD206 was seen throughout the synovium of the knee joint compared to  
551 B6. At D7, CD206<sup>+</sup>*Trem2*<sup>+</sup> expression was higher in MRL joints than B6 as indicated by the yellow  
552 co-expression of *Trem2* and CD206 (**Figure 7D**).

### 553 **Discussion**

554 This study sheds new light on the important modulatory role immune cells have in the prevention or  
555 onset of chronic joint degeneration. scRNA-seq and a non-surgical injury method allowed the  
556 unbiased examination of the immune heterogeneity in the synovial knee joint of PTOA-susceptible  
557 B6 mice and PTOA-resistant MRL mice [28, 45, 63, 64]. Previous studies have implicated  
558 infiltrating myeloid-derived populations, such as neutrophils and monocytes, as culprits of a pro-  
559 inflammatory joint state during osteoarthritis progression [1, 65, 66]. These cells are responsible for  
560 the production of inflammatory cytokines and chemokines, such as *IL-1 $\beta$* , *TNF $\alpha$* , *IL-6*, *IL-10*, and *IL-*  
561 *15*, as well as many others from the CCL/CXCL family [66]. Many of these molecular signals may  
562 be responsible for the infiltration of innate (macrophages, neutrophils, NK) and adaptive (T, B)  
563 immune cells into the synovial joint. Here, we characterized resident and infiltrating monocyte and  
564 macrophage subpopulations as well as neutrophils present in the synovial knee joint of MRL and B6

565 mice. Previously, *Ly6c<sup>high</sup>* monocytes have been shown to be recruited to the joint in response to  
566 traumatic knee injury and act as pro-inflammatory effector cells in tissues with perturbed  
567 homeostasis [67]. We found B6 joints to consistently have higher numbers of *Ly6c<sup>+</sup>* monocytes than  
568 MRL while the MRLs had an increased number of M2 macrophages.

569 A major M2-like macrophage population identified in the synovial joint was the resident  
570 *Lyve1<sup>+</sup>* macrophages. In addition to established tissue resident macrophage markers such as *Lyve1*,  
571 *Folr2* and *Vsig4*, *Lyve1<sup>+</sup>* macrophages expressed *Trem2*, its ligand *Apoe* and several growth factors  
572 with potential chondroprotective functions such as *Igf1* and *Bmp2* [68, 69]. *Trem2* expression has  
573 previously been associated with macrophages responsible for forming a protective barrier in synovial  
574 joints [21, 28]. *Trem2<sup>+</sup>* alternatively activated macrophages have been shown to drive an anti-  
575 inflammatory tissue environment and to promote damage repair *via* stromal cell interactions in RA  
576 joints as well as in other tissues [70, 71], therefore the increase in the *Trem2<sup>+</sup>* M2-like macrophage  
577 population after an injury is likely to confer a protective phenotype. Although the proportion of  
578 *Lyve1<sup>+</sup>* macrophages did not change considerably over time, MRL constantly had more *Lyve1<sup>+</sup>*  
579 macrophages than B6 at all timepoints. We also found that *Lyve1<sup>+</sup>* macrophages from B6 expressed  
580 higher levels of inflammatory cytokines (*Tnf*, *Ccl3*, *Ccl4*) than MRL, suggesting that *Lyve1<sup>+</sup>*  
581 macrophages in B6 are likely proinflammatory.

582 In addition to resident *Lyve1<sup>+</sup>* macrophages, *Trem2* was also expressed in *Trem2<sup>+</sup>Fcrls<sup>+</sup>* and  
583 *Spp1<sup>+</sup>Cav1<sup>+</sup>* macrophage clusters, with significantly higher expression in *Trem2<sup>+</sup>Fcrls<sup>+</sup>* cluster than  
584 *Spp1<sup>+</sup>Cav1<sup>+</sup>* cluster. Starting at D1 post injury, MRL and B6 synovium experienced an increase in  
585 the proportion of both *Trem2<sup>+</sup>Fcrls<sup>+</sup>* and *Spp1<sup>+</sup>Cav1<sup>+</sup>* macrophages. Both these clusters expressed  
586 low levels of *Ly6c2* at D1 indicating these cells were monocyte derived and emerged into the  
587 synovial joints after injury. Further gene and ontology enrichment analysis of *Trem2<sup>+</sup>* recruited

588 macrophages identified a more pro-inflammatory molecular phenotype in B6 cells. Specifically,  
589 *Trem2*<sup>+</sup> infiltrating macrophages in B6 were highly associated with proinflammatory cytokine  
590 expression and ontologies associated with inflammatory response. In contrast, several genes highly  
591 expressed in MRLs were associated with biological processes such as wound healing and response to  
592 oxidative stress.

593 *Trem2*<sup>+</sup>*Fcrls*<sup>+</sup> macrophages also expressed high levels of M2 marker *Mrc1* (CD206) and  
594 several other genes enriched in M2 macrophages including *Cd83*, *Marcks* and *Apoe* suggesting that  
595 this population shares some similar functions with the *Lyve1*<sup>+</sup> population. Flow cytometry analysis  
596 confirmed that MRL has significantly more *CD206*<sup>+</sup>*Trem2*<sup>+</sup>macrophages than B6 at D7. The  
597 sustained level of *Trem2*<sup>+</sup> macrophages in MRLs suggests that MRLs are better equipped to respond  
598 to injury through recruitment of hematopoietic progenitors and M2 polarization *via* cytokine  
599 signaling, such that phagocytosis of apoptotic cells induced by initial joint inflammation is more  
600 effective and promotes healing [72, 73].

601 *Spp1*<sup>+</sup>*Cav1*<sup>+</sup> macrophages shared molecular signatures (*Spp1*, *Fn1*, *Arg1*, *Capg* etc.) with  
602 previously described *Spp1*<sup>+</sup> pro-fibrotic macrophages [74]. In line with the findings by Hoeft *et al*,  
603 *Spp1*<sup>+</sup> macrophages showed strong enrichment for Hypoxia-inducible factor 1 $\alpha$  (*Hif1* $\alpha$ ) signaling  
604 [74]. *Hif1* $\alpha$  promotes the switch from oxidative phosphorylation to glycolysis so that cells can  
605 continue to produce ATP when oxygen is limited, as oxygen is not required for glycolysis [75].  
606 Consistent with *Hif1* $\alpha$  activation, we observed an increase in the expression of glycolytic enzymes  
607 including *Ldha*, *Eno1* and *Aldoa* in *Spp1*<sup>+</sup>*Cav1*<sup>+</sup> macrophages, all of which had higher expression in  
608 MRL compared to B6. Further studies are required to understand if increased expression of these  
609 glycolytic enzymes helps with the enhanced healing or PTOA resistance observed in MRL. Knight

610 *et al* suggested that these pro-fibrotic macrophages arise from synovial resident macrophages after  
611 injury [60]. However, our monocle trajectory analysis suggested that *Ly6c2*<sup>+</sup> monocytes could also  
612 differentiate into *Spp1*<sup>+</sup> macrophages especially at early post-injury timepoints, which is consistent  
613 with the findings by Ramachandran *et al*, in liver cirrhosis [76]. Thorough *in vivo* fate mapping  
614 studies are required to elucidate the true origins of these cells.

615 We also identified several genes consistently upregulated in all monocytes and macrophages  
616 from MRL, many of which had the highest expression in *Trem2*<sup>+</sup> macrophages. Specifically, *Glo1*  
617 has been shown to help inhibit inflammation by managing methylglyoxal levels produced by  
618 macrophages, thus inhibiting cell death and cytokine production [77]. An increase in *Glo1*  
619 expression in *Trem2*<sup>+</sup> macrophages from MRL indicates that these cells may play an essential role in  
620 dampening proinflammatory signaling in MRL most likely through reactive oxygen compounds or  
621 metabolites by locally damaged cells.

622 Neutrophils were a major immune population identified in our data. Although we failed to  
623 detect a considerable number of neutrophils in the knee joint tissues *via* IHC, we were able to rule  
624 out contamination from the circulation or the BM as possible origins of these neutrophils. This  
625 suggests that these neutrophils likely reside within the joint or adjacent tissues such as fat pad or the  
626 bone. Neutrophils expressed high levels of inflammatory cytokines (*Il1b*, *Tnf*, *Osm* etc.) and matrix  
627 degrading enzymes (*Mmp8*, *Mmp9* etc.) in both MRL and B6. We also noted that MRL neutrophils  
628 had lower expression of *Il1b* compared to B6 but, had higher expression of endogenous Il1 receptor  
629 antagonist *Il1rn*. In addition, MRL neutrophils expressed higher levels of *Csf1*, a key growth factor  
630 required for macrophage differentiation [78], than B6, which may have contributed to the increased  
631 presence of macrophages in MRL joints. This indicates that the presence of neutrophils in the joint

632 may contribute to differences in injury outcomes observed in MRL and B6. Our data highlights gene  
633 expression changes in response to injury and strain specific differences in neutrophils. However,  
634 further studies are needed to localize neutrophils in the articular joint forming tissues and understand  
635 their specific role in PTOA pathogenesis.

636 **Conclusions**

637 This study represents the first report describing fundamental molecular and cellular  
638 differences in neutrophil and macrophage subpopulations and macrophage polarization in the injured  
639 joint that may set the super-healer MRL strain apart from B6. The significant enrichment and  
640 sustained high levels of tissue-resident *CD206<sup>+</sup>Trem2<sup>+</sup>* macrophages in this strain may be an  
641 essential characteristic for successful cartilage tissue remodeling, macrophage turnover, and joint  
642 protection during early injury responses, preventing transition to the chronic phase of PTOA. Further  
643 exploration of these polarized macrophages in patients and animal models will help us determine  
644 why some individuals fully recover from an ACL injury without developing PTOA, while others  
645 succumb to this degenerative disorder.

646 **ACKNOWLEDGEMENTS**

647 This work was performed under the auspices of the U.S. Department of Energy by Lawrence  
648 Livermore National Laboratory under Contract DE-AC52-07NA27344. JLM, AS, NRH, DKM and  
649 SPW were supported by Lawrence Livermore National Laboratory LDRD 20-LW-002. AS, DKM,  
650 NRH, SPW, BA and GGL were supported by Department of Defense Awards PR180268 and  
651 PR192271. BAC was supported by the National Institute of Health grant R01 AR075013 and  
652 Department of Defense Award PR180268P1.

653 Author's Role: Study design: JLM, AS and GGL; Data acquisition: JLM, DKM, CM, NRH, BA, and  
654 BAC. Data analysis and interpretation: JLM, AS, OAD, SPW, BAC, and GGL. JLM, AS and GGL  
655 wrote the manuscript.

656 **Data Availability Statement.** The datasets generated for this study can be found in the Gene  
657 Expression Omnibus (GEO) under accession numbers GSE200843 and GSE220167.

658 **REFERENCES**

659 1. Punzi L, Galozzi P, Luisetto R, Favero M, Ramonda R, Oliviero F, et al. Post-traumatic  
660 arthritis: overview on pathogenic mechanisms and role of inflammation. *RMD Open*.

661 2016;2(2):e000279. Epub 20160906. doi: 10.1136/rmdopen-2016-000279. PubMed PMID:  
662 27651925; PubMed Central PMCID: PMCPMC5013366.

663 2. Heydemann A. The super super-healing MRL mouse strain. *Front Biol (Beijing)*.  
664 2012;7(6):522-38. doi: 10.1007/s11515-012-1192-4. PubMed PMID: 24163690; PubMed Central  
665 PMCID: PMCPMC3806350.

666 3. Fitzgerald J, Rich C, Burkhardt D, Allen J, Herzka AS, Little CB. Evidence for articular  
667 cartilage regeneration in MRL/MpJ mice. *Osteoarthritis Cartilage*. 2008;16(11):1319-26. Epub  
668 20080501. doi: 10.1016/j.joca.2008.03.014. PubMed PMID: 18455447.

669 4. Clark LD, Clark RK, Heber-Katz E. A new murine model for mammalian wound repair and  
670 regeneration. *Clin Immunol Immunopathol*. 1998;88(1):35-45. doi: 10.1006/clin.1998.4519.  
671 PubMed PMID: 9683548.

672 5. Kwiatkowski A, Piatkowski M, Chen M, Kan L, Meng Q, Fan H, et al. Superior angiogenesis  
673 facilitates digit regrowth in MRL/MpJ mice compared to C57BL/6 mice. *Biochem Biophys Res  
674 Commun*. 2016;473(4):907-12. Epub 20160331. doi: 10.1016/j.bbrc.2016.03.149. PubMed PMID:  
675 27040769.

676 6. Mendez ME, Sebastian A, Murugesh DK, Hum NR, McCool JL, Hsia AW, et al. LPS-  
677 Induced Inflammation Prior to Injury Exacerbates the Development of Post-Traumatic Osteoarthritis  
678 in Mice. *J Bone Miner Res.* 2020;35(11):2229-41. Epub 20200803. doi: 10.1002/jbmr.4117.  
679 PubMed PMID: 32564401; PubMed Central PMCID: PMCPMC7689775.

680 7. Rai MF, Sandell LJ. Regeneration of articular cartilage in healer and non-healer mice. *Matrix*  
681 *Biol.* 2014;39:50-5. Epub 20140828. doi: 10.1016/j.matbio.2014.08.011. PubMed PMID: 25173437;  
682 PubMed Central PMCID: PMCPMC4306343.

683 8. Rajnoch C, Ferguson S, Metcalfe AD, Herrick SE, Willis HS, Ferguson MW. Regeneration  
684 of the ear after wounding in different mouse strains is dependent on the severity of wound trauma.  
685 *Dev Dyn.* 2003;226(2):388-97. doi: 10.1002/dvdy.10242. PubMed PMID: 12557217.

686 9. Sebastian A, Chang JC, Mendez ME, Murugesh DK, Hatsell S, Economides AN, et al.  
687 Comparative Transcriptomics Identifies Novel Genes and Pathways Involved in Post-Traumatic  
688 Osteoarthritis Development and Progression. *Int J Mol Sci.* 2018;19(9). Epub 20180907. doi:  
689 10.3390/ijms19092657. PubMed PMID: 30205482; PubMed Central PMCID: PMCPMC6163882.

690 10. Ward BD, Furman BD, Huebner JL, Kraus VB, Guilak F, Olson SA. Absence of  
691 posttraumatic arthritis following intraarticular fracture in the MRL/MpJ mouse. *Arthritis Rheum.*  
692 2008;58(3):744-53. doi: 10.1002/art.23288. PubMed PMID: 18311808.

693 11. Khella CM, Horvath JM, Asgarian R, Rolauffs B, Hart ML. Anti-Inflammatory Therapeutic  
694 Approaches to Prevent or Delay Post-Traumatic Osteoarthritis (PTOA) of the Knee Joint with a  
695 Focus on Sustained Delivery Approaches. *Int J Mol Sci.* 2021;22(15). Epub 20210727. doi:  
696 10.3390/ijms22158005. PubMed PMID: 34360771; PubMed Central PMCID: PMCPMC8347094.

697 12. Anderson DD, Chubinskaya S, Guilak F, Martin JA, Oegema TR, Olson SA, et al. Post-  
698 traumatic osteoarthritis: improved understanding and opportunities for early intervention. *J Orthop*

699 Res. 2011;29(6):802-9. Epub 20110211. doi: 10.1002/jor.21359. PubMed PMID: 21520254;  
700 PubMed Central PMCID: PMCPMC3082940.

701 13. Dymock DC, Brown MP, Merritt KA, Trumble TN. Concentrations of stromal cell-derived  
702 factor-1 in serum, plasma, and synovial fluid of horses with osteochondral injury. Am J Vet Res.  
703 2014;75(8):722-30. doi: 10.2460/ajvr.75.8.722. PubMed PMID: 25061703.

704 14. El-Hadi M, Charavaryamath C, Aebischer A, Smith CW, Shmon C, Singh B. Expression of  
705 interleukin-8 and intercellular cell adhesion molecule-1 in the synovial membrane and cranial  
706 cruciate ligament of dogs after rupture of the ligament. Can J Vet Res. 2012;76(1):8-15. PubMed  
707 PMID: 22754089; PubMed Central PMCID: PMCPMC3244294.

708 15. Ferrández ML, Terencio MC, Ruhí R, Vergés J, Montell E, Torrent A, et al. Influence of age  
709 on osteoarthritis progression after anterior cruciate ligament transection in rats. Exp Gerontol.  
710 2014;55:44-8. Epub 20140322. doi: 10.1016/j.exger.2014.03.010. PubMed PMID: 24667123.

711 16. Shen PC, Lu CS, Shiau AL, Lee CH, Jou IM, Hsieh JL. Lentiviral small hairpin RNA  
712 knockdown of macrophage inflammatory protein-1 $\gamma$  ameliorates experimentally induced  
713 osteoarthritis in mice. Hum Gene Ther. 2013;24(10):871-82. doi: 10.1089/hum.2012.189. PubMed  
714 PMID: 24016310; PubMed Central PMCID: PMCPMC3787402.

715 17. Loeser RF, Olex AL, McNulty MA, Carlson CS, Callahan M, Ferguson C, et al. Disease  
716 progression and phasic changes in gene expression in a mouse model of osteoarthritis. PLoS One.  
717 2013;8(1):e54633. Epub 20130128. doi: 10.1371/journal.pone.0054633. PubMed PMID: 23382930;  
718 PubMed Central PMCID: PMCPMC3557277.

719 18. Khella CM, Asgarian R, Horvath JM, Rolauffs B, Hart ML. An Evidence-Based Systematic  
720 Review of Human Knee Post-Traumatic Osteoarthritis (PTOA): Timeline of Clinical Presentation  
721 and Disease Markers, Comparison of Knee Joint PTOA Models and Early Disease Implications. Int J

722 Mol Sci. 2021;22(4). Epub 20210217. doi: 10.3390/ijms22041996. PubMed PMID: 33671471;  
723 PubMed Central PMCID: PMCPMC7922905.

724 19. Kim-Wang SY, Holt AG, McGowan AM, Danyluk ST, Goode AP, Lau BC, et al. Immune  
725 cell profiles in synovial fluid after anterior cruciate ligament and meniscus injuries. Arthritis Res  
726 Ther. 2021;23(1):280. Epub 20211104. doi: 10.1186/s13075-021-02661-1. PubMed PMID:  
727 34736523; PubMed Central PMCID: PMCPMC8567695.

728 20. Haseeb A, Haqqi TM. Immunopathogenesis of osteoarthritis. Clin Immunol.  
729 2013;146(3):185-96. Epub 20130106. doi: 10.1016/j.clim.2012.12.011. PubMed PMID: 23360836;  
730 PubMed Central PMCID: PMCPMC4015466.

731 21. Culemann S, Grüneboom A, Nicolás-Ávila J, Weidner D, Lämmle KF, Rothe T, et al.  
732 Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature.  
733 2019;572(7771):670-5. Epub 20190807. doi: 10.1038/s41586-019-1471-1. PubMed PMID:  
734 31391580; PubMed Central PMCID: PMCPMC6805223.

735 22. Croft AP, Campos J, Jansen K, Turner JD, Marshall J, Attar M, et al. Distinct fibroblast  
736 subsets drive inflammation and damage in arthritis. Nature. 2019;570(7760):246-51. Epub  
737 20190529. doi: 10.1038/s41586-019-1263-7. PubMed PMID: 31142839; PubMed Central PMCID:  
738 PMCPMC6690841.

739 23. Orr C, Vieira-Sousa E, Boyle DL, Buch MH, Buckley CD, Cañete JD, et al. Synovial tissue  
740 research: a state-of-the-art review. Nat Rev Rheumatol. 2017;13(8):463-75. Epub 20170713. doi:  
741 10.1038/nrrheum.2017.115. PubMed PMID: 28701760.

742 24. Knab K, Chambers D, Krönke G. Synovial Macrophage and Fibroblast Heterogeneity in  
743 Joint Homeostasis and Inflammation. Front Med (Lausanne). 2022;9:862161. Epub 20220425. doi:

744 10.3389/fmed.2022.862161. PubMed PMID: 35547214; PubMed Central PMCID:  
745 PMCPMC9081642.

746 25. Fujiwara N, Kobayashi K. Macrophages in inflammation. *Curr Drug Targets Inflamm*  
747 *Allergy*. 2005;4(3):281-6. doi: 10.2174/1568010054022024. PubMed PMID: 16101534.

748 26. Lech M, Anders HJ. Macrophages and fibrosis: How resident and infiltrating mononuclear  
749 phagocytes orchestrate all phases of tissue injury and repair. *Biochim Biophys Acta*.  
750 2013;1832(7):989-97. Epub 20121213. doi: 10.1016/j.bbadi.2012.12.001. PubMed PMID:  
751 23246690.

752 27. Mescher AL. Macrophages and fibroblasts during inflammation and tissue repair in models  
753 of organ regeneration. *Regeneration (Oxf)*. 2017;4(2):39-53. Epub 20170606. doi: 10.1002/reg2.77.  
754 PubMed PMID: 28616244; PubMed Central PMCID: PMCPMC5469729.

755 28. Sebastian A, Hum NR, McCool JL, Wilson SP, Murugesh DK, Martin KA, et al. Single-cell  
756 RNA-Seq reveals changes in immune landscape in post-traumatic osteoarthritis. *Front Immunol*.  
757 2022;13:938075. Epub 20220729. doi: 10.3389/fimmu.2022.938075. PubMed PMID: 35967299;  
758 PubMed Central PMCID: PMCPMC9373730.

759 29. Christiansen BA, Anderson MJ, Lee CA, Williams JC, Yik JH, Haudenschild DR.  
760 Musculoskeletal changes following non-invasive knee injury using a novel mouse model of post-  
761 traumatic osteoarthritis. *Osteoarthritis Cartilage*. 2012;20(7):773-82. Epub 20120421. doi:  
762 10.1016/j.joca.2012.04.014. PubMed PMID: 22531459.

763 30. Liu H, Zhu R, Liu C, Ma R, Wang L, Chen B, et al. Evaluation of Decalcification  
764 Techniques for Rat Femurs Using HE and Immunohistochemical Staining. *Biomed Res Int*.  
765 2017;2017:9050754. Epub 20170126. doi: 10.1155/2017/9050754. PubMed PMID: 28246608;  
766 PubMed Central PMCID: PMCPMC5299168.

767 31. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis.  
768 Nat Methods. 2012;9(7):671-5. doi: 10.1038/nmeth.2089. PubMed PMID: 22930834; PubMed  
769 Central PMCID: PMCPMC5554542.

770 32. Glasson SS, Chambers MG, Van Den Berg WB, Little CB. The OARSI histopathology  
771 initiative - recommendations for histological assessments of osteoarthritis in the mouse.  
772 Osteoarthritis Cartilage. 2010;18 Suppl 3:S17-23. doi: 10.1016/j.joca.2010.05.025. PubMed PMID:  
773 20864019.

774 33. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, 3rd, Zheng S, Butler A, et al. Integrated  
775 analysis of multimodal single-cell data. Cell. 2021;184(13):3573-87 e29. Epub 20210531. doi:  
776 10.1016/j.cell.2021.04.048. PubMed PMID: 34062119; PubMed Central PMCID:  
777 PMCPMC8238499.

778 34. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast, sensitive and  
779 accurate integration of single-cell data with Harmony. Nat Methods. 2019;16(12):1289-96. Epub  
780 20191118. doi: 10.1038/s41592-019-0619-0. PubMed PMID: 31740819; PubMed Central PMCID:  
781 PMCPMC6884693.

782 35. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal enrichment  
783 tool for interpreting omics data. Innovation (Camb). 2021;2(3):100141. Epub 20210701. doi:  
784 10.1016/j.xinn.2021.100141. PubMed PMID: 34557778; PubMed Central PMCID:  
785 PMCPMC8454663.

786 36. Alexa A, Rahnenfuhrer J, Lengauer T. Improved scoring of functional groups from gene  
787 expression data by decorrelating GO graph structure. Bioinformatics. 2006;22(13):1600-7. Epub  
788 20060410. doi: 10.1093/bioinformatics/btl140. PubMed PMID: 16606683.

789 37. Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list enrichment analysis  
790 and candidate gene prioritization. *Nucleic Acids Res.* 2009;37(Web Server issue):W305-11. Epub  
791 20090522. doi: 10.1093/nar/gkp427. PubMed PMID: 19465376; PubMed Central PMCID:  
792 PMCPMC2703978.

793 38. Badia IMP, Velez Santiago J, Braunger J, Geiss C, Dimitrov D, Muller-Dott S, et al.  
794 decoupleR: ensemble of computational methods to infer biological activities from omics data.  
795 *Bioinform Adv.* 2022;2(1):vbac016. Epub 20220308. doi: 10.1093/bioadv/vbac016. PubMed PMID:  
796 36699385; PubMed Central PMCID: PMCPMC9710656.

797 39. Blanco-Carmona E. Generating publication ready visualizations for Single Cell  
798 transcriptomics using SCpubr. *bioRxiv*. 2022:2022.02.28.482303. doi: 10.1101/2022.02.28.482303.

799 40. Frerebeau N. khroma: Colour Schemes for Scientific Data Visualization2024.

800 41. Wickham H, Averick M, Bryan J, Chang W, McGowan LDA, François R, et al. Welcome to  
801 the Tidyverse. *Journal of Open Source Software*. 2019;4(43):1686. doi: 10.21105/joss.01686.

802 42. Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, et al. Reversed graph embedding  
803 resolves complex single-cell trajectories. *Nat Methods*. 2017;14(10):979-82. Epub 20170821. doi:  
804 10.1038/nmeth.4402. PubMed PMID: 28825705; PubMed Central PMCID: PMCPMC5764547.

805 43. Blaker CL, Clarke EC, Little CB. Using mouse models to investigate the pathophysiology,  
806 treatment, and prevention of post-traumatic osteoarthritis. *J Orthop Res*. 2017;35(3):424-39. Epub  
807 20160628. doi: 10.1002/jor.23343. PubMed PMID: 27312470.

808 44. Chang JC, Sebastian A, Murugesh DK, Hatsell S, Economides AN, Christiansen BA, et al.  
809 Global molecular changes in a tibial compression induced ACL rupture model of post-traumatic  
810 osteoarthritis. *J Orthop Res*. 2017;35(3):474-85. Epub 20160510. doi: 10.1002/jor.23263. PubMed  
811 PMID: 27088242; PubMed Central PMCID: PMCPMC5363336.

812 45. Sebastian A, McCool JL, Hum NR, Murugesh DK, Wilson SP, Christiansen BA, et al.  
813 Single-Cell RNA-Seq Reveals Transcriptomic Heterogeneity and Post-Traumatic Osteoarthritis-  
814 Associated Early Molecular Changes in Mouse Articular Chondrocytes. *Cells*. 2021;10(6). Epub  
815 20210610. doi: 10.3390/cells10061462. PubMed PMID: 34200880; PubMed Central PMCID:  
816 PMCPMC8230441.

817 46. Garley M, Jablonska E. Heterogeneity Among Neutrophils. *Arch Immunol Ther Exp*  
818 (Warsz). 2018;66(1):21-30. Epub 20170530. doi: 10.1007/s00005-017-0476-4. PubMed PMID:  
819 28560557; PubMed Central PMCID: PMCPMC5767199.

820 47. Grieshaber-Bouyer R, Radtke FA, Cunin P, Stifano G, Levescot A, Vijaykumar B, et al. The  
821 neutrotome transcriptional signature defines a single continuum of neutrophils across biological  
822 compartments. *Nat Commun*. 2021;12(1):2856. Epub 20210517. doi: 10.1038/s41467-021-22973-9.  
823 PubMed PMID: 34001893; PubMed Central PMCID: PMCPMC8129206.

824 48. Villatoro A, Cuminetti V, Bernal A, Torroja C, Cossio I, Benguria A, et al. Author  
825 Correction: Endogenous IL-1 receptor antagonist restricts healthy and malignant myeloproliferation.  
826 *Nat Commun*. 2023;14(1):3874. Epub 20230630. doi: 10.1038/s41467-023-39601-3. PubMed  
827 PMID: 37391415; PubMed Central PMCID: PMCPMC10313788.

828 49. Menezes S, Melandri D, Anselmi G, Perchet T, Loschko J, Dubrot J, et al. The Heterogeneity  
829 of Ly6C(hi) Monocytes Controls Their Differentiation into iNOS(+) Macrophages or Monocyte-  
830 Derived Dendritic Cells. *Immunity*. 2016;45(6):1205-18. doi: 10.1016/j.jimmuni.2016.12.001.  
831 PubMed PMID: 28002729; PubMed Central PMCID: PMCPMC5196026.

832 50. Kemp SB, Steele NG, Carpenter ES, Donahue KL, Bushnell GG, Morris AH, et al.  
833 Pancreatic cancer is marked by complement-high blood monocytes and tumor-associated

834      macrophages. *Life Sci Alliance*. 2021;4(6). Epub 20210329. doi: 10.26508/lsa.202000935. PubMed  
835      PMID: 33782087; PubMed Central PMCID: PMCPMC8091600.

836      51.      Audzevich T, Bashford-Rogers R, Mabbott NA, Frampton D, Freeman TC, Potocnik A, et al.  
837      Pre/pro-B cells generate macrophage populations during homeostasis and inflammation. *Proc Natl  
838      Acad Sci U S A*. 2017;114(20):E3954-E63. Epub 20170501. doi: 10.1073/pnas.1616417114.  
839      PubMed PMID: 28461481; PubMed Central PMCID: PMCPMC5441795.

840      52.      Zhong L, Chen XF, Wang T, Wang Z, Liao C, Wang Z, et al. Soluble TREM2 induces  
841      inflammatory responses and enhances microglial survival. *J Exp Med*. 2017;214(3):597-607. Epub  
842      20170216. doi: 10.1084/jem.20160844. PubMed PMID: 28209725; PubMed Central PMCID:  
843      PMCPMC5339672.

844      53.      Kobayashi M, Konishi H, Sayo A, Takai T, Kiyama H. TREM2/DAP12 Signal Elicits  
845      Proinflammatory Response in Microglia and Exacerbates Neuropathic Pain. *J Neurosci*.  
846      2016;36(43):11138-50. doi: 10.1523/jneurosci.1238-16.2016. PubMed PMID: 27798193; PubMed  
847      Central PMCID: PMCPMC6705657.

848      54.      Alivernini S, MacDonald L, Elmesmari A, Finlay S, Tolusso B, Gigante MR, et al. Distinct  
849      synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. *Nat  
850      Med*. 2020;26(8):1295-306. Epub 20200629. doi: 10.1038/s41591-020-0939-8. PubMed PMID:  
851      32601335.

852      55.      Fu Y, Moore XL, Lee MK, Fernández-Rojo MA, Parat MO, Parton RG, et al. Caveolin-1  
853      plays a critical role in the differentiation of monocytes into macrophages. *Arterioscler Thromb Vasc  
854      Biol*. 2012;32(9):e117-25. Epub 20120705. doi: 10.1161/atvaha.112.254151. PubMed PMID:  
855      22772753.

856 56. Zernecke A, Erhard F, Weinberger T, Schulz C, Ley K, Saliba AE, et al. Integrated single-  
857 cell analysis-based classification of vascular mononuclear phagocytes in mouse and human  
858 atherosclerosis. *Cardiovasc Res.* 2023;119(8):1676-89. doi: 10.1093/cvr/cvac161. PubMed PMID:  
859 36190844; PubMed Central PMCID: PMCPMC10325698.

860 57. Dick SA, Wong A, Hamidzada H, Nejat S, Nechanitzky R, Vohra S, et al. Three tissue  
861 resident macrophage subsets coexist across organs with conserved origins and life cycles. *Sci  
862 Immunol.* 2022;7(67):eabf7777. Epub 20220107. doi: 10.1126/sciimmunol.abf7777. PubMed PMID:  
863 34995099.

864 58. Chakarov S, Lim HY, Tan L, Lim SY, See P, Lum J, et al. Two distinct interstitial  
865 macrophage populations coexist across tissues in specific subtissular niches. *Science.*  
866 2019;363(6432). doi: 10.1126/science.aau0964. PubMed PMID: 30872492.

867 59. Dick SA, Macklin JA, Nejat S, Momen A, Clemente-Casares X, Althagafi MG, et al. Self-  
868 renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction.  
869 *Nat Immunol.* 2019;20(1):29-39. Epub 20181211. doi: 10.1038/s41590-018-0272-2. PubMed PMID:  
870 30538339; PubMed Central PMCID: PMCPMC6565365.

871 60. Knights AJ, Farrell EC, Ellis OM, Song MJ, Appleton CT, Maerz T. Synovial macrophage  
872 diversity and activation of M-CSF signaling in post-traumatic osteoarthritis. *bioRxiv.* 2023. Epub  
873 20231005. doi: 10.1101/2023.10.03.559514. PubMed PMID: 37873464; PubMed Central PMCID:  
874 PMCPMC10592932.

875 61. Cui XG, Han ZT, He SH, Wu XD, Chen TR, Shao CH, et al. HIF1/2alpha mediates hypoxia-  
876 induced LDHA expression in human pancreatic cancer cells. *Oncotarget.* 2017;8(15):24840-52. doi:  
877 10.18632/oncotarget.15266. PubMed PMID: 28193910; PubMed Central PMCID:  
878 PMCPMC5421893.

879 62. Zheng F, Jang WC, Fung FK, Lo AC, Wong IY. Up-Regulation of ENO1 by HIF-1alpha in  
880 Retinal Pigment Epithelial Cells after Hypoxic Challenge Is Not Involved in the Regulation of  
881 VEGF Secretion. *PLoS One*. 2016;11(2):e0147961. Epub 20160216. doi:  
882 10.1371/journal.pone.0147961. PubMed PMID: 26882120; PubMed Central PMCID:  
883 PMCPMC4755565.

884 63. Li X, Liao Z, Deng Z, Chen N, Zhao L. Combining bulk and single-cell RNA-sequencing  
885 data to reveal gene expression pattern of chondrocytes in the osteoarthritic knee. *Bioengineered*.  
886 2021;12(1):997-1007. doi: 10.1080/21655979.2021.1903207. PubMed PMID: 33749514; PubMed  
887 Central PMCID: PMCPMC8806218.

888 64. Kouroupis D, Best TM, Kaplan LD, Correa D, Griswold AJ. Single-Cell RNA-Sequencing  
889 Identifies Infrapatellar Fat Pad Macrophage Polarization in Acute Synovitis/Fat Pad Fibrosis and  
890 Cell Therapy. *Bioengineering (Basel)*. 2021;8(11). Epub 20211029. doi:  
891 10.3390/bioengineering8110166. PubMed PMID: 34821732; PubMed Central PMCID:  
892 PMCPMC8615266.

893 65. Hsueh MF, Zhang X, Wellman SS, Bolognesi MP, Kraus VB. Synergistic Roles of  
894 Macrophages and Neutrophils in Osteoarthritis Progression. *Arthritis Rheumatol*. 2021;73(1):89-99.  
895 Epub 20201117. doi: 10.1002/art.41486. PubMed PMID: 32783329; PubMed Central PMCID:  
896 PMCPMC7876152.

897 66. Lieberthal J, Sambamurthy N, Scanzello CR. Inflammation in joint injury and post-traumatic  
898 osteoarthritis. *Osteoarthritis Cartilage*. 2015;23(11):1825-34. doi: 10.1016/j.joca.2015.08.015.  
899 PubMed PMID: 26521728; PubMed Central PMCID: PMCPMC4630675.

900 67. Haubruck P, Pinto MM, Moradi B, Little CB, Gentek R. Monocytes, Macrophages, and Their  
901 Potential Niches in Synovial Joints - Therapeutic Targets in Post-Traumatic Osteoarthritis? *Front*

902 Immunol. 2021;12:763702. Epub 20211104. doi: 10.3389/fimmu.2021.763702. PubMed PMID:  
903 34804052; PubMed Central PMCID: PMCPMC8600114.

904 68. Zhang Z, Li L, Yang W, Cao Y, Shi Y, Li X, et al. The effects of different doses of IGF-1 on  
905 cartilage and subchondral bone during the repair of full-thickness articular cartilage defects in  
906 rabbits. Osteoarthritis Cartilage. 2017;25(2):309-20. Epub 20160920. doi:  
907 10.1016/j.joca.2016.09.010. PubMed PMID: 27662821.

908 69. Ruan S, Deng J, Yan L, Huang W. Evaluation of the effects of the combination of BMP-2-  
909 modified BMSCs and PRP on cartilage defects. Exp Ther Med. 2018;16(6):4569-77. Epub  
910 20180919. doi: 10.3892/etm.2018.6776. PubMed PMID: 30542406; PubMed Central PMCID:  
911 PMCPMC6257496.

912 70. MacDonald L, Alivernini S, Tolusso B, Elmesmari A, Somma D, Perniola S, et al. COVID-  
913 19 and RA share an SPP1 myeloid pathway that drives PD-L1+ neutrophils and CD14+ monocytes.  
914 JCI Insight. 2021;6(13). Epub 20210618. doi: 10.1172/jci.insight.147413. PubMed PMID:  
915 34143756; PubMed Central PMCID: PMCPMC8328085.

916 71. Coelho I, Duarte N, Barros A, Macedo MP, Penha-Goncalves C. Trem-2 Promotes  
917 Emergence of Restorative Macrophages and Endothelial Cells During Recovery From Hepatic  
918 Tissue Damage. Front Immunol. 2020;11:616044. Epub 20210208. doi:  
919 10.3389/fimmu.2020.616044. PubMed PMID: 33628208; PubMed Central PMCID:  
920 PMCPMC7897679.

921 72. Harasymowicz NS, Rashidi N, Savadipour A, Wu CL, Tang R, Bramley J, et al. Single-cell  
922 RNA sequencing reveals the induction of novel myeloid and myeloid-associated cell populations in  
923 visceral fat with long-term obesity. Faseb j. 2021;35(3):e21417. doi: 10.1096/fj.202001970R.  
924 PubMed PMID: 33566380; PubMed Central PMCID: PMCPMC8743141.

925 73. Li RY, Qin Q, Yang HC, Wang YY, Mi YX, Yin YS, et al. TREM2 in the pathogenesis of  
926 AD: a lipid metabolism regulator and potential metabolic therapeutic target. *Mol Neurodegener.*  
927 2022;17(1):40. Epub 20220603. doi: 10.1186/s13024-022-00542-y. PubMed PMID: 35658903;  
928 PubMed Central PMCID: PMCPMC9166437.

929 74. Hoeft K, Schaefer GJL, Kim H, Schumacher D, Bleckwehl T, Long Q, et al. Platelet-  
930 instructed SPP1(+) macrophages drive myofibroblast activation in fibrosis in a CXCL4-dependent  
931 manner. *Cell Rep.* 2023;42(2):112131. Epub 20230218. doi: 10.1016/j.celrep.2023.112131. PubMed  
932 PMID: 36807143; PubMed Central PMCID: PMCPMC9992450.

933 75. Kelly B, O'Neill LA. Metabolic reprogramming in macrophages and dendritic cells in innate  
934 immunity. *Cell Res.* 2015;25(7):771-84. Epub 20150605. doi: 10.1038/cr.2015.68. PubMed PMID:  
935 26045163; PubMed Central PMCID: PMCPMC4493277.

936 76. Ramachandran P, Dobie R, Wilson-Kanamori JR, Dora EF, Henderson BEP, Luu NT, et al.  
937 Resolving the fibrotic niche of human liver cirrhosis at single-cell level. *Nature.*  
938 2019;575(7783):512-8. Epub 20191009. doi: 10.1038/s41586-019-1631-3. PubMed PMID:  
939 31597160; PubMed Central PMCID: PMCPMC6876711.

940 77. Prantner D, Nallar S, Richard K, Spiegel D, Collins KD, Vogel SN. Classically activated  
941 mouse macrophages produce methylglyoxal that induces a TLR4- and RAGE-independent  
942 proinflammatory response. *J Leukoc Biol.* 2021;109(3):605-19. Epub 20200717. doi:  
943 10.1002/JLB.3A0520-745RR. PubMed PMID: 32678947; PubMed Central PMCID:  
944 PMCPMC7855181.

945 78. Sehgal A, Irvine KM, Hume DA. Functions of macrophage colony-stimulating factor (CSF1)  
946 in development, homeostasis, and tissue repair. *Semin Immunol.* 2021;54:101509. Epub 20211104.  
947 doi: 10.1016/j.smim.2021.101509. PubMed PMID: 34742624.

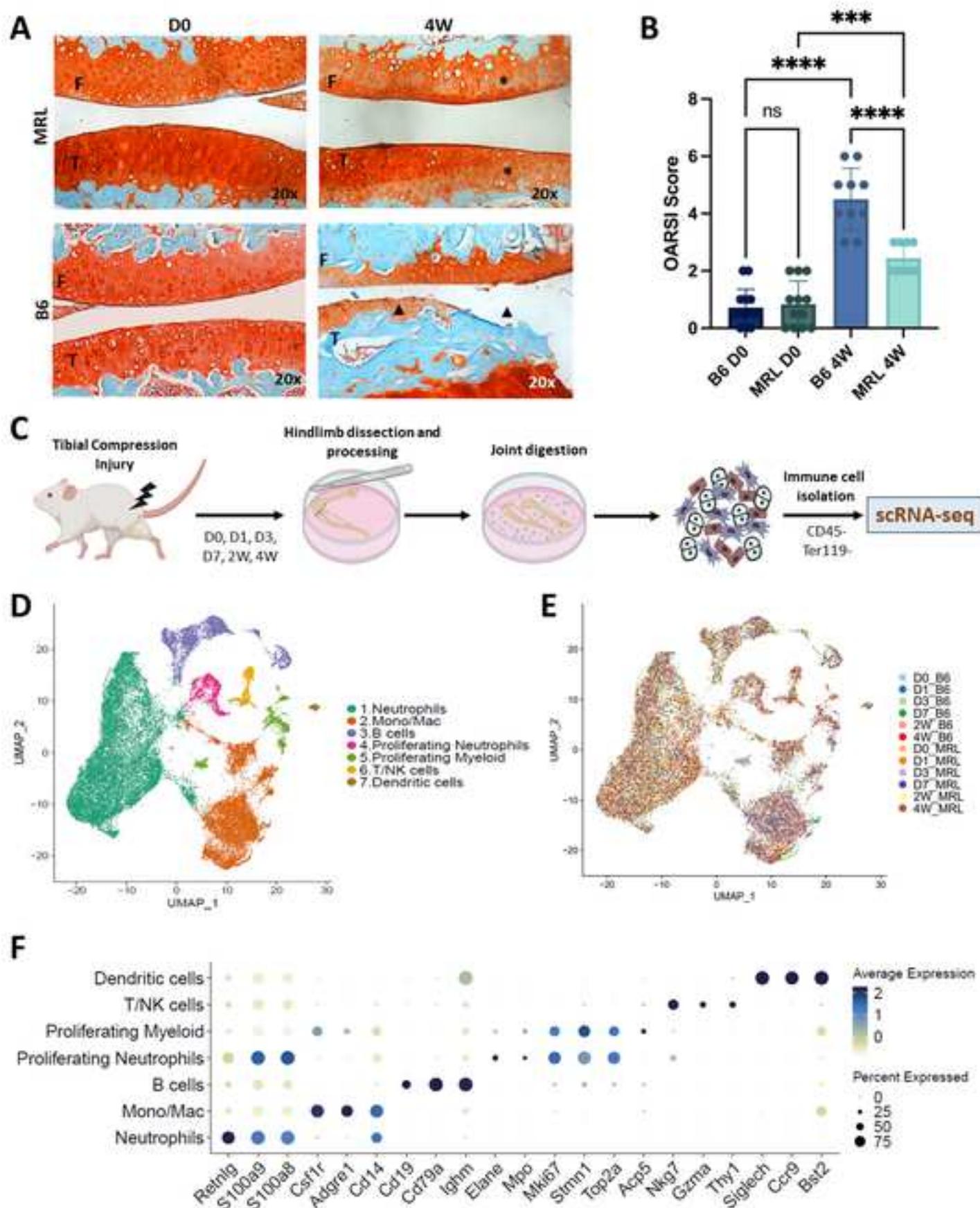
March 22, 2024

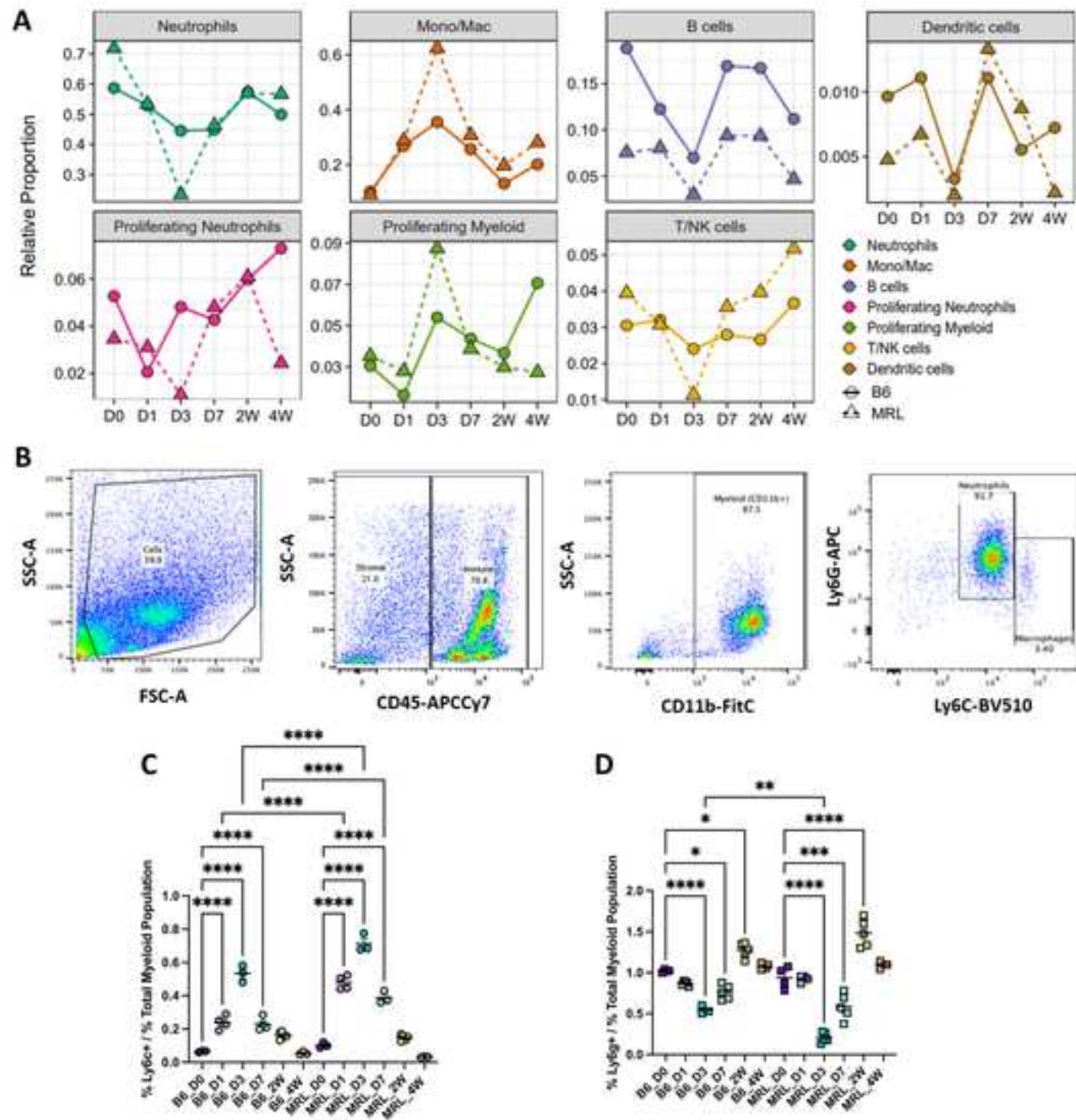
Dear Editor:

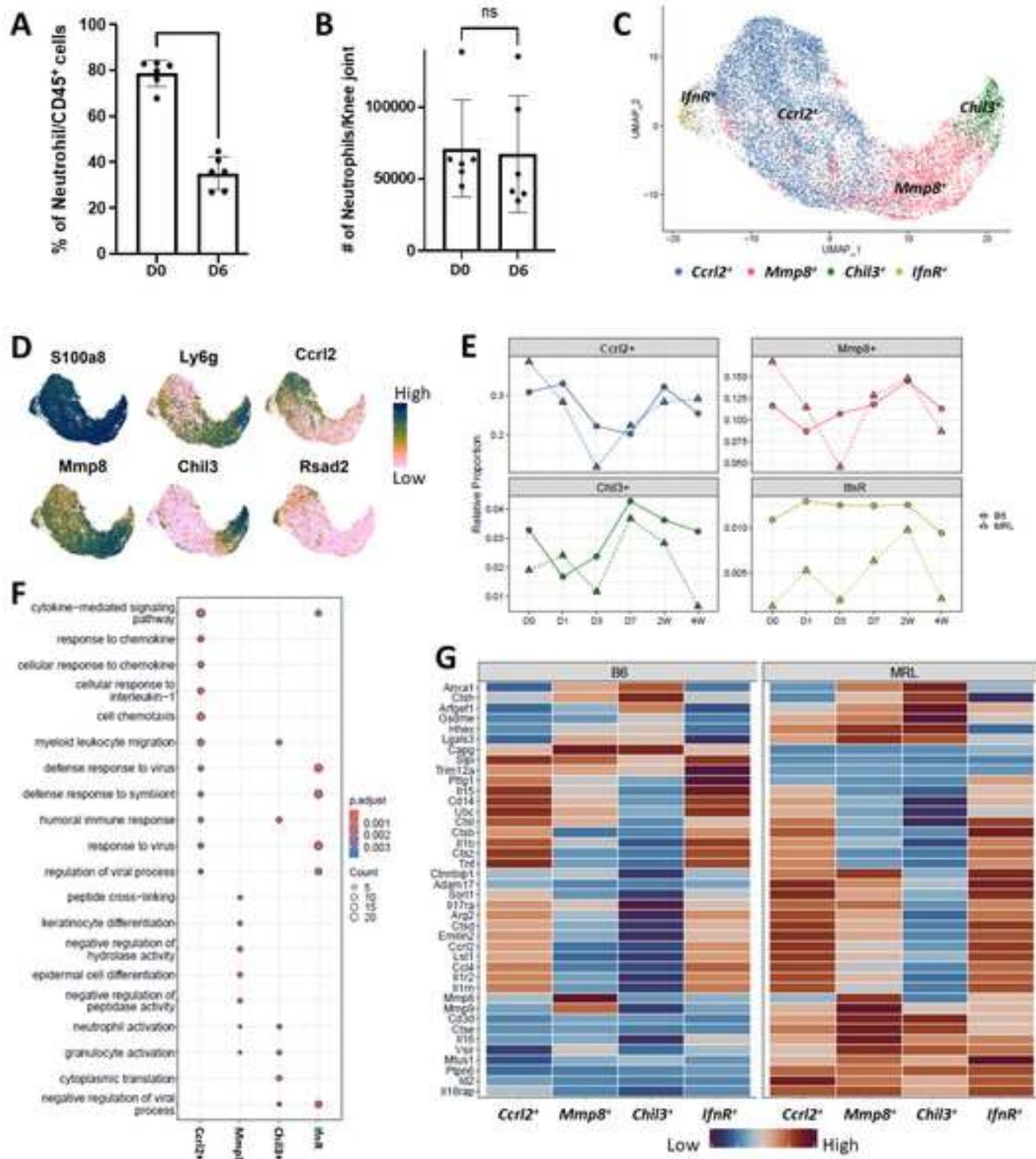
We would be honored if you would consider our manuscript '**CD206<sup>+</sup>Trem2<sup>+</sup> Macrophage Accumulation in the Murine Knee Joint After Injury is Associated with Protection Against Post-Traumatic Osteoarthritis in MRL/MpJ Mice**' for publication in the *Plos One*.

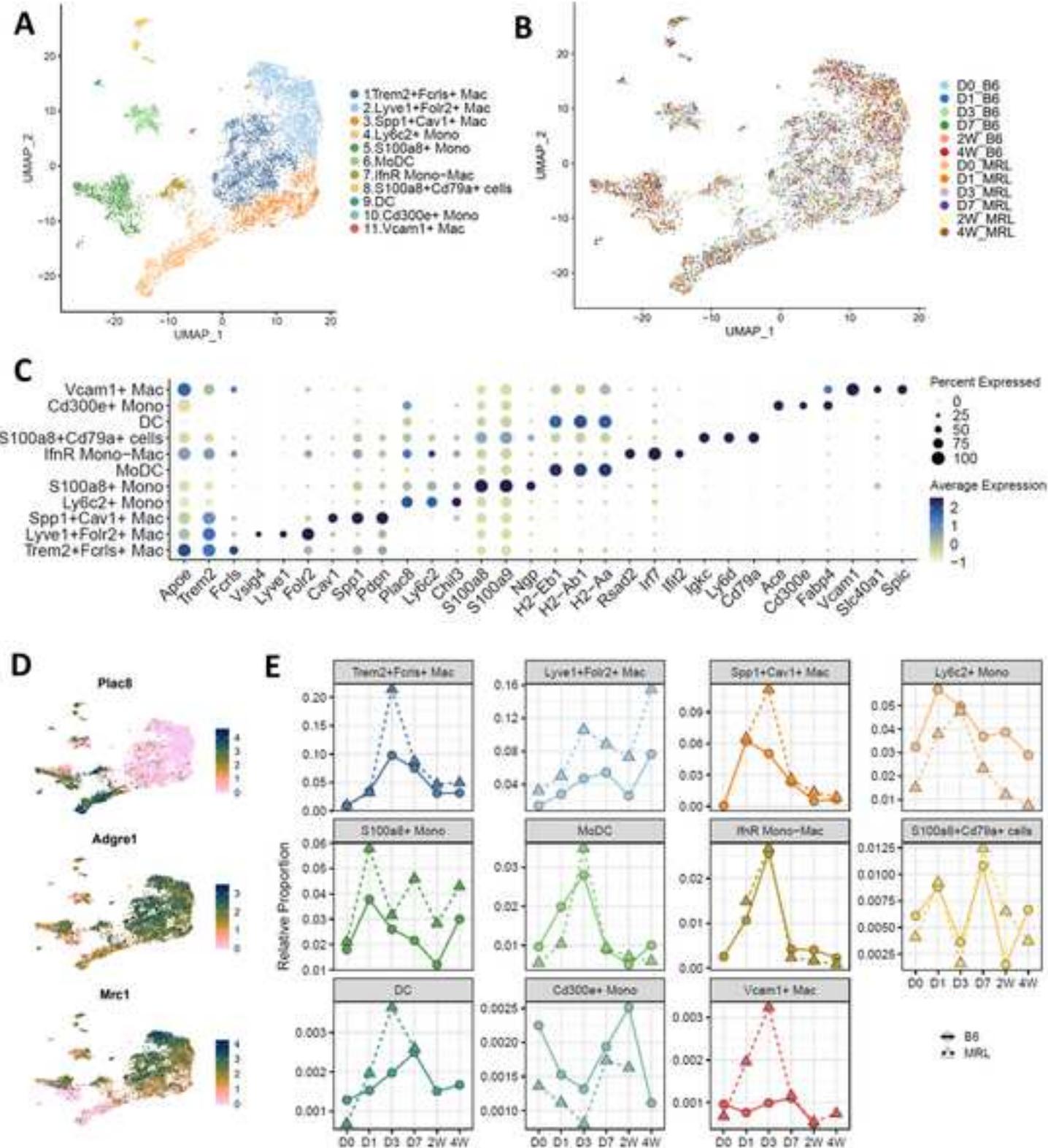
Briefly, this work describes the characterization of the murine immune infiltration/changes in response to traumatic injury, at single cell level, in two strains of mice with varied healing abilities, the C57Bl6 and the MRL/MpJ strains. Most importantly, we show that there are dramatic and distinct differences between these strains and we reveal immune populations and transcriptional differences that are associated with the MRL strain, a strain with extraordinary ability to heal injuries. Our data describes for the first time a comprehensive view of immune subpopulation and shifts longitudinally and reveal that macrophages known to promote healing in other tissues, are also present in the uninjured MRL joint, and are likely to be responsible for the super healer activity. We describe in great detail the molecular profiles that distinguishes subpopulations from each strain and how these subpopulations change transcriptionally in response to traumatic injury. The injury model we utilized, is noninvasive, relevant to human health, and provides an exciting opportunity to study changes in the joint at initial timepoints after the injury, time points that are almost impossible to study in human subjects. Our study is highly relevant to human health, provides a detailed 1<sup>st</sup> account of strain-specific immune differences at single cell level, and highlights potential new therapeutic opportunities by targeting the immune system in post traumatic osteoarthritis.

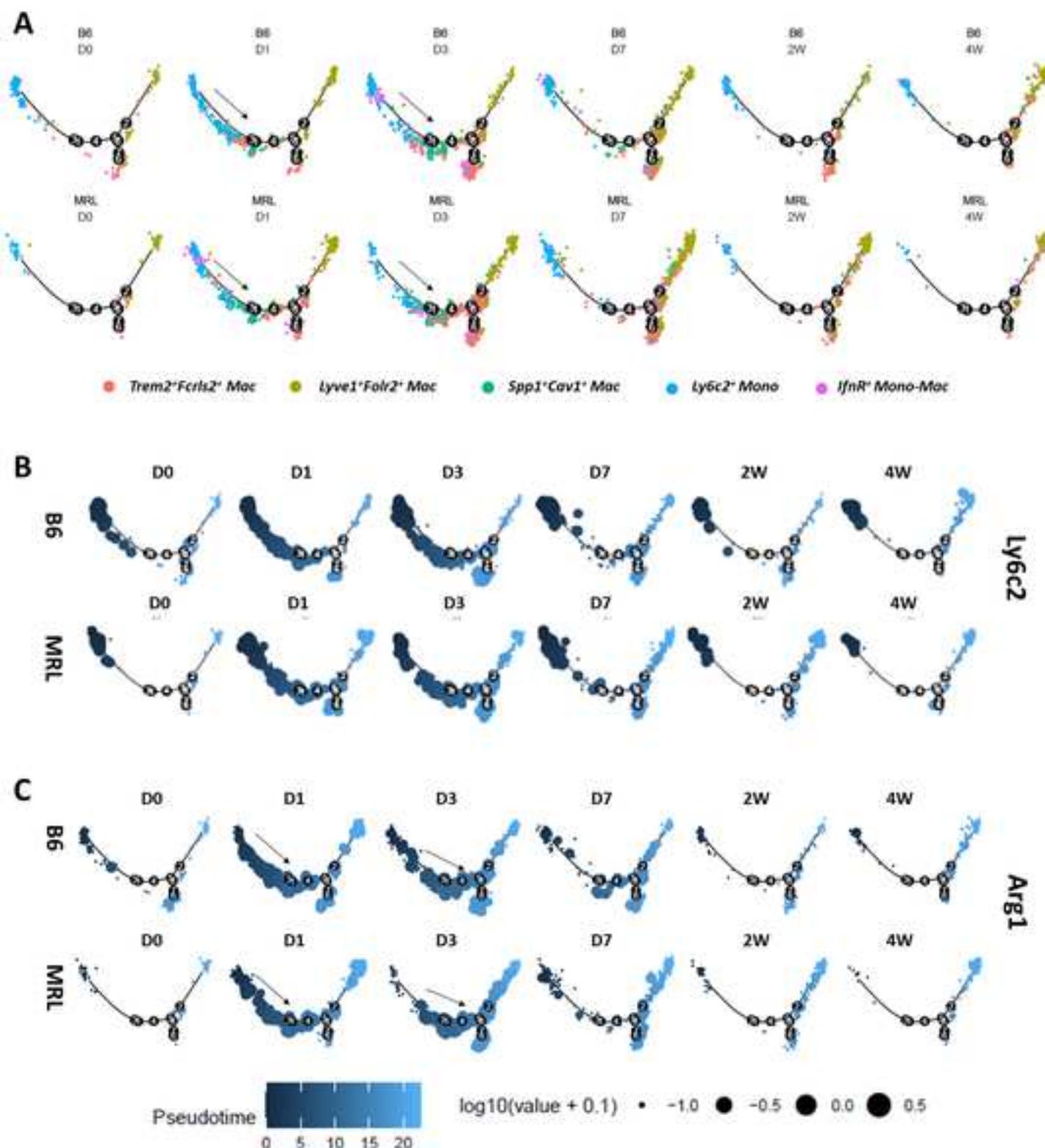
This study provides the first account of single cell gene expression changes, associated with the early stages of PTOA development in this TC model in strains of mice with varying healing abilities, and highlights many new candidates that may be further explored as biomarkers or as therapeutic candidates, in future experiments.

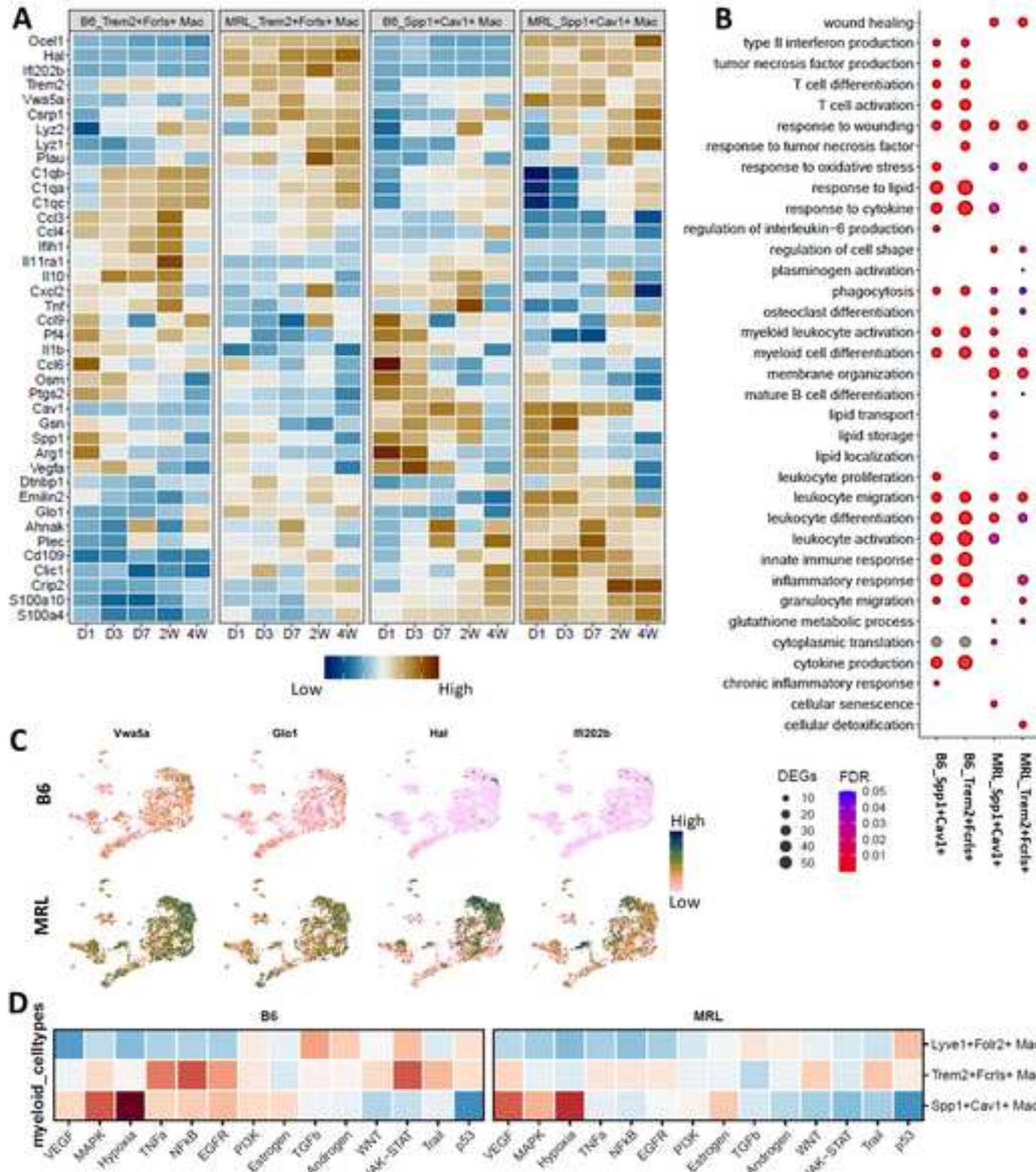

Thank you for your consideration.

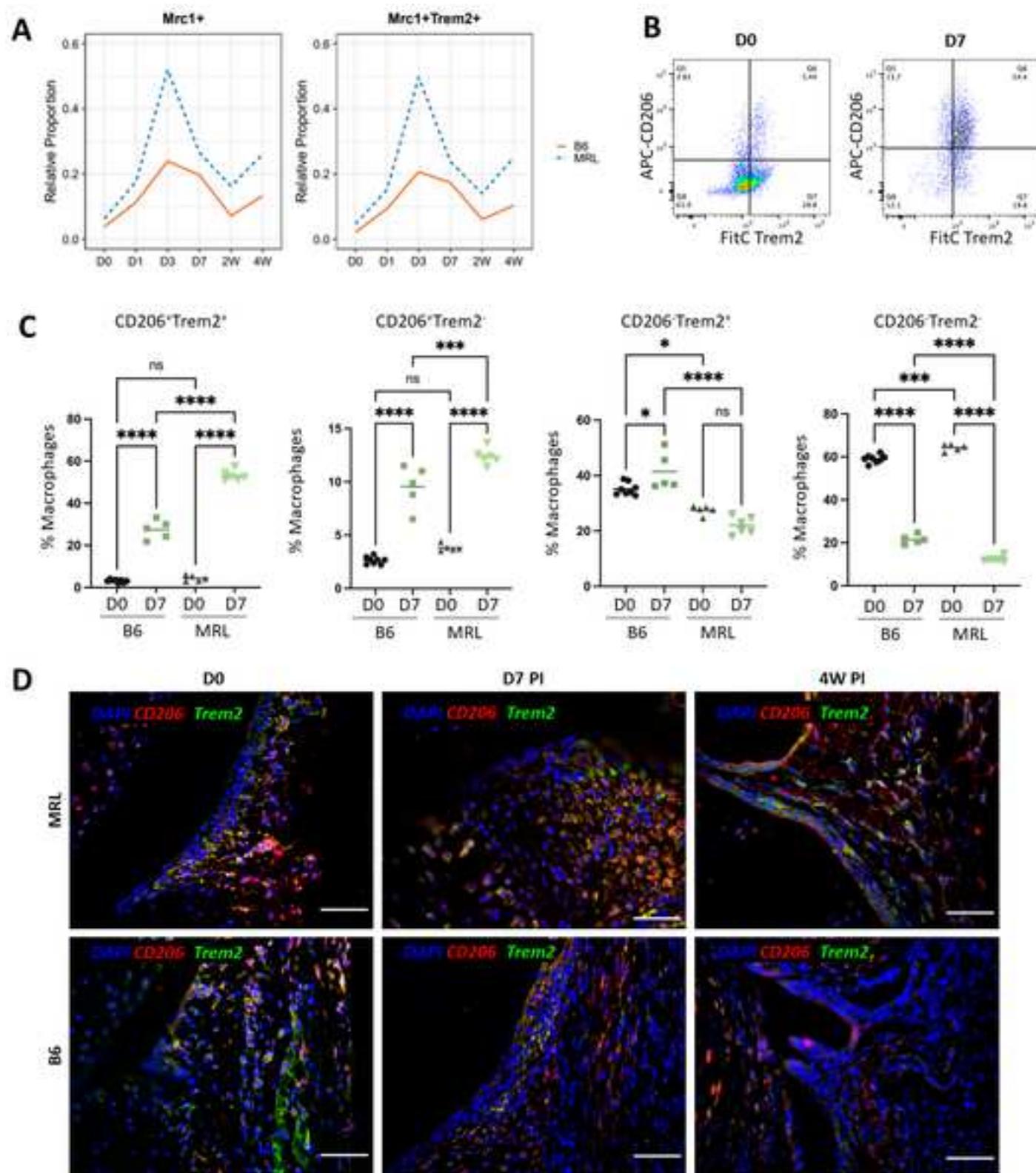

Sincerely,





Gabriela G. Loots, Ph.D  
Professor/Doris Ellison Linn Chair in Bone Biology  
Director, Orthopaedic Research Laboratory  
UC Davis Department of Orthopaedic Surgery  
2700 Stockton Blvd, Rm 2407  
Sacramento, CA 95817


916-734-7143 office  
925-495-9496 cell  
gloots@ucdavis.edu
















Click here to access/download  
**Supporting Information**  
McCool et al.2024\_SupFigures.pdf





Click here to access/download  
**Supporting Information**  
Table S1.xlsx



Click here to access/download  
**Supporting Information**  
Table S2.xlsx



Click here to access/download  
**Supporting Information**  
Table S3.xlsx



Click here to access/download  
**Supporting Information**  
Table S4.xlsx



Click here to access/download  
**Supporting Information**  
Table S5.xlsx



Click here to access/download  
**Supporting Information**  
Table S6.xlsx