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Analytic Sensitivity Coeflicients for Bethe’s Solution of the Neutron Slowing
Down Equation
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ABSTRACT

Neutron slowing down theory is used to derive expressions for the sensitivity coefficients of the
neutron collision density in a hydrogenous infinite medium with respect to the fixed source, scattering
probability, and macroscopic nuclear cross sections. Analytic expressions for Bethe’s solution of
the neutron slowing down equation are derived for the constant cross section approximation with a
point, uniform, and gamma lethargy spectrum. Analytic expressions for the corresponding sensitivity
coefficients are derived and used to verify Monte Carlo neutron transport calculations.

Keywords: analytic benchmark, sensitivity coefficient, Hans Bethe, neutron slowing down theory

1. INTRODUCTION
In 1937, Hans Bethe wrote [1]

The phenomena produced by slow neutrons have been of the greatest importance for the devel-
opment of the modern theory of nuclear processes. They supply the most detailed information
yet available on the energy levels of heavy nuclei.

The theory in question was developed by investigating the behavior of neutrons in hydrogen-containing
substances such as water or paraffin, which are used to slow down neutrons in neutron-nucleus cross section
measurement experiments. Bethe posed three main questions that needed to be resolved before the more
fundamental questions pertaining to the resonance parameters of these primitive nuclear data evaluations
could be addressed thoroughly, namely,

(1) What is the energy distribution of the neutrons in a pure infinitely extended hydrogeneous
substance?

(2) What is the distribution of the neutrons in space, and how does it depend on the neutron
energy?

(3) How are the distributions affected if an absorbing substance is placed inside the hydrogeneous
substance?

*caweaver @lanl.gov



Bethe addressed these problems using a simple theoretical framework for neutron slowing down theory,
where he relied on experimentally determined constants, such as the mean free path of slow neutrons, to
make predictions, evaluate the measured data, and update his hypotheses. This approach is identical to
contemporary scientific discovery except now advanced numerical methods are used to make experimental
predictions instead of the “reasonable theoretical assumptions” asserted by Bethe et al. at that time. Today,
Bethe’s solution of the neutron slowing down equation is still relevant as an analytic benchmark that can be
used to verify advanced numerical transport calculations.

This paper reviews Bethe’s solution of the neutron slowing down equation by way of Dawn’s generalized
exact solution [2], which addresses Bethe’s first and third questions, and asks a fourth question:

(4) How sensitive are these distributions to perturbations of the fixed neutron source, scattering
probability, and macroscopic nuclear cross sections?

This question is relevant for the sensitivity analysis, uncertainty quantification, and data assimilation tech-
niques that are developed for use in nuclear applications on modern-day super-computers. It is answered by
deriving analytic expressions for the relevant sensitivity coeflicients of Bethe’s solution and using them to
verify the numerical results of advanced Monte Carlo neutron transport methods.

2. MOTIVATION

This paper focuses on Bethe’s original description of the neutron slowing down equation. Other works have
generalized the neutron slowing down equation to include multiple non-hydrogenous fissionable isotopes
[3], extended it to eigenvalue problems [4], and found the corresponding k-eigenvalue sensitivity coeflicients
[5]. In contrast, this work only intends to extend Bethe’s original fixed-source results to include an analytic
sensitivity analysis. This approach affords the neutron transport practitioner a simple set of elementary
expressions that can easily be included in their verification benchmark test suite. To that end, Bethe’s solution
of the neutron slowing down equation is reviewed, and the results are used to derive general expressions
for the corresponding sensitivity coefficients with respect to the fixed source, scattering probability, and
macroscopic nuclear cross sections.

2.1. Review of Bethe’s Solution

The neutron transport equation is used to predict the energy distribution of neutrons in a mono-atomic
infinite medium, where the only relevant reactions are capture and scattering,

Sr(E)$(E) = Q(E) + /0 Ss(E' — E)p(E')dE'. (1)

The variables in this equation are defined as follows:

2r(E) = Zc(E) + X5(E) is the energy dependent total macroscopic cross section,

Yc(E) is the energy dependent capture macroscopic cross section, i.e., no neutrons emitted,

Ys(E" — E) is the differential scattering macroscopic cross section, which becomes the energy
dependent scattering macroscopic cross section, Xs(E’), when integrated over all outgoing neutron
energies, E,

¢(FE) is the energy dependent scalar neutron flux, and

Q(E) is the energy dependent fixed source of neutrons in the system, which emits neutrons with a
maximum energy of Ey.

Bethe considered this equation for neutrons with energies above 1 (electron)volt in a purely hydrogenous
medium, i.e., s-wave scattering off protons. In these systems, a neutron of energy E’ has equal probability



of elastically scattering anywhere in the range (0, E”). It follows that the differential scattering macroscopic
cross section in the transport equation is expressed only in terms of the incident neutron energy, E’,

Eosg(E)

Tqﬁ(E')dE’. 2)

sr(E)$(E) = Q(E) + /E

A familiar form of this neutron slowing down equation is recovered by instead solving for the neutron
collision density, F(E) = Z7(E)¢(E),

Y(E)
El

Ey
F(E) :Q(E)+/E F(E")dE’, 3)

where Dawn’s notation is used to define the scattering probability y(E) = Zs(E)/Zr(E). This equation is
re-cast in terms of the neutron lethargy,

W(E) = In (%) , @)

where Ey > E, with the result that

F(u) =0(u) + /0 y(u')exp (u' —u) F(u')du'. 5)

Bethe originally found the solution to this Volterra integral equation of the second kind for point sources.
However, the generalized exact solution provided by Dawn is the motivating equation for deriving sensitivity
coeflicients in this paper. That solution is

F(u) = Q(u) + /0 Q(u’)y(u’)exr){ / | [y(u")—l]du"}du' ©

for continuous-lethargy cross sections, which reduces to

F(u) = Q(u) + /0 0 )di )

for pure scattering problems (y = 1) and
F(u) = Q(u) ®)

for pure capture problems (y = 0).
2.2. Derivation of the Sensitivity Coefficients

A sensitivity coefficient describes the fractional change in a system response, which in this work is the
neutron collision density, F'(u), due to a fractional change in a system parameter, denoted here by the
generic variable «,
OF (u)/F(u)
SF(u),a = T aala
ala
A transformation of the neutron collision density from lethargy space to energy space does not change

the absolute number of neutrons colliding in the phase space volume element. To accommodate this
transformation, it is required that

©))

|F(u)du| = |F(E)dE| = F(u):F(E)lj—i‘ — F(u) = EF(E), (10)



which means that the sensitivity coefficient remains the same in either variable,

S _O0Fu)/F(u) _O[EF(E)]/[EF(E)] _OF(E)/F(E) _ S
Flu),a = oa/a a oa/a a oa/a - PF(E).a

(1)

In the following subsections, general expressions for the fixed source, scattering probability, and cross section
sensitivities are derived using Bethe’s solution of the neutron slowing down equation. These expressions are
then used to derive expressions for a few analytically tractable test cases and the results are used to verify
two numerical methods.

2.2.1. Fixed-Source Sensitivities
Suppose that the fixed source is parameterized by an arbitrary set of variables a € {a, b, c, ...}, which are

interpreted as the values of a histogram or the parameters of a continuous distribution. The sensitivity of
the neutron collision density with respect to any of these parameters is obtained as

@ 6Q(u) /u aQ(l't/) ’ /u 124 4 ’
= — -1 . 12
Srw.e = 77 | et ), aa Y0ew| [ @) = 11du” jdu (12)
For pure scattering problems (y = 1) this reduces to
a [00(u) /“ QW)
=— d 13
SEw).a F(u) [ oa 0 Oa “l (13)

and for pure capture problems (y = 0) this reduces to

a 00w) a 00(u)
F(u) da  Qu) da

SF(u),(z = = SQ(u),a- (14)

2.2.2. Scattering Probability and Cross Section Sensitivities

Bethe’s solution of the neutron collision density is parameterized by three macroscopic cross sections
through the scattering probability, y(u) = Zs(u)/Zr(u), where X7 (u) = Zc(u) + Zs(u). The scattering
probability and cross section sensitivity coefficients are found by taking the relative partial derivative of the
neutron collision density with respect to any one of these parameters, a € {y, Z¢, Zs, 21},

_a [ Oy(W) N[Oy’ o,
SF(u),a—F(u)/O Q(M)[ 5 +7(M)‘/u, Fy

exp {/u [y(u") —1] du”}du', (15)

where the derivative of the scattering probability is found through application of the quotient rule from
differential calculus,
dy(u) _ Er(u) [0Xs(u)/da] — Zg(u) [0Z7(u)/da]
oa B ZT(M)Z

In the special case that the scattering probability is a constant function of lethargy, its relative sensitivity
coeflicient with respect to the macroscopic cross sections reduces to

: (16)

Syse=vy-1 a7

for capture,
Syss=1-v% (18)



for scattering, and
Sy.zr =0 (19)

for the total macroscopic cross section. These expressions are used to transform the scattering probability
sensitivity coefficient into any one of the cross section sensitivity coefficients, Xx,

SF@w),2x = SF(u),ySy.2x- (20)
3. ANALYTIC RESULTS

The general expressions derived above are applied to a few analytically tractable test cases in which the
constant cross section approximation is applied to systems with a point source, uniform source, and gamma
lethargy spectrum. The rationale for choosing these particular fixed sources goes as follows: Bethe originally
examined point sources; the uniform source exhibits interesting limiting behavior at the source boundary
and can be made to be a point source; and the gamma lethargy spectrum represents a wide range of neutron
source physics.

3.1. Point Source

A point source is defined as Dirac’s delta function centered around zero lethargy with source strength Q > 0,

Q(u) = Q6(u). (21)
The neutron collision density for the constant cross section approximation with a point source is
F(u) = Q6(u) + Qyexp [(y — Dul, (22)
which is identical to Bethe’s original solution for # > 0,
F(u") = Qyexp [(y - Du] . (23)

The scattering probability sensitivity coefficient is
SF(u*'),y =1+ yu, (24)

and the cross section sensitivity coefficients are

SFut),ze = (L+yu) (y = 1) (25)
for capture,
SF).zs = (L+yu) (1-7) (26)
for scattering, and
SFut),sr =0 (27)

for the total macroscopic cross section.

These expressions represent the sensitivity of the neutron collision density to a global perturbation of the
scattering probability and macroscopic cross sections in the incoming neutron lethargy variable. However,
the local sensitivity coefficients are often what is required to perform sensitivity and uncertainty analysis of a
problem. Analytic expressions for these local sensitivity coeflicients are found by restricting the application
of the partial derivative to a specific lethargy range of interest,

0
Lia,p) (u)% {}, (28)



where the indicator function /(4 p)(u) is 1 if u € (a,b) for 0 < a < b and 0 otherwise. Substituting
this into Equation 15 for each partial derivative and making the constant cross section and point source
approximations yields

SFw),y =10y (a) +7y [min (u, b) — max (a,0)] I (4,c0) (1) (29)

for the scattering probability sensitivity coeflicient. The global sensitivity coefficient is recovered by letting
a =0and b — oo, and the point sensitivity is found by letting a = b,

SF(u),y = I{O} (a), (30)

which means that the neutron collision density is not sensitive to perturbations of the scattering probability
at a single point unless that point coincides with the fixed source.

3.2. Uniform Source

A uniform source is defined as a constant over the lethargy range of interest with source strength Q > 0 and
zero everywhere else,

I 0<uc<
0w =2 { S 1S e G31)
Umax (O U > Umax
The neutron collision density for the constant cross section approximation with a uniform source is
Flu) = Q v Jexplly-Dul-1/y OSuSumaX’ (32)
Umax ¥ — 1 [ (1 —exp [= (¥ = D umax]) exp [(y = D u]  u > tmax

and the global scattering probability sensitivity coefficient is

O -Du-Dexp[(y—Dul+1
SEWY = T T e [y - Dl = 1) 33

for 0 < u < umax and

_y(y=Du—1+y(y=1) (Umax —u) + 1) exp [~ (y = 1) tmax]
SF.y = D (T —exp = O — 1) trmms]) G4

for u > umax.

The Maclaurin series of exp [— (Y — 1) umax] With respect to umax is truncated to 1 — (y — 1) umax and used to
simplify these expressions in the case that uy,x — 07, i.e., the fixed source approaches a delta function, with
the result that the neutron collision density and sensitivity coefficients approach the point source expressions.

3.3. Gamma Lethargy Spectrum

A wide variety of neutron slowing down problems can be examined if the fixed source is chosen to be

(bEo)“
I'(a)

O(u) =Q exp [— (au+ bEgexp (-u))], u € (-,0), a,b€Rx, (35)
where Q > 0 is the source strength and I'(x) is the complete gamma function. In neutron energy space, this
transforms to the well-known gamma distribution,

a

QO(E) = Qb—E“—1 exp (-bE), E €(0,00), a,beR.y, (36)
[(a)



which is an attractive model for real-world neutron sources. For example, when the shape parameter, a,
is 1, 3/2, and 2 the related distributions in energy space are the exponential, Maxwell-Boltzmann, and
evaporation energy distributions, respectively, and for large a the gamma distribution converges to a normal
distribution with mean u = a/b and variance o> = a/b?. This makes the gamma lethargy spectrum an
excellent candidate for exploring neutron slowing down theory.

For pure scattering problems (y = 1) with a fixed source defined by a gamma distribution the neutron
collision density is

F(u) = % [(bE)“ exp [— (au + bEyexp (—u))] + T (a,bEgexp (—u)) — " (a, bEy)] , 37

where I'(x, y) is the upper incomplete gamma function and the sensitivity coefficient with respect to the rate
parameter, b, is

(a—1-bEgexp (—u))exp [— (au + bEyexp (—u))] +exp (—bEy)

SFW)b = o T— (au+ bEo exp ()] + [T (a, bEy exp (<)) - T (a. bE0)] J(bE)®
For pure capture problems (y = 0) the neutron collision density is
F(u) = % (bEo)“ exp [— (au+ bEyexp (—u))], (39)
the sensitivity coefficient with respect to the rate parameter, b, is
Sra.» = a - bEgexp (-u), (40)
and the sensitivity coefficient with respect to the shape parameter, a, is
SFwu),a =a(n(bEy) —u—"Y(a)), 41)

where W(x) is the digamma function.

Equations 40 and 41 represent the sensitivity of the fixed source, Q(u), to the rate and shape parameters,
respectively, and the sensitivity to the shape parameter more specifically represents the sensitivity of the
neutron collision density to the model underlying the fixed source, e.g., when a = 3/2 this represents
the sensitivity of the neutron collision density to the Maxwell-Boltzmann distribution. Although these
expressions seem to be relevant only to pure capture solutions of the neutron transport equation, it is
demonstrated in the next section that they are used to find the sensitivity of any integrated reaction rate
response to the fixed source of any neutron transport problem.

4. MONTE CARLO METHODS AND RESULTS

This section presents numerical results from the MCNP6.3 [6] software for the neutron collision density
and cross section sensitivity coefficients for the problems described above. The MCNP® radiation transport
code does not currently support sensitivity calculations with respect to the parameters of a continuous fixed
source. It has been shown that source sensitivity calculations with respect to a histogram representation of a
fixed source can be performed in a post-processing routine of Monte Carlo results [7], but application of this
method to continuous fixed-source problems would be an approximation of the desired results. Individual
Monte Carlo histories are required to estimate the exact solution of continuous fixed-source sensitivity
calculations. This can also be achieved in a post-processing routine if the individual histories are recorded
by the program, but such an approach may be prohibitively expensive. A Monte Carlo method for making
these calculations on-the-fly is presented and verified against the analytic fixed-source sensitivity coefficients
using a toy code.



4.1. Fixed-Source Sensitivity Calculations via the Green’s Function Method

The Monte Carlo transport technique can be used to calculate continuous-lethargy fixed-source sensitivity
coefficients. This method takes advantage of the fact that Monte Carlo transport implicitly samples from a
Green’s function of the neutron transport operator,

Lo(u) = Q(u), (42)

where for this specific problem

L) = r(u)d(u) - /0 S (') exp (u’ — u) ()t 43)

In Monte Carlo transport, the continuous-lethargy neutron collision density is approximated by a normalized
integral,

1 Ui+l
F; = —/ Sr(u)p(u)du, (44)
Uit1 — Ui Jy;
where integration is performed over the i-th lethargy range (u;,u;+1). The sensitivity of the integrated

neutron collision density with respect to a fixed-source parameter, «, is found by taking the partial derivative
of this expression with respect to «,

OF; 1 Uil 0¢(u
a_:—/ %) 22 gy (45)
a Uirl — Ui Jy;

Evaluating this expression requires knowledge of how the lethargy-dependent neutron flux, ¢(u), instan-
taneously changes with respect to the source parameter, . This is found by differentiating the neutron
transport equation with respect to «,

o) _ 00w

= 46
oa oa (46)
The neutron transport operator, £, is formally inverted via the Green’s function method,
) _ 190W) _ [ 906 G, gy, )
oa oa 0 Cda

where G (4’ — u) is the Green’s function of the neutron transport operator, £, which is interpreted as the
neutron flux at # from a unit point source centered around u’. Inserting this expression into Equation 45

yields
aF Uiyl o 8 ’
! = / / Q(”) s ) S (u)did du, (48)
aa’ Uivl — Ui Jy;
which is normalized to find an expression for the relative sensitivity coefficient,
Ujt] 8 l/t, ul , ,
Srie = [ [ 0w 6w s vz a9
F; (ut+1 Ui) da/a

where a factor of Q(u’)/Q(u’) is introduced into the integrand to normalize the sensitivity coefficient of the
fixed source with respect to a.



In Monte Carlo transport, continuous-lethargy fixed-source sensitivity calculations are made by multiplying
the zeroth statistical moment of the neutron collision density tally by the sensitivity of the fixed source with
respect to the source parameter of interest evaluated at the source lethargy, which is done at the end of
the neutron’s history. The result is normalized by the estimated neutron collision density at the end of the
simulation if a relative sensitivity coefficient is desired. This method was implemented in a toy Monte Carlo
code and verified against the analytic results to demonstrate that it works as expected. Algorithm 1 outlines
the method and can be used as a template to reproduce the results for Bethe’s solution of the neutron slowing
down equation with a gamma lethargy spectrum and a = 1, which coincides with an exponential distribution
in neutron energy space. This method can be extended to any fixed-source neutron transport problem for
any integrated reaction rate response and any order sensitivity coefficient that is desired.

Monte Carlo estimates of the neutron collision density and rate sensitivity profile are calculated for the pure
scattering case (y = 1) and verified against the analytic results for the gamma lethargy spectrum, where
a=1,b=1/1.2895[1/MeV], and Ey = 20 [MeV]. Figure 1 depicts the results and demonstrates excellent
agreement between the numerical method and theory. In a pure scattering system, neutrons slow down and
asymptotically approach a constant neutron collision density at high lethargy values. Increasing the rate
parameter of the exponential distribution increases the probability that a low energy neutron will be born,
and the sensitivity profile reflects this behavior as the coefficients are increasingly negative towards zero
lethargy.
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Figure 1. Verification of the Monte Carlo calculated neutron collision density and rate sensitivity
profile for Bethe’s pure scattering solution (y = 1) of the neutron slowing down equation with a
gamma lethargy spectrum (a = 1, b = 1/1.2895 [1/MeV], and E( = 20 [MeV])

Monte Carlo estimates of the shape and rate sensitivity profiles are calculated for the pure capture case
(y = 0) and verified against the analytic results for the gamma lethargy spectrum, wherea = 1, b = 1/1.2895
[1/MeV], and Ey = 20 [MeV]. Figure 2 depicts the results and demonstrates excellent agreement between
the numerical method and theory. In a pure capture system, the neutron collision density is identical in
shape to the fixed-source distribution. Increasing the shape parameter shifts the underlying distribution
from an exponential source towards a Maxwell fission energy spectrum, which results in an increase of
neutrons at higher birth energies. This is reflected in the linear behavior of the shape sensitivity profile. The
interpretation of the rate sensitivity profile is consistent with the pure scattering case.
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Figure 2. Verification of the Monte Carlo calculated shape and rate sensitivity profiles for Bethe’s

pure capture solution (y = 0) of the neutron slowing down equation with a gamma lethargy spectrum
(a=1,b=1/1.2895[1/MeV], and E( = 20 [MeV])

4.2.  Cross Section Sensitivity Calculations via the Differential Operator Method

Monte Carlo estimates of the neutron collision density and cross section sensitivity coefficients are calculated
using the MCNP6.3 software and verified against the analytic results for the point and uniform source. The
track-length (F4) tally and perturbation (PERT) cards are used in conjunction with the prescription described
in [8] for first-order sensitivity analysis with exact uncertainty via the differential operator method. The
results depicted in Figures 3 and 4 indicate excellent agreement between the MCNP6.3 software results and
theory.

The neutron collision density for a point source in an infinite hydrogenous medium with some capture
(y = 0.5) decays exponentially in lethargy space, as shown in Figure 3. The sensitivity profile indicates
that locally increasing the scattering cross section in the lethargy range 4 < u < 6 results in zero sensitivity
followed by a linear ramp to a constant value. The capture sensitivity is the negative of this result, and the
total sensitivity is zero.
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Figure 3. Verification of the MCNP6.3 [6] software calculated neutron collision density and local
(4 < u < 6) scattering sensitivity profile for Bethe’s solution (y = 0.5) of the neutron slowing down
equation with a point source



The neutron collision density for a uniform source (#pmax = 5) in a medium with some capture (y = 0.5)
increases within the source range, is discontinuous at the source boundary, and decays exponentially for all
higher lethargy values, as shown in Figure 4. The sensitivity profile indicates that globally increasing the
scattering cross section results in a slow increase towards the discontinuity at the source boundary, which is
followed by a linear ramp for all higher lethargy values. The capture sensitivity is the negative of this result,
and the total sensitivity is zero.
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Figure 4. Verification of the MCNP6.3 [6] software calculated neutron collision density and global
scattering sensitivity profile for Bethe’s solution (y = 0.5) of the neutron slowing down equation with
a uniform source (upax = )

S. CONCLUSIONS

This work presents an extension of Bethe’s solution of the neutron slowing down equation to all of the
relevant sensitivity coefficients available for the problem. Dawn’s notation and generalized exact solution
is used to motivate general expressions for the sensitivity coefficients of the neutron collision density with
respect to the fixed source, scattering probability, and macroscopic nuclear cross sections. It is shown that
relative sensitivity coefficients are the same in either the neutron energy or lethargy variables, which allows
the expressions developed in this work to be used as a benchmark for continuous-energy neutron transport
calculations. A few analytically tractable test cases are considered and exact expressions for the neutron
collision density and sensitivity coefficients are derived for a point source, uniform source, and gamma
lethargy spectrum in conjunction with the constant cross section approximation. The analytic results are
used to verify the numerical results of the radiation transport code MCNP6.3, and a method for extending
Monte Carlo sensitivity calculations to continuous fixed-source problems is presented and verified. This
work can be used as an analytic benchmark to verify the results of any fixed-source neutron transport code.
In the future, the work presented here will be extended to include Dawn’s generalized exact solution for
neutron slowing down problems in any non-hydrogenous mono-atomic infinite medium.
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APPENDIX A. CONTINUOUS-LETHARGY FIXED-SOURCE SENSITIVITY
CALCULATIONS IN MONTE CARLO NEUTRON TRANSPORT

Algorithm 1 Monte Carlo transport for Bethe’s solution of the neutron slowing down equation with a gamma

lethargy spectrum and a = 1

N « number of particle histories

1:
2: mesh max <« maximum lethargy bin boundary
3: M « number of lethargy bins
4: Au < mesh max /M
5: S[1toM][1to2] « O > Initialize a M X 2 sensitivity vector
6: F[1to M][1to3] « O > Initialize a M X 3 collision density vector
7: forn < 1to N do > Loop over N particle histories
8: w1 > Initialize particle weight
9: r « random number € (0, 1)
10 u «— —1In(—1In(r)/b/Ey) > Sample from the source distribution
11: Uy «— u > Store initial lethargy for sensitivity calculation
12: while True do > Loop over all particle collisions
13: r « random number € (0, 1)
14: d— —In(r)/Zr(u) > Sample a distance to collision
15: score «— X7(u) - d-w > Calculate the track-length collision density score
16: m «— |u/Au] > Mesh index for u
17: F[m][1] « F[m][1]+ score > Zeroth moment
18: we—w-Zs(u)/Zr(u) > Implicit capture
19: r « random number € (0, 1)
20: u «— u—1In(r) > Calculate the new lethargy after scattering
21: if # > mesh max then
22: break > Exit the collision loop if the lethargy exceeds the mesh max
23: end if
24: end while
25: multiplier « In(b - Eg) — ug — P(1) > Calculate the analytic shape sensitivity, or
26: multiplier « 1 — b - Eq - exp(—ug) > Calculate the analytic rate sensitivity
27: form «— 1to M do > Loop over all mesh bins
28: S[m][1] « S[m][1]+ multiplier -F[m][1] > First moment
29: S[m][2] < S[m][2] + (multiplier -F[m][1])? > Second moment
30: F[m][2] « F[m][2] + F[m][1] > First moment
31: F[m][3] « F[m][3] + F[m][1]? > Second moment
32: F[m][1] « O > Reset zeroth moment
33: end for
34: end for
35: for m < 1to M do > Loop over all mesh bins
36: S[m][2] « S[m][2]/(S[m][1])?> - 1/N > Relative variance
37: S[m][1] « S[m][1]/F[m][2] > Sensitivity coefficient
38: S[m][2] « |S[m][1]| vS[m][2] > Absolute standard deviation
39: F[m][3] « F[m][3]/(F[m][2])?> - 1/N > Relative variance
40: F[m][2] « F[m][2]/Au/N > Collision density
41: F[m][3] « F[m][2]VF[m][3] > Absolute standard deviation

42: end for
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