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The transport across a Kondo-correlated quantum dot coupled to two leads with independent
temperatures and chemical potentials is studied using a controlled non-perturbative, and in this sense
exact numeric treatment based on a hybrid numerical renormalization group combined with time-
dependent density matrix renormalization group (NRG-tDMRG). We find a peak in the conductance
at finite voltage bias vs. the temperature gradient AT = Tr — T7, across left and right lead. We
then focus predominantly on zero voltage bias but finite AT far beyond linear response. We reveal
the dependence of the characteristic zero-bias conductance on the individual lead temperatures.
We find that the finite-AT data behaves quantitatively similar to linear response with an effective
equilibrium temperature derived from the different lead temperatures. The regime of sign changes
in the Seebeck coefficient, signaling the presence of Kondo correlations, and its dependence on the
individual lead temperatures provide a complete picture of the Kondo regime in the presence of finite
temperature gradients. The results from the zero-bias conductance and Seebeck coefficient studies
unveil an approximate ‘Kondo circle’ in the T /Tr plane as the regime within which the Kondo
correlations dominate. We also study the heat current and the corresponding heat conductance vs.
finite AT. We provide a polynomial fit for our numerical results for the thermocurrent as a function
of the individual lead temperatures which may be used to fit experimental data in the Kondo regime.

I. INTRODUCTION

Strong electronic correlations in a magnetic impurity
coupled to electronic reservoirs result in a many-body
screening phenomenon, mediated by the conduction band
electrons, known as the Kondo effect [1]. The Kondo ef-
fect manifests itself in the density of states of the impu-
rity as a narrow resonance peak around the Fermi level
widely known as the Kondo-Abrikosov-Suhl resonance
[2, 3]. This Kondo resonance that increases the low tem-
perature resistivity of bulk metal alloys [4] has been found
to be present in various classes of nanostructures, involv-
ing single electron transistors [5-10], nanowires [11-14],
carbon nanotubes [15, 16], molecular magnets [17-19],
adatoms [20-22] and other quantum impurity systems
[23-27]. Such nanostructures are very tunable and act
as a robust platform to explore various aspects of the
Kondo effect [6, 28]. Moreover, the transport proper-
ties of Kondo-correlated impurity systems carry charac-
teristic signatures of the Kondo effect, which emerge at
low temperatures near the Kondo energy scale. Partic-
ularly, the zero-bias peak in the differential conductance
[5, 6] and a sign change in the Seebeck coefficient at
low energies [29-33] signify the presence of Kondo cor-
relations in the system. The characteristic density of
states present in the quantum dots makes them a class of
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prospective systems to work as efficient energy-harvesters
[34—42]. Various proposals, such as the charge Kondo ef-
fect [43], multi-quantum dot setups [44, 45], including
the case of asymmetric couplings to the leads [46, 47],
have pointed towards a considerable thermoelectric effi-
ciency of quantum-dot based heat engines. Thermoelec-
tric quantum dot devices have also demonstrated promis-
ing applications in sensing [46, 48] and cooling technolo-
gies [49-51].

An accurate description of the Kondo effect relies on
the exact treatment of electronic correlations at low
energy scales. Though many theoretical methods, in-
cluding the Bethe-Ansatz [52, 53], perturbation theory
[54], Fermi liquid theory [55] and the dynamical mean
field theory [56], can tackle the Kondo problem and
contribute to the qualitative understanding of the phe-
nomenon at low energies, all of them rely on approxi-
mating the electronic correlations to describe the ener-
gies near the Kondo energy scale. The numerical renor-
malization group method (NRG) [57, 58], considered to
be the best at tackling the Kondo problem, can provide
quantitatively accurate description of the Kondo effect,
but only up to linear response studies near equilibrium
[29].

Notable theoretical attempts to describe the nonequi-
librium transport through a Kondo impurity had em-
ployed nonequilibrium Greens function (NEGF) [59-
61], renormalized perturbation theory (RPT) [62], gen-
eralized Fermi liquid theory [63-66], perturbative ap-
proaches [47, 67], auxiliary master equation approach


mailto:anaman@amu.edu.pl

(AMEA) [48, 68, 69], non-crossing approximation (NCA)
[70, 71] and slave-boson mean field theory (SBMFT) [60].
Though each method has its own virtues and provides
theoretical insights at various limits, a complete pic-
ture of the whole nonequilibrium Kondo regime had re-
mained elusive. A hybrid method, incorporating both nu-
merical renormalization group and time-dependent den-
sity matrix renormalization group (tDMRG) method
based on a thermofield quench approach (NRG-tDMRG),
has achieved the feat of describing the nonequilibrium
transport through a Kondo-correlated system with exact
treatment of correlations [72]. Until now, this method
has been employed to address the electronic transport
under finite potential bias [72] and spintronic transport
in the presence of ferromagnetism in the leads [73]. In
this work, we extend the NRG-tDMRG method to de-
scribe the nonequilibirum Kondo effect in the presence of
finite temperature gradients. In particular, we consider a
quantum dot symmetrically coupled to two metallic leads
held at different temperatures that can be tuned indepen-
dently. The choice of symmetric couplings to the leads
allows for the Kondo correlations to develop over both
the leads, uncovering the influence of the individual lead
temperatures on the Kondo effect. The dynamics of the
electronic and heat currents are calculated using NRG-
tDMRG and their nonequilibrium steady state values are
extracted using linear prediction across a finite time win-
dow. We characterize the Kondo regime as a function of
the individual lead temperatures using the zero-bias con-
ductance and the Seebeck coefficient of the system. We
find that transport in the presence of a nonlinear tem-
perature gradient can be qualitatively described by linear
response results with an effective equilibrium tempera-
ture. Our results demonstrate that the Kondo correla-
tions persist as a circle when depicted in the individual
lead temperatures.

Our work provides the first quantitatively accurate
results for the thermoelectric transport coefficients of
Kondo-correlated quantum dot in far-from-equilibrium
settings. The paper is organized as follows: Sec.II de-
scribes the system Hamiltonian and the transport prop-
erties under study. In Sec.III, we discuss the results from
NRG-tDMRG calculations. We begin by discussing a
noninteracting system in Sec. I[IT A, and then moving on
to the interacting system described by the single impu-
rity Anderson model in Sec. III B. The influence of tem-
perature gradient on the zero-bias transport properties
is discussed in Sec.IIIB 1. The differential conductance
at zero-bias and for a finite potential bias in the presence
of different lead temperatures is discussed in Sec.III B 2.
The thermoelectric current, Seebeck coefficient and heat
transport properties are discussed in Sec. I1I B 3. Finally,
the paper is summarized in Sec.IV.

II. MODEL AND METHOD

A. Hamiltonian
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FIG. 1. The schematic of a quantum dot with orbital level
eq and Coulomb repulsion U coupled to the left (o« = L) and
right (o = R) metallic lead with hybridization function I's.
Each lead is held at different temperature T, and chemical
potential po = £V/2.

Our system consists of a quantum dot strongly coupled
to two metallic leads. The Hamiltonian of such a system
can be described as

H = Himp + Hlead + Htuna (1)

where Hinp is the impurity part of the Hamiltonian de-
scribed by a single impurity Anderson model (SIAM)
with orbital energy €4 and Coulomb interaction U. Himp
takes the form

Hinp zsd(n¢+n¢)+UnTn¢7 (2)

where n, = did, is the number operator, with d, (d)
being the annihilation (creation) operator for a dot elec-
tron with spin . The leads are modeled as noninteract-
ing particles

Hiaq = ZHa = Zsakclko-cakaa (3)

ako

with ¢ako (clko) denoting the annihilation (creation) op-
erator for an electron in the lead o with energy e,k
and spin ¢. Finally, the tunneling Hamiltonian Ht,, de-
scribes the coupling of the quantum dot to the leads

Hipn = Z(vakdlcaka + H.c.), (4)

ako

where v, is the tunneling matrix element between the
kth mode in the lead a and the quantum dot. The
dot hybridizes with the leads with the coupling strength
given by, T'y = 7Tpa|var|?, where p, denotes the den-
sity of states of the lead «, which is assumed to be flat
pa = 1/2D, with D being the band halfwidth which is
used as the unit of energy, hence D = 1. In the follow-
ing, without loss of generality, we assume that the system
is symmetric I'y =T'r =T". We set

I'=0.001, U=12T, ¢4=-U/3, (5)

unless specified otherwise. The bias voltage V' is applied
symmetrically as pr = —ugr = V/2 and the left and



right lead temperatures T, Tk can be controlled inde-
pendently.

To accurately take into account correlation effects
at truly nomnequilibrium settings, we employ a hy-
brid NRG-tDMRG method in the matrix product state
(MPS) framework [72, 73]. This method consists of a
logarithmic-linear discretization scheme of the conduc-
tion bands, a thermofield treatment, followed by a re-
combination of the leads modes, and finally the time
evolution by the second-order Trotter decomposition to
reach the nonequilibrium steady-state. The resolution of
the method in the energy domain is conditioned by the
number of intervals within the transport window. The
steady state values as t — oo of heat and charge currents
are found from linear prediction of finite time dynamics
(cf. App.B).

Since the hybrid NRG-tDMRG approach involves a lin-
ear discretization within the transport window and then
the time evolution in this discretized basis by tDMRG,
for realistic calculations in the case of a finite thermal
bias, this sets the limit on the difference in the tempera-
tures of the left and right leads to be around two orders
of magnitude. More detailed description of the method
is presented in App. A.

B. Transport coefficients

The charge current J,, from the lead « to the quantum
dot in the spin channel o is given by

ie

Jao = 6<Na0> = h<[NamH]>
= %me(uak (df Cano))- (6)
k

Here, Nog = 3, cL,mca;w is the occupation number in
the lead «. Similarly, the energy current JZ from the
lead « to the quantum dot can be described based on the
lead Hamiltonian H, as

Jf = (Ha> = _%qHavHD
= % Z Eak Im (Vag <d2;-cak0'>)~ (7)
ko

In the case of V = 0, the energy current can be consid-
ered as the heat current J9 = J¥. We note that since
the symmetrized charge (heat) current J(@)(t) converges
faster than the current contributions from the individual
leads, Jéﬁ) (t), it is more efficient to find the steady-state
value of the total current J(@)(t),

TOW =3 2w - IDw. @)

o

More details about estimating J(@)(t) and the steady
state J(@) can be found in App. B.

The differential electronic conductance G and the elec-
tronic contribution to the heat conductance k are respec-

tively defined as
dJ
- (),
V), 1.

S R

The Seebeck coefficient S estimates the potential V'
required to compensate for the induced thermoelectric
current J under a finite temperature gradient AT and it
is defined as

S=-— (AVT> i (10)

For the transport across an impurity coupled to metal-
lic leads in the linear response regime, these transport co-
efficients can be estimated as a function of the Onsager
integrals, L, = —+ [ dw(w — u)”%T(w), where T (w) is
the transmission coefficient of the impurity and it is es-
sentially equivalent to the equilibrium spectral function
A(w) [74]. The linear response transport coefficients can
thus take the form [29]

GQ = 62[/0,

1 I,
S = —— 1 11
0 eT Lo’ (11)

1 L2
= = ([L,—=2L).
o= ( 2 L0>
III. RESULTS AND DISCUSSION

In this section, we present and discuss the NRG-
tDMRG results for the nonequilibrium transport through
a quantum dot in the presence of temperature gradi-
ents. The details of the NRG-tDMRG calculations are
described in App. A where the method specific param-
eters are provided in App.A4. First, the results for a
noninteracting impurity under finite potential bias and
temperature gradient are compared with exact results in
Sec. IITA. On the other hand, the nonequilibrium trans-
port across an interacting impurity in the presence of a
finite temperature gradient is discussed in Sec. III B.

A. Noninteracting case: Resonant Level Model

As a benchmark for the nonequilibrium calculations,
we consider the noninteracting resonant level model
(RLM), i.e., essentially the Anderson model with U = 0.
For this case, the current flowing through the system can
be solved exactly [74]

A1) =% [ do T ) - fat)), (2)
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FIG. 2. The differential conductance for the resonant level

model (U = 0) vs. potential bias V for fixed AT ~ T (see
model parameters to the left) and orbital energies 4 as indi-
cated in the legend. NRG-tDMRG data (dots) is compared
to exact analytic curves for continuum (lines) as a consistency
check.

where T (w) denotes the transmission coefficient, which
can be related to the quantum dot spectral function
A(w), T(w) = 7T A(w). For the noninteracting quantum
dot, the spectral function can be found exactly through
the equation of motion for the Green’s function. The
transmission coefficient is then given by T (w) = I'? /(T2 +
(@ — 24)%), where fo(w) = 1/{1 + expl(@ — pa)]/Tn}
is the Fermi-Dirac distribution function of lead o with
kp = 1. The differential conductance G(V') calculated
using NRG-tDMRG method for a noninteracting quan-
tum dot with different orbital level energies €4 in the
presence of finite potential and temperature gradients
is shown in Fig.2. The differential conductance G(V)
has a peak around V = 2¢4, which is attributed to the
Lorentzian peak in A(w) located at w = £4. The shift
in the differential conductance peak from the Lorentzian
peak originates from the symmetric nature of applied bias
ur, = —pr = V/2, resulting in the transport window
(TW) [fr(w) — fr(w)] inside the integral in Eq. (12) scan-
ning the peak mainly around w = 2 V. It is important to
note that the both temperatures (17, Tr) smear out the
transport window and can thus only broaden the conduc-
tance peak. The exact analytical calculations (lines) in
Fig. 2 agree perfectly with the NRG-tDMRG data (dots),
affirming that this technique can capture the nonequilib-
rium transport primarily originating from the nonlinear
dependence of the lead Fermi distributions on V and T

B. Interacting case: Single Impurity Anderson
Model

In the presence of finite U, the nonequilibrium trans-
port across the quantum dot becomes highly nontrivial
and cannot be boiled down to an analytical description
without sufficient approximations [60, 65]. But, the lin-

ear response description of transport across an interact-
ing quantum dot in equilibrium can very well be calcu-
lated using the definitions in Eq. (12) once the spectral
function A(w) is obtained. The equilibrium spectral func-
tion A(w) of a STAM with finite U can be calculated using
NRG with extreme precision, and thus it will be used as
the benchmark for the calculation of linear response co-
efficients. The NRG data discussed in this section have
been calculated using the QSpace tensor library for Mat-
lab [75-77] with discretization parameter A = 2, iteration
number N = 60 and the maximum number of states kept
Nk after each iteration as 219.

1. Influence of finite temperature gradient

We first introduce the finite temperature gradient
across a SIAM by keeping the left lead temperature at
T;, = 0.01' and changing the right lead temperature
from Tr = 0.01" to Tr = 0.5I'. The electric current
J(V, Ty, Tg) and heat current J?(V, Ty, Tg) across the
STIAM using (5) is calculated for bias voltages close to
linear response V) =~ 0.005T using the NRG-tDMRG
method. Thus the differential conductance G(Ty,Tr) =
G(V =0,T1,Tr) can be estimated as

G(T1.Tr) = 3t (J(0) = I(— 1))

. (13)
The choice of linear response bias voltage Vj is such that
any nonlinear behavior of G(V') can be avoided, allowing
us to treat the estimated currents as linear in V. Since
the bias values V' = £V are effectively in the linear
response regime, the charge (heat) current J (@) at zero
bias can be calculated according to the linear response
expansion as,

Ty, Tr) = 3 (1D (V) + 1@ (1) ) (14)

TL,Tr

The electronic contribution to the heat conduc-
tance according to Eq.(9) can thus be w(T,Tr) =
JO(Ty, Tr)/(Tr—Tt). The information about J (T}, Tr)
and G(T,Tgr) at V = 0 is sufficient to calculate the See-
beck coefficient S for the respective parameters. More-
over, the linear response in V allows the current for small
voltages to be expressed as J(V) = J(0) + V G for con-
stant T, and Tr. Thus the Seebeck coefficient S from its
definition in Eq. (10) can be estimated as,

1 J(Tr,Tr)v=0

S(Tr,Tr) = " Tr— Ty G(Tp, Tr)v=o

(15)

The transport coefficients for a quantum dot in the
presence of finite temperature gradient calculated using
NRG-tDMRG are shown in Fig.3. The differential con-
ductance G seen in Fig. 3(a) shows the evolution of the
zero-bias conductance peak as a function of the orbital
energy 4. The red dots in Fig.3(a) display the NRG-
tDMRG data for Ty, = Tgr = 0.01T, which match ex-
actly with the equilibrium NRG data (red curve) for
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FIG. 3. (a) Differential conductance G, (b) Seebeck coefficient S, and (c) heat conductance x of an interacting quantum dot
[SIAM using parameters (5) except for £4 which is varied here] vs. orbital level position €4 in the linear response regime with
respect to the bias voltage. The left lead is kept at temperature 77, = 0.01T" throughout, while the right lead temperatures
are specified with the legend in (b). The colored symbols are the nonequilibrium data from the NRG-tDMRG calculations and
the solid lines present the equilibrium NRG data with the same parameters but calculated for an effective global temperature
Tet = Tyms- Numerically, the determination of S and k require a finite temperature difference AT. Hence, no red dots are
shown for the case T, = Tr in (b) and (c). The limiting case AT — 0, however, is reflected in the small AT/T ~ 0.1 data set
(blue triangles), which already agrees well with the equilibrium NRG data for AT = 0 (red line).

Gy computed with a global temperature ' = 0.01I.
The large conductance inside the local moment regime,
—U £ g4 £ 0, is a characteristic feature of the Kondo
resonance and the thermal fluctuations from the leads
with temperature T'= 0.01 T limit the conductance from
reaching the unitary value of Gy = 2¢2/h.

The Kondo temperature Tk in the local moment
regime is analytically given by the improved Haldane for-
mula from Fermi liquid theory [64]

T

LU [wea(ea+U)
2 2T U

Since the Kondo temperature represents a crossover
scale, it is only defined up to a prefactor of order one.
Hence, alternatively from a data or experimental point
of view, the Kondo temperature can be estimated by the
temperature at which the zero-bias conductance drops
by half. Below, we will refer to this as Tk, where based
on our data for the parameters in Eq. (5), Txs ~ 1.05 Tk
[cf. Fig.4(c) and caption].

For the SIAM parameters in Eq.(5), we have Tx =
0.042T [as compared to the lowest value at ¢4 = —U/2,
Tk = 0.025T]. Thus, in the local moment regime, the
G(g4) curves in Fig. 3(a) show minima at ¢4 = —U/2 cor-
responding to the lowest Tx. We proceed to heat up the
right lead (Tg), as specified in the legends of Fig. 3. With
increasing Tg, the differential conductance in the local
moment regime decreases as the Kondo resonance dies
off with increasing thermal fluctuations from the hotter
lead. The equilibrium NRG cannot account for different
lead temperatures, but one can still define an effective
global temperature Tog at equilibrium as the root mean
square value of the left and right lead temperatures

Teff = Trms Y, %(TL2 + T}%)

(17)

The significance of the root mean square value will be
discussed in the next section, Sec. III B 2. For the sake of
the discussion here, it is sufficient to note that Ty — T
when Tr — 17,

In Fig. 3 we show that a striking agreement exists be-
tween the nonequilibrium NRG-tDMRG results at finite
thermal bias (colored symbols) and the equilibrium NRG
results with an effective global temperature T;.,s defined
as the root mean square value of the lead temperatures.
Implying that the dependence on the individual lead tem-
peratures mimics the dependence of equilibrium Kondo
resonance width with a global temperature T;n,s. This
is consistent with the low temperature limit from the
perturbation theory and slave-boson mean field theory
results of Ref. [60]. Moreover, the NRG-tDMRG re-
sults are valid for higher temperatures due to the ex-
act treatment of correlations. It is also interesting to
note that this effective Ty,s equivalence extends even
into the mixed valence and empty/filled orbital regimes
(eqa S —U,eq4 2 0). Furthermore, the experimental works
for the thermoelectrics in the Kondo regime show a good
agreement with our results. Figure 2 of Ref. [30], show-
ing the differential conductance and thermocurrent with
AT/T =~ 0.3 for different T near the Kondo regime, be-
haves in a very similar way to the results presented here.
On the other hand, the experimental data for the See-
beck coefficient shown in Fig. 4 of Ref. [31] were related
to the linear response NRG results. We note that in this
case, the corresponding temperature gradients, though
not precisely determined due to the experimental con-
ditions, reached AT/T = 2/3 which is well beyond lin-
ear response theory. The qualitative agreement obtained
with linear-response NRG, nevertheless, we attribute to
the Tyms equivalence discussed in this paper. A more
quantitative agreement can be obtained using T' = Tys



in the NRG calculations, provided that the temperatures
of the individual leads are known. Of course, deep in
nonequilibrium, i.e., much beyond linear response, one
needs to resort to out-of-equilibrium approaches such as
NRG-tDMRG.

The linear response Seebeck coefficient Sy of a quan-
tum dot as a function of the global temperature has been
shown to change sign with the onset of the Kondo correla-
tions [29-31, 60]. On the other hand, the nonlinear tem-
perature gradient dependence of .S in the Kondo regime is
largely unknown. Here, with our NRG-tDMRG method,
we are able to provide first accurate data on it, which
are presented in Fig. 3(b). The red curve represents the
equilibrium case where Ty, = T, = Tr = 0.01T. Note
that the calculation of S from NRG-tDMRG requires a fi-
nite temperature gradient according to Eq. (15) and thus
nonequilibrium data is absent for the T;, = T case. The
representative linear response results from NRG-tDMRG
are presented in the case of T = 0.011T (blue traingles)
and agree well with the equilibrium results from NRG.
The Seebeck coefficient remains antisymmetric across the
particle-hole symmetry point e4 = —U/2 and has a non-
zero value in the local-moment regime, as expected for
finite temperatures below Tx.

When the right lead temperature is increased, i.e. with
a finite thermal bias, the Seebeck coefficient becomes re-
duced and starts to change sign in the local moment
regime around Tr = 0.2T, indicating the destruction
of the Kondo resonance. Interestingly and quite unex-
pectedly, the comparison to the equilibrium NRG results
with a global temperature T;.,5 gives a reasonably good
agreement in the local moment regime. The sign change
in equilibrium Sy(T") occurs at higher temperatures than
Tk, which is also reflected in our finite AT results. How-
ever, outside the local moment regime, where the Kondo
correlations do not emerge, the Seebeck coefficient in-
creases in magnitude (no sign changes) with the increase
in Tr and, correspondingly, with Ty,s. In this regime,
the effective linear response results show growing devi-
ations from the nonequilibrium results with increasing
temperature gradient.

Finally, for the sake of completeness, we examine the
heat conductance x as a function of g4 in Fig. 3(c). The
heat conductance is dominated by the contribution asso-
ciated with charge fluctuations, which are most active at
resonances. As can be seen, x generally has two peaks
corresponding to the proximity of the resonant levels to
the Fermi energy at ¢4 =~ 0 and ¢4 =& —U. With a finite
thermal bias, x shows deviations from the linear response
Tims calculations that increase with raising the tempera-
ture gradient.

2. The Kondo circle

In this section, we discuss how the Kondo effect de-
pends on the individual lead temperatures. For this, we
choose the orbital level ¢4 = —U/3, for the system to

be in the local moment regime, but far enough from the
particle-hole symmetry point to develop sufficient ther-
mopower S.

Figure 4(a) presents the zero-bias differential conduc-
tance G as a function of the independent left and right
lead temperatures. The conductance G has its maxi-
mum as 17, Tr — 0 and decays radially in the T, — T
plane. In particular, we focus on the temperatures in the
scaling regime, i.e. around T' = Tk, where the conduc-
tance Go(T') is known to exhibit universal behavior. The
black [white] dashed curves denote circles of radii v/2 Tk,
where Tk is estimated from Eq. (16) [v/2 Tk, where Tk
is estimated as the half-width of the linear-response con-
ductance Go(Tyms)]. Though the Kondo temperature
Tk ~ 1.05Tk from the numerical NRG data provides a
more accurate approximation of the Kondo energy scale
than the analytical formula, for the sake of generality
and ease of estimation, we will stick to Tk as the defi-
nition of Kondo temperature in this paper. Therefore,
the half-width of the conductance peak lying on the Tk
circle is an immediate consequence from the definition of
Trms and its correspondence to the nonlinear AT in the
local moment regime [cf. Fig.3(a)]. The horizontal cross-
sections in panel (b) show how the conductance decays
as a function of the right lead temperature Tg, where
the temperature on the left lead T, determines the peak
value of the conductance curve. The G(Tgr) curve lies
below the linear response Go(Tr = T, = T) curve for
Tr < Ty, and coincides with the linear response results
at Ty, = Tr to remain above the linear response data
for Tr > Tr. Due to the left-right symmetry in the sys-
tem, the previous arguments hold true even if one swaps
Ty, and Tg. The conductance data G(T,,Tr) is plotted
against the rescaled T, temperature in the panel (c).
The rescaled data lies perfectly on top of the linear re-
sponse Go(Tims) curve. This is a useful result, especially
for the experimental exploration of the Kondo regime.
In experiments, where one do not reach the truly linear
response regime [30-33], Tyms can provide reliable the-
oretical estimations from equilibrium NRG calculations
to accurately identify the parameter space of the Kondo
regime in 17, and TR separately.

In general, the zero-bias conductance peak along with
the Kondo resonance is known to get smeared with in-
creasing thermal fluctuations [6, 8]. The influence of
the individual lead temperatures on the whole G(V)
curve beyond linear response bias voltage regime is less
trivial and is shown in Fig.5(a). The lower plane in
Fig.5(a) presents the G(V) calculations for a cold left
lead temperature 77, ~ 0.17k and with increasing the
right lead temperatures Tr > Tr. For small tempera-
tures Tp < Tk, the conductance peak remains sharp in
the finite V regime but with an increase in Ty around
Tr =~ 0.2Tk the Kondo peak starts to get smeared out
in V. This behavior is clearly seen in G(V') curves for
different T presented in Fig. 5(b), where the increase in
TR suppresses the conductance at zero bias and smears
the zero-bias conductance peak further into the finite V'
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FIG. 4. (a) The differential conductance G through the quantum dot with orbital energy e4 = —U/3 as in (5) as a function
of the left and right lead temperatures, Tr, and Tr, in the linear response regime V' — 0. The black dashed curve shows a
circle of radius v/2 Tk corresponding to Tims = Tk [cf. Eq.(16)], while the white dashed line shows Tims = Tk’ estimated as
the half-width of the zero-bias conductance peak from the NRG data versus effective temperature. The colored symbols in (b)
present horizontal cross-sections of (a) for different values of Tr, as shown with panel (¢) vs. Tr on a logarithmic scale. For
comparison, the black dashed line displays the linear response NRG results of G vs. Tr = T, = T. Panel (¢): Data in (b)
replotted against the effective global temperature Tyms in Eq. (17). This is again contrasted with the equilibrium NRG data
(black dashed line) where the vertical dash-dotted line denotes the half-width of equilibrium conductance Txs ~ 1.05Tk.
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FIG. 5. (a) The differential conductance G through a quantum dot [SIAM using (5)] vs. Tr, Tr and a finite potential bias V.
The data in the vertical plane is the same as in Fig.4 (a), the horizontal plane is calculated with Tr, = 0.1 Tk and for different
Tr as specified in the legends of panel (b). The black [white] dashed lines on the horizontal plane show the contours of constant
conductance G = (0.8,0.7,0.6) [G = 0.5]. The green dashed line indicates Tr = V/2, cf. inset to panel (c¢). Panel (b) shows
the cross-sections (symbols) of the horizontal plane in panel (a) for a fixed right lead temperature as indicated by the colored
labels. The solid lines show the corresponding G(V') calculations for an effective global lead temperature Tyms = T = Tkr.
The inset in panel (b) tracks Vk, the Kondo scale in the applied bias, defined as G(Vk) = 0.5. Panel (c) shows the differential
conductance G(Tr) from the horizontal plane in panel (a) for a finite potential difference V, as indicated by the colored labels.
Lines represent spline interpolations of the semilog-x data used to estimate the peak position Tgeak. Inset shows Tgeak vs. V,

which approximately follows T5°* = V/2 (green sdashed line).

regime. perature Tyms [cf. solid lines in Fig.5(b)]. The Kondo

) . ) energy scale in the applied bias Vi, defined as the bias at

Furthermore, we observe in our simulations that any which the conductance drops to one-half G(Vi) = 1/2, is

configuration of the lead temperatures G(V)r, 1, canbe 5 characteristic energy scale of the nonequilibrium Kondo
approximated by a G(V)r.,.. T.... curve with global tem-



effect and behaves differently from Tx. The inset in
Fig.5(b) shows the dependence of Vk on Tyms. At low
temperatures T" < Tk, we recover the Fermi liquid the-
ory prediction for the Kondo energy scales Vi /Tk =~ 3/2
[64, 72, 73, 78]. It can be seen that Vi increases with
Tims, corresponding to the smearing of the Kondo reso-
nance with thermal fluctuations up to Tyns =~ Tk. Be-
yond which the Kondo resonance is considerably de-
stroyed by the thermal fluctuations, such that G(V) fails
to attain the definition of Vi for temperatures around
Tims =~ 1.3Tk [cf. Fig.5(b)].

Figure 5(c) shows the influence of the right lead tem-
perature Tg on the differential conductance G(Tr)7, v
with a constant 77, and finite potential bias V. For
very small potential biases V <« Tk, the differential
conductance G monotonously decreases with increasing
Tgr, closely resembling the true zero-bias conductance
curve in Fig.4(b). In the case of a large potential bias
V 2 Tk, the G(Tg) curves show maxima roughly lo-
cated at a finite right lead temperature TH™ ~ V/2
[cf. inset of Fig.5(c)]. This nonmonotonous behavior of
G(Tr)r, v for V> Tk can be attributed to the splitting
of the Kondo resonance in the presence of large poten-
tial biases. Due to the bias configuration in our system,
pr/r = £V/2, the peaks of the split-Kondo resonance
will be located at the respective lead potentials iy, g for
V Z Tx, resulting in the additional feature in G(Tr)
around Tg = V/2.

3. Thermoelectrics of the Kondo circle

Instead of diving directly into the Seebeck coefficient,
we first look at the thermoelectric current driven by the
finite thermal bias in Fig.6. The panel (a) shows the
NRG-tDMRG results for the charge current as a function
of both the left and right lead temperatures. The current
J(Tr,Tr)v=o is antisymmetric across the T, = Tg line,
as the temperature gradient changes sign across this line.
In addition, there exists another sign change roughly as
a circle in the T, Tk plane corresponding to the onset of
Kondo correlations. The current at Zero bias, computed
as J(Tr, Tr)v=o = 5 (J(Vo) +J(=V0))| 1, ., from the
data for small +V; [cf. Eq.(13)], can be fitted by the

polynomial expression up to order n as in

J(Tp, Tr)v=o = D 118 p, (2 = %{JJ = T*R) (18)

rms

where

n k
pn(z,y) = ZZ(LM zl oyt (19)

k=1 i=0
ki = ki - (20)
Having V' = 0, the current needs to be antisymmet-

ric under inversion 717 < Tg. This is taken care of
by the leading factor Tp, — Tr on the RHS. The re-

maining polynomial pn(gL T 2) thus must be symmetric

under inversion. This constrains the polynomial terms
to Eq.(20). The denominator Tyns keeps the prefactor
in check for large AT. i.e., the ratio % — V2
as T — oco. Thus providing a much more consistent
weights for the data points with large AT used in the
variational fitting. We note that a clean polynomial
fit of the form (T — TR)pn(%(, ;R) can still provide
an acceptable fit for the current, but including the de-
nominator Ty,s considerably improves the fit at low 7.
At first glance, Eq. (18) only seems to account for the
first order in AT. But, the first order polynomial terms
Ty, Tr together with the T, — Tg prefactor makes up the
(Tr, — Tr)?> = AT? dependence, the polynomial terms
Tg, T122 and T, Tr have encoded in it the information of
the AT® dependence, and accordingly for the higher or-
der dependences in AT. Thus the polynomial fit con-
tains, but is not limited to, the perturbative expansion
of J on AT.
The polynomial coefficients are determined by mini-
mizing the cost function
Z)J Ty, Tr)|, - T e=Tr)

2
La)| py(zi, i), (21)

Trms

where the sum runs over all data points ¢ with T #
Tr. The quality of the fit is then estimated by the error
measure dg; = /min(C). The fit in Fig.6 used n = 4
with coefficients

2.7874)
1.0856, —0.9690)
0.1363,0.1418)

(
(=
(
(—0.0068, —0.0091, —0.0060) (22)

( )
( )
(azo,a31 ) =
( )

@40, @41, @42

n (Sﬁt/j
1 0.9690
2 0.0051
3 0.0010
4 0.0002

TABLE I. The degree n of the polynomial used for the fit
and corresponding error g relative to J the largest value of
thermoelectric current inside the Kondo circle.

The thermoelectric current from the polynomial fit
Eq. (18) is shown in Figs. 6(b,c). The polynomial fit ac-
curately recovers the regions of sign change in Fig. 6(a).
The error measure of the fits presented in Table I shows
that increasing order of the polynomial improves the fit
quality. The fit converges at higher orders of the poly-
nomial, indicated by the decreasing magnitude of the
polynomial coefficients for the higher order terms [cf.
Eq. (22)].

The estimation of S from Eq. (15) relies on the induced
thermocurrent being small enough to be compensated by
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FIG. 6. (a) Thermoelectric current J through a quantum dot [SIAM using (5)] vs. Tz and Tr at V = 0 (computed as the

average current for V = +£1072Tk). The data points located at the white dots are interpolated by the smooth color shading
(cf. color bar). Panel (b) same as panel (a), but showing the polynomial fit of its data points based on Eq. (18) instead. Panel
(c) shows horizontal cuts of the polynomial fit (lines) in panel (b) with their corresponding data points (symbols) from panel

(a).
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FIG. 7. (a) Thermoelectric current J through a quantum dot [SIAM using (5)] vs. Tr, Tr and for very small potential biases

V. The black dashed curve shows the voltage V required to compensate the thermocurrent according to a linear response
expansion with Go. The grid of NRG-tDMRG data in V is represented as white dots on the V,Txr plane. (b) The Seebeck
coefficient S = —V/AT = —J/(G AT) (assuming linear response in G) for the same parameters as in panel (a). Panel (c) shows
the horizontal cross-sections of the panel (b) comparing S calculated from the fit [cf. Eq.(18)] (solid line) and S estimated
from J(Tr,Tr)v=0 from NRG-tDMRG (colored symbols). For comparison, the black dashed curve shows the linear response
NRG calculations for Sy with T, = Tr. The colored vertical lines denote the corresponding left lead temperature 77, for each
S(Tr) curve.

current (white) in the interpolated colormap from the
NRG-tDMRG data for finite V' = £V} coincides with

a linear response bias V. In Fig. 7(a) we show the exten-
sion of the density plot in Fig.6(a) towards the third di-

mension in the bias voltage V. The lower plane in V,Tg
is calculated for Ty, = 0.1 Tk [brown curve in Fig. 6(c)],
which contains the largest value of thermocurrent data
in the Kondo regime. The points of zero current in the
lower plane show that a bias voltage V < V; is sufficient
to compensate for the induced thermocurrent. The zero

the bias estimated from the linear response expansion
(black dashed curve) of the current with the linear re-
sponse conductance Go(Tims), further corroborating the
choice of the linear response V. Thus, Fig. 7(b) depicts
the Seebeck coeflicient S estimated for the full scaling
regime in 77, Tg plane. From the sign changes of the



thermoelectric current J(Tg,,Tr) in Fig. 6, only the sign
change corresponding to the Kondo correlations survive
for S(Tr,Tr). This region of the sign change in the
Seebeck coefficient now fully represents the temperature
regime in which the Kondo correlations survive. The
Kondo regime is roughly a circle in the 77, Tgr plane,
slightly squeezed in the 17, = T direction. It is impor-
tant to note that the radius of the Kondo regime in the
Ty, Tr plane determined by the points of sign change in
S does not show any universal scaling with respect to Tk.
The equilibrium NRG studies of Sy have already demon-
strated that the temperature at which So(T") shows the
maximum negative value in the Kondo regime scales with
the Kondo temperature Tx. But the temperature at
which Sy changes sign, denoting the onset of Kondo cor-
relations, does not exhibit such scaling with respect to
Tk [29].

The quantitative behavior of S(Tr,Tr)v—o is shown
in Fig.7(c). The Seebeck coeflicient S estimated from
the NRG-tDMRG calculations (colored symbols) of the
thermoelectric current J(Tp,,Tr)v—=o in Fig.6 and S es-
timated from the polynomial fit for the thermoelectric
current (solid lines) as in Eq. (18) with a constant T}, are
plotted as a function of Tr. Near the equilibrium temper-
ature T — T, the NRG-tDMRG results approach the
linear response NRG estimations of Sy. We note that,
since T;, = Tg induces no thermoelectric current, the
extraction of the linear response Sy using NRG-tDMRG
from the chosen Ty, Tr grid of discrete datapoints is not
possible [cf. Eq.(15)], and hence no datapoints from
NRG-tDMRG are shown for the case of T, = Tg in
Fig.7(c). The polynomial fit for the thermoelectric cur-
rent from Eq.(18) is unrestrained and can provide an
approximation of the linear response Sy for T, — Tg.
S(Tr — T1) estimated from the fit shows slight quantita-
tive difference from the true linear response Sy obtained
from NRG, presumably stemming from the absence of
very small AT in the data used for fitting. In general,
for a constant 77, in the Kondo regime, S(Tg) starts from
a negative value for Tr — 0 and shows a minima at tem-
perature Tg of the order of Tx. With further increase
in the temperature, S(Tr) grows gradually until chang-
ing its sign denoting the total destruction of the Kondo
resonance.

The comparison of S(T7,,Tr) rescaled by the effective
temperature Tyy,s and the linear response Sy(T") from
NRG is presented in Fig.8. Unlike the differential con-
ductance G(Tyms), the rescaled S(Tims) data do not fully
resemble the linear response So(7") behavior, with in-
creasing deviations for large temperature gradients. We
observe that the deviation of S(Tims) depends on the
minima of the linear response Sy. We define T}, as the
temperature, at which Sy has a negative peak. When
the cold lead temperature is larger than T}, S(Tips) lies
closer to the linear response Sy. But for the case of a
cold lead temperature below T}, left lead temperature
T, =~ 0.17k in our case [cf. red diamonds in Fig. 8],
S(Tyms) shows the largest deviations from the linear re-
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FIG. 8. The Seebeck coefficient S (Tr,Tr) (colored symbols)
with a fixed T (vertical colored lines) plotted against the
effective temperature Tims. The dashed line shows the equi-
librium NRG data for So (Tt = Tr = Trms)-

sponse Sj.

From the data in Fig. 8 we can conclude that the mag-
nitude of the Seebeck coefficient is not enhanced when
compared to linear response S), under zero-bias condi-
tions even with nonlinear temperature gradients. Fur-
thermore, the data in Fig.8 shows rather small values
|S] < 1 for the Seebeck coefficient in the Kondo regime.
This is in contrast, for example, to Fig. 3 where the See-
beck coefficient can reach values an order of magnitude
higher |S| < 1 just outside the local moment regime.
Based on these findings, let us briefly comment here on
how to potentially enhance the thermoelectric response
in the Kondo regime [42]. It was suggested that an asym-
metric coupling to the leads together with a finite poten-
tial bias can improve the thermoelectric response in the
Kondo regime, as suggested in Ref. [46]. While the NRG-
tDMRG method is well-suited to handle such systems, a
thorough investigation of this scenario necessitates a de-
tailed study of its own and thus is beyond the scope of
the present work.

Lastly, we analyze the heat current and heat conduc-
tance in the presence of a finite temperature gradient.
The heat current J? across the quantum dot coupled to
leads with temperatures Ty, and T is shown in Fig. 9(a).
Unlike the Seebeck coefficient, there exist no sign change
in the heat conductance characterizing the Kondo reso-
nance. Thus, the heat current shows only one sign change
corresponding to the change in the sign of the temper-
ature gradient 1T, — Tr. The electronic contribution to
the heat conductance x calculated for the cross sections
in panel (a) is presented in panel (b). It can be seen that
for a constant 17, x is enhanced with increase in Tg.
When reaching T = T7,, the heat conductance smoothly
crosses the linear response k.
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FIG. 9. (a) The heat/energy current J% through a quantum
dot [STAM using (5)] as a function of the left lead temperature
Tr and the right lead temperature Tr. (b) shows the heat
conductance k for different values of 7L, as indicated. The
dashed line corresponds to the equilibrium NRG results for
ko (T = Tt = Tr). The inset presents the horizontal cross
sections of panel (a) used for the estimation of  in panel (b).

IV. SUMMARY

In this work we have provided accurate quantitative
results for the thermoelectric transport properties of a
Kondo-correlated quantum dot subject to nonlinear tem-
perature and voltage gradients. The calculations have
been performed with the aid of numerical renormaliza-
tion group-time-dependent density matrix renormaliza-
tion group method. First of all, we have demonstrated
that the thermoelectric behavior of the system, involv-
ing charge and heat currents as well as the Seebeck co-
efficient, can be qualitatively described by an effective
global temperature Ty,s. Moreover, a detailed investi-
gation of the zero-bias conductance with respect to the
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individual lead temperatures unveiled the Kondo regime
as a circle in the plane of left-right lead temperatures,
further affirming the qualitative agreement with T;s.
The thermoelectric current also showed characteristic
sign changes crossing over to the Kondo regime, as a
slightly distorted circle with the deviations occurring at
large temperature gradients. Moreover, we have pro-
vided a qualitative expression to fit the thermoelectric
current as a function of the left and right lead temper-
atures. Finally, we have discussed the heat current and
conductance near the Kondo regime, which were mostly
determined by the contribution from charge fluctuations,
hardly revealing characteristics of the Kondo resonance.

The thermoelectrics in the presence of finite tempera-
ture gradients at zero bias voltage did not show any en-
hancement of the thermoelectric properties originating
from the nonlinear contributions in the Kondo regime.
However, investigating the nonequilibrium regime of
asymmetrically coupled Kondo-correlated systems [46] is
a promising direction where NRG-tDMRG can yield re-
liable insights. This complex scenario warrants a dedi-
cated study of its own which goes beyond the scope of
the present work and thus is left for the future.
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Appendix A: The Hybrid NRG-tDMRG method

We use a hybrid NRG-tDMRG method to study the
nonequilibrium dynamics of the quantum dot coupled to
leads with finite thermal and potential bias. Below, we
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provide more details about this method and its extension
to finite thermal gradients.

1. Hybrid discretization scheme

Primarily, we separate the conduction band into
modes that can be treated in equilibrium and out-of-
equilibrium. i.e., the modes with fr(w) — fr(w) = 0
correspond to the modes that are at equilibrium and
fr(w) — fr(w) # 0 are the modes that are out of equi-
librium, where fq(w) is the Fermi function for the lead
a. For simplicity, we keep the largest |w| that satisfies
fr(w) — fr(w) # 0 as our effective bandwidth D* and
define the transport window as [—D*, D*] (essentially in-
cluding more equilibrium modes into the tDMRG part,
which is easier to handle and provides a more accurate
description than moving more nonequilibrium modes into
the NRG part). The energies outside |D*| are discretized
logarithmically according to the discretization parame-
ter A and the energies inside |D*| are discretized linearly
according to the discretization parameter §. In this dis-
cretized setting, the coupling between the quantum dot
energy level €4 to a discretized mode in the lead a with
momentum k is given as vy = \/I'odx/m, where Jj, is the
size of the corresponding interval in the discretized band.

2. Thermofield treatment

We go on to describe the modes in this log-lin dis-
cretized band under a thermofield description. This en-
tails the introduction of an auxiliary decoupled Hilbert
space akin to the physical Hilbert space. For a mode ¢4
in the physical Hilbert space, where ¢ = «, k, o is a com-
posite index, we introduce an auxiliary mode c,2, where
the index 2 denotes that the mode is in the auxiliary
Hilbert space. This enlarged Hilbert space is rotated by,

()= (" ) (@)
Cq2 Vi 1—fy) \Ca2)’
such that in the rotated tilde Hilbert space, the modes
Eq1 Q) = 6;2 |2) = 0 can be interpreted as holes (1) and
particles (2), where € = [ (1/1 — f¢ [0, D)g++/fq11,0)q)
is a pure state that can represent the thermal expectation
value of an operator A on the physical lead as (A) =
(QA[€).

In the rotated Hilbert space, the lead Hamiltonian be-
comes,

_ _ E T _ E =t~
Hicad = Hicad + Haux = €qCqjCqj = €qCqjCaj-
qJ qj

(A2)
We set g42 = €41 to keep the total lead Hamiltonian Hicaq
diagonal. Similarly, the tunneling Hamiltonian in the
rotated Hilbert space can be described as,

Hiyn = Z(@qjd];aéqj + H‘C‘)’ (A3)
qj
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where the couplings 741 = v4\/1 — f; and 042 = v4\/fy
become functions of the Fermi-Dirac distribution func-
tions and, thus, encompass the information about the
nonequilibrium parameters, such as the temperature and
potential bias on the leads.

3. Recombination of the leads and
tridiagonalization

Outside the transport window [—D*, D*], the impurity
is coupled to only half of the lead modes. Since, f, — 1
results in the hole coupling 94; — 0 and f, — 0 results
in the particle coupling 042 — 0. This essentially means
that both the high energy particle modes and the low
energy hole modes decouple from the impurity. Whereas
for the energies inside the transport window, we use a
different approach to simplify the structure. Then, a
single impurity coupled to two leads can be described
using an effective model with an impurity coupled to a
single recombined lead and such a recombination of the
leads results in half of the modes being decoupled from
the system. This results in the quantum impurity being
coupled to a set of hole lead modes and another set of
particle lead modes. In next step, we proceed to tridiago-
nalize these particle and lead modes separately, resulting
in two chains that are coupled to the impurity, one from
the hole modes and another from the particle modes.
In these chains, we can identify two sectors, the sector
from the high energy modes that lies closest to the impu-
rity on the chain exhibiting properties of a Wilson chain,
i.e., energy scale separation and couplings that decay as
t, ~ AT

4. NRG treatment of high energy modes and time
evolution

Since the modes outside the transport window are es-
sentially in equilibrium, we recombine the holes and par-
ticles in the high energy sector for a more physically ac-
curate description. This results in our impurity being
coupled to an effective Wilson chain corresponding to
the high energy sector, which is then further coupled to
the separate hole and particle chains. We treat the re-
combined high energy modes using the numerical renor-
malization group method and extract the ground state
of the high energy sector as |@ini). |¢ini) Will act as the
initial state for the high energy part of the chain, where
the low energy hole modes are kept empty and the par-
ticle modes filled. Thus, our initial state for the time
evolution |¢,;) becomes

[Yini) = [0)®]0)®. .. [0)®[¢ini) R[1)®- - -@[1)®(1). (A4)

We time evolve |¢,;) using the second-order Trotter time
evolution with a quench on the coupling between the high
energy and low energy sector over a finite time window.



The NRG-tDMRG calculations for the SIAM in this
paper are performed with parameters A = 2.5, §/D* =
0.01, Nieep = 900 kept states in the effective NRG basis
of the renormalized impurity, and a truncation tolerance
of egyp = 107° for the tDMRG sweeps. The observables
are calculated for 100 tDMRG sweeps with the first 20
sweeps dedicated for the quench.

5. Charge and heat current
The particle current or the charge current J, from the
lead a to the quantum dot can be described as,
i
h
e
Joo = 7 Xk: Im (vak <dTCak->)

= %ZZIm (Vg <dT5qj>)~
kg

Jag = €<N<7> = ——([No, H])

(A5)

(A6)

Similarly, the energy current JZ from the lead « to the
quantum dot can be described based on the lead Hamil-
tonian as,

1

h
2e - -
= Z Z £qlm(Dg; <dTqu>)-
ko j

The symmetrized current J, () converges faster than the
individual lead currents J,s,

']5 = <Ha>

([Ha, H])

(A7)

To(0) = 5(T10(0) = o () (48)

Appendix B: Extracting steady state observables via
linear prediction

The particle current shows a transient behavior dur-
ing the quench window and starts to oscillate around a
steady-state value. This steady state is extracted using
linear regression. We start by generating a kernel for the
oscillating part based on the training window

1
€2
Ynt1=[a1 ag -+ an] | .|, (B1)
| S — :
K ZTn

where the kernel K estimates the next data point y,4;
based on the previous n data points {x1, 22 z,}. We
estimate K as the least squared approximation of the
data points in the training window. The spectral de-
composition of the kernel has the information about the
oscillating behavior of the data. In particular, we isolate
the eigenvector with the real eigenvalue (corresponding
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to the non-oscillating part) to estimate the steady state
current at ¢ = oo

J(t = o0) = (B2)
where €y is the eigenvector corresponding to the real
eigenvalue eg. Figure 10 shows the charge current (a,b,c)
and the heat current (d,e,f) dynamics of a SIAM using
(5) obtained from NRG-tDMRG. The steady state value
estimated from linear prediction is shown as the horizon-
tal dashed line.

Appendix C: Effective Kondo energy scale

Analytical dependence of the Kondo energy scale on
the temperature gradient has been discussed in Ref. [60]
by using the perturbation theory and slave-boson mean-
field theory. According to the perturbation theory, the
Kondo energy scale depends on the temperature gradient

as,
TET(AT) = /T2 + (8L)% - AL,

where Tk is defined as the energy scale at which the
second-order term dominates in the perturbation expan-
sion of the conductance in the Kondo model [Eq. (11)
and Eq. (13) from the Ref.[60]]. Nevertheless, through-
out this paper, Tk denotes the intrinsic Kondo tempera-
ture of the system as defined in Eq. (16).

From the NRG-tDMRG calculations, an effective tem-
perature of T,,s = Tk in the Ty, — Tr plane represents
a circle of the form T7 + T3 = 2T%. To compare with
the results from perturbation theory, we consider 1T, =T
and Tr =T + AT. Thus, we can define the energy scale
Tk (AT) for a fixed AT,

(C1)

G(T, T + AT = Go/2, , (C2)

)|T=TK
i.e., as the temperature T" at which G(T', T+ AT') reaches
the half maximum of the conductance peak Gg at T =
AT = 0. By definition then, Tk reduces with increas-
ing AT towards zero, and becomes undefined for suffi-
ciently large AT > Tk once G(T,T + AT) < Gy/2 for
all T. In this sense, Tk — 0 does not indicate a small
physical Kondo scale, per se, but rather the disappear-
ance of the Kondo physics. Based on the Kondo circle
T? + T3 = 2T% [cf. Sec.1IIB2], Eq. (C2) provides an
analytical expression for Tk

- (8 -4 (@)

TK(AT) = 2

This expression for T (AT) is very similar to the pertur-
bation theory result, except for the difference in sign of
the AT? term under the square root.

The temperature Tk defined on the Kondo circle and
the Kondo temperature T " from the perturbation the-
ory show good agreement for small AT [cf. Fig. 11]. With
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FIG. 10. The finite time dynamics of (a,b,c) charge current J and (d,e,f) heat current J® across a SIAM for representative
values of the applied potential and temperature gradients. The horizontal dashed line shows the steady state value obtained

from linear prediction.
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FIG. 11. The Kondo energy scale in Eq. (C3) as a function of
the temperature gradient AT compared to the perturbation
theory (Eq. (C1)) results from Ref. [60].

increasing AT, Tk decays faster than TK
to become undefined beyond AT = V2Tk.
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