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Abstract

We present a machine-learning strategy for finite element analysis of solid
mechanics wherein we replace complex portions of a computational domain with
a data-driven surrogate. In the proposed strategy, we decompose a computational
domain into an “outer” coarse-scale domain that we resolve using a finite element
method (FEM) and an “inner” fine-scale domain. We then develop a machine-
learned (ML) model for the impact of the inner domain on the outer domain. In
essence, for solid mechanics, our machine-learned surrogate performs static con-
densation of the inner domain degrees of freedom. This is achieved by learning the
map from displacements on the inner-outer domain interface boundary to forces
contributed by the inner domain to the outer domain on the same interface bound-
ary. We consider two such mappings, one that directly maps from displacements
to forces without constraints, and one that maps from displacements to forces
by virtue of learning a symmetric positive semi-definite (SPSD) stiffness matrix.
We demonstrate, in a simplified setting, that learning an SPSD stiffness matrix
results in a coarse-scale problem that is well-posed with a unique solution. We
present numerical experiments on several exemplars, ranging from finite deforma-
tions of a cube to finite deformations with contact of a fastener-bushing geometry.
We demonstrate that enforcing an SPSD stiffness matrix drastically improves the
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robustness and accuracy of FEM–ML coupled simulations, and that the resulting
methods can accurately characterize out-of-sample loading configurations with
significant speedups over the standard FEM simulations.

1 Introduction

Finite element analysis of component and assembly-level systems remains computa-
tionally intensive despite the tremendous advancements in algorithmic research and
computing power that have occurred over the past several decades. This problem is
exacerbated when the underlying problem is multiscale in nature, wherein the physi-
cal discretization of the governing equations requires resolving a wide range of length
and/or time scales. One such example that motivates the present work is that of
systems-level models that involve threaded fasteners. In such systems, fasteners can be
an integral connector of many sub-components, and accurately modeling the behav-
ior of the fastener is critical for many analyses. Unfortunately, directly resolving the
full fastener within a finite element model is difficult: the geometries are challenging
to mesh, the resulting meshes can require hundreds of thousands of degrees of free-
dom, and the required mechanics that need to be simulated are complex as they often
involve contact, friction, etc. As an example, Figure 1 depicts a schematic of a ratch-
eting mechanism; fasteners are an essential part of this complex mechanism and must
capture relevant mechanics to properly assess quantities of interest. In general, directly
resolving each fastener is often not feasible in systems-level models, and approaches
capable of reducing this computational burden are needed.

Various approaches have been developed to reduce computational complexities in
finite element methods. These methods include the variational multiscale method [21],
Guyan reduction [18], Craig–Bampton reduction [13], the generalized finite element
method [17], multiscale methods [20], and reduced basis/proper-orthogonal decom-
position reduced-order models [10, 12, 29, 33]. Machine learning-based techniques
have garnered significant attention recently and are the focus of the present literature
review. “Smart” finite elements were introduced in [11], wherein a machine-learned
regression model was used to learn a direct relationship between the internal state
of an element and its forces. The approach enforces frame indifference and conserva-
tion of linear and angular momentum and was shown to reduce the computational
cost as opposed to a traditional finite element model. Refs. [5, 34] proposed addi-
tional techniques for computing the tangent stiffness matrix of smart elements based
on finite differences, automatic differentiation, and neural networks. In addition, [34]
proposes a composite loss function with terms for both the element forces as well as
the tangent stiffness. Similarly, [25] proposes nonlinear meta elements (i.e., element
patches) using deep learning. Unlike [11, 34] this approach learns generalizable meta
elements (where each meta element comprises multiple finite elements). The primary
input to the regression model defining the meta element is the displacement field on
element boundary, while the outputs are the displacements, stresses, and forces within
the meta element. Lastly, [8] explores quantifying uncertainties in machine-learned
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elements that map from displacements to forces by virtue of an extension to deep
ensembles [26].

Fig. 1: Schematic of a ratcheting mech-
anism. Fasteners are an integral part of
this complex mechanism and must cap-
ture relevant mechanics to properly assess
quantities of interest.

The aforementioned approaches
seek to learn a generalizable (meta-
)element that can be applied repeatedly
throughout the domain. Another
similar body of work focuses on
domain-decomposition in where a
computational domain is divided
into subdomains. Once partitioned,
each subdomain can be solved inde-
pendently, and a global solution
is obtained by coupling the vari-
ous domains, e.g., with the Schwarz
method [31]. Data-driven techniques
have received significant attention in
this field as well, where the general
idea is to use a cheaper-to-evaluate
surrogate to model a complex sub-
domain. Refs. [27, 28], for instance,
proposed D3M and DeepDDM, both of
which employ physics-informed neural
networks (PINNs) to learn subdomain-
solutions conditioned on boundary data, and demonstrated their approaches on
Poisson’s equation and Schrodinger’s equation. We note that D3M and DeepDDM
employ PINNs for all subdomains, as opposed to a FEM for some of the subdomains.
Refs. [6, 14, 15, 19, 22–24, 30] propose domain decomposition strategies leveraging
reduced basis and proper-orthogonal decomposition (Petrov-)Galerkin reduced-order
models. These methods operate by projecting the finite element model onto low-
dimensional subspaces computed, e.g., from training data. The different subdomains
are then coupled via, e.g., Lagrange multipliers [19], the Schwarz method [31, 32].
Lastly, one final approach of relevance was proposed in [3] for multiscale problems,
where the authors aim to resolve only the domain of interest by learning an inter-
face condition leveraging long short term memory (LSTM) networks and ideas from
upwinding. The setup was demonstrated on the transient Burgers’ equation and
Euler equations in one dimension.

In the present work, we develop a machine learning strategy for replacing portions
of a computational domain, such as threaded fasteners, with a data-driven surrogate.
We develop the proposed strategy within the context of hypoelastic material models
for static solid mechanics (SM) FEM simulations of bodies under finite deformations
exposed to contact and friction; we leave the extension of the approach to nonlinear
material models and dynamic simulations as future work. In the proposed strategy
we decompose a computational domain into an “outer” domain that we resolve with
an FEM, and an “inner” domain. We then develop a machine-learned model for the
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impact of the inner domain on the outer domain. In essence, for SM our machine-
learned surrogate learns the map from displacements on the interface boundary to
forces contributed by the inner domain to the outer domain on the same interface
boundary (we refer to these forces as internal forces).

We propose two displacement-to-force mappings in the present work. First, we
propose a direct displacement-to-force mapping with dimension reduction. In this
approach, we identify low-dimensional subspaces for compact approximations to
the interface displacements and internal forces via proper orthogonal decomposition
(POD) [9]. A mapping between reduced coordinates for these fields is then learned via
regression; i.e., for interface displacements u and internal forces f , we learn a map-
ping f = g(u) where g is the learned surrogate. The second approach we propose is a
structure-preserving displacement-to-stiffness mapping with dimension reduction. In
this approach, we again identify low-dimensional structure for the displacements and
internal forces on the interface, but instead learn a displacement-to-force mapping in
the form of a stiffness matrix, i.e., for interface displacements u and internal forces f ,
we learn a mapping f = K(u)u where K(u) is a learned stiffness which can be a non-
linear function of the displacements. We further enforce the learned stiffness matrix
to be symmetric positive semi-definite (SPSD)1. We show, in a simplified setting, that
the addition of this SPSD model results in a coarse-scale problem that is symmet-
ric positive definite (SPD) and well-posed. Further, enforcing SPSD structure allows
our ML model to be interfaced with common SM solvers such as conjugate gradient.
Thematically similar ideas were pursued in Ref. [4, 37] within the context of learn-
ing constitutive relations. As will be shown, we find this latter approach is critical for
successful integration of the method into our finite element solver.

The current work has commonalities with several existing efforts. For example,
the present approach can be viewed as a smart element or a “meta-element” strat-
egy in which we are learning a meta-element for our inner domain(s). This synergy is
particularly relevant if the inner domain is a component which is repeated through-
out the computational domain, like a threaded fastener. We propose a more limited
approach than [11, 25, 34], however: we aim to remove certain hard-to-resolve portions
of a domain rather than develop a general smart element. In this sense, our proposed
methodology can be interpreted as a type of Guyan reduction that is applicable to
the nonlinear regime. Second, our approach can be viewed as a domain-decomposition
method, where we employ an ML model to simulate the impact of fine-scale domain
on the coarse-scale domain. Comparing the present work to the literature, we highlight
several novelties:

1. We propose regression models equipped with a dimension reduction strategy to
reduce both the training cost of the model as well as the number of datum required
to learn an accurate and generalizable model. This strategy enables our approach
to be applied to systems where the ML model must predict thousands of degrees
of freedom.

1We note that our ML model is only learning a boundary coupling term and enforcing SPSD structure
is sufficient to guarantee that the full assembled stiffness matrix in the coarse-scale problem is symmetric
positive definite.
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2. We propose two types of displacement-to-force mappings: one that directly maps
from displacement to forces, and one that maps from displacements to forces
by virtue of learning an SPSD stiffness matrix. This second approach is novel.
Refs. [11, 25, 34], for example, only consider direct displacement-to-force mappings,
and the stiffness matrix associated with these mappings is extracted via, e.g., auto-
matic differentiation. By directly learning a stiffness matrix we can enforce structure
in our learned models. Our numerical analysis and experiments demonstrate that
this embedded structure results in increased robustness. Additionally, the proposed
displacement-to-stiffness mapping addresses the issue of stiffness computation stud-
ied in [34]. In our setting the stiffness is a direct output of the neural network and
does not need to be probed with finite differences, computed via back propagation,
or estimated with an auxiliary network.

This manuscript proceeds as follows. In Section 2 we provide the general formula-
tion for the governing equations of solid mechanics, while in Section 3 we present an
equivalent decomposed formulation. Section 4 outlines our machine-learning frame-
work, and Section 5 provides analysis of the coupled FEM-ML systems when applied
to the equations of linear elasticity in one dimension. Section 6 provides numerical
experiments, while Section 7 provides conclusions and perspectives.

2 Monolithic formulation

We begin by outlining the governing equations for finite-deformation solid mechanics.
While we consider physics such as friction and contact in our numerical experiments,
these details are not presented here for brevity. We refer the interested reader to the
Sierra/SM theory manual [7] for more details.

Consider a body defined on the reference domain Ω ⊂ R3 with boundary Γ undergo-
ing finite deformations described by x = ψ(X), where ψ : Ω → Ω∗ is the deformation
map, X ∈ Ω are the reference coordinates, x ∈ Ω∗ are the deformed coordinates, and
Ω∗ = ψ(Ω) is the deformed domain. In what follows we use ψ ≡ ψ (X) for brevity.
The governing equations for a quasi-static mechanical problem are given as

−∇ · P (ψ) = b on Ω. (1)

In the above, P : ψ 7→ J(ψ)σ(ψ)F−T (ψ) is the first Piola–Kirchhoff stress tensor,
F (ψ) = ∇ψ is the deformation gradient, J(ψ) = det (F (ψ)), σ(ψ) is the Cauchy
stress tensor, and b : Ω → R3 is the body forcing per unit reference volume. We
emphasize that the first Piola-Kirchoff stress tensor is a nonlinear function of the
deformation map and contains the constitutive relationship. We assume the domain
boundary Γ can be decomposed as Γ = Γψ∪ΓP with Γψ∩ΓP = ∅, where Γψ comprises
a Dirichlet boundary and ΓP a traction boundary such that Eq. (1) is supplemented
with the boundary conditions

P (ψ) · n = T Γ on ΓP

ψ = ψΓ on Γψ.
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In the above, T Γ denotes the prescribed boundary tractions, ψΓ the prescribed
Dirichlet boundary conditions, and n defines the normal vector to the boundary Ω.

We consider the standard weighted residual form of Eq. (1), which reads as follows:
find ψ ∈ V such that

∫

Ω

P (ψ) : ∇vdV −
∫

ΓP

(P (ψ) · n) · vdS =

∫

Ω

b · vdV, ∀v ∈ W, (2)

where V denotes a suitable vector-valued trial space on Ω satisfying the Dirichlet
boundary condition ψΓ on Γψ and W denotes a suitable vector-valued test space on
Ω vanishing on Γψ. The Galerkin method with Lagrange finite elements comprises a
standard approach to solve Eq. (2). To this end, let Vh ⊂ V denote a conforming trial
space obtained via a Lagrange finite element discretization of the reference domain Ω
into Nel non-overlapping elements Ωk, k = 1, . . . , Nel, and let Wh be the corresponding
test space. The spatially discrete counterpart to Eq. (2) reads: find ψh ∈ Vh such that

∫

Ω

P (ψh) : ∇vhdV −
∫

ΓP

(P (ψh) · n) · vhdS =

∫

Ω

b · vhdV, ∀vh ∈ Wh. (3)

Equation (3) comprises a monolithic set of governing equations. It is often the case,
however, that the body Ω is made up of multiple subdomains, where each subdomain
may require, e.g., different resolution requirements. One such example that motivates
the present work is systems-level FEM models comprising threaded fasteners. In this
case, the threaded fastener model can require a much finer discretization than the
remainder of the domain and can be a computational bottleneck. To mitigate this
issue we propose a data-driven modeling approach.

3 Domain decomposition formulation

We consider a decomposition of the reference domain Ω into two non-overlapping
components such that Ω = Ω ∪ Ω′ with the interface ΓI = Ω ∩ Ω′ as in Figure 2. We
take Ω to be an “outer” coarse-scale domain which we aim to solve directly with a
finite element method, while we take Ω′ to be an “inner” fine-scale domain. We note
that we assume the inner domain to be completely enclosed by the outer domain such
that ΓI ∩ Γ = ∅. We aim to not resolve Ω′, but rather model its impact on Ω. To this
end, we introduce a decomposition of the deformation map on Ω and Ω′

ψ = ψ +ψ′

such that ψ = 0 on Ω′, ψ′ = 0 on Ω, and ψ = ψ′ ≡ ψ on ΓI . We note that,
by definition, P (ψ + ψ′) = P (ψ) on Ω and P (ψ + ψ′) = P (ψ′) on Ω′. With this
decomposition, a coarse-scale problem on Ω can be written as: find ψ ∈ V such that
∀v ∈ W
∫

Ω

P
(
ψ
)
: ∇vdV −

∫

ΓP

(
P

(
ψ
)
· n

)
·vdS =

∫

Ω

b ·vdV −
∫

ΓI

(
P

(
ψ′) · nI

)
·vdS. (4)
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Fig. 2: Simplified depiction of domain-decomposition formulation.

In the above, V and W are suitable vector-valued trial and test spaces on Ω, nI is
the outward normal vector on the interface ΓI (see Figure 2), and continuity of the
normal stress between the inner and outer domain is enforced weakly. Our goal is to
solve the coarse-scale equation. Let Vh ⊂ V denote a conforming trial space obtained
via a Lagrange finite element discretization of the domain Ω into Nel non-overlapping
elements Ωk, k = 1, . . . , Nel with the node set N , |N | = N , and let Wh denote the
corresponding test space. For notational purposes, we additionally denote the interface

boundary node set as NΓI ⊂ N with |NΓI | = N
ΓI

. The spatially discrete counterpart
to Eq. (4) reads: find ψh ∈ Vh such that ∀vh ∈ Wh

∫

Ω

P
(
ψh

)
: ∇vhdV −

∫

ΓP

(
P

(
ψh

)
· n

)
· vhdS =

∫

Ω

b · vhdV −
∫

ΓI

(
P

(
ψ′) · nI

)
· vhdS.

(5)

The above can be written as a set of Ndof = 3N algebraic equations by introducing
the vector-valued trial basis functions ϕhi, i = 1, . . . , N and vector-valued test basis

functions vhi, i = 1, . . . , N such that span{ϕhi}Ni=1 = Vh, span{vhi}Ni=1 = Wh. The
system (5) simplifies to a force balance at each node in the case of Lagrange finite
elements. We observe that the system (5) is unclosed as it requires specification of the
boundary term

(
P

(
ψ′) · nI

)
· vh, i.e., we need to specify the forcing exhibited by the

inner domain on the outer domain. We employ a machine-learning approach for this
purpose.

Before proceeding, we comment on the assumption ΓI ∪Γ = ∅. Without this term,
Eq. (5) would have an additional unclosed term corresponding to prescribed tractions
on ΓI ∩ΓP . While it is possible to construct a data-driven approach that handles this
case, it requires considerations such as how to parameterize the tractions. We leave
this as future work.
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4 Machine-learning framework

Developing a method that only requires solving the coarse-scale system requires a
model for the impact of the fine scales on the coarse scales. To this end, we propose a
coupled FEM-ML formulation wherein the ML model is used to describe the impact
of the fine scales on the coarse scales at the interface boundary. This section outlines
our coupled FEM-ML formulation, describes the offline-online approach employed
to construct the ML model, and lastly outlines several candidate machine-learning
models.

4.1 FEM-ML coupled formulation

Closing the coarse-scale equation requires specification of the traction applied by the
fine scales on the domain boundary, i.e., we require a model for the term

∫
ΓI

(
P ′ · nI

)
·

vhdS. We propose a machine learning approach for this purpose, i.e., we propose to

develop a machine learning model M(·) =
[
M1(·)T , . . . ,MN (·)T

]T
∈ RNdof such

that

Mi(θ) ≈
∫

ΓI

(
P

(
ψ′) · nI

)
· vhidS ∈ R3,

for i = 1, . . . , N . In the above, Mi(θ) denotes the ML model output for the ith test
function for the 3 DOFs (i.e., DOFs in the x1, x2, and x3 directions) and θ are the to-
be-defined features fed into the ML model. The coarse-scale equation then becomes:
find ψh ∈ Vh such that for i = 1, . . . , N ,

∫

Ω

P
(
ψh

)
: ∇vhidV −

∫

ΓP

(
P

(
ψh

)
· n

)
· vhidS +Mi(θ) =

∫

Ω

b · vhidV. (6)

4.2 Offline-online workflow

To develop the data-driven model, we employ an offline–online workflow. In the offline
phase, we perform a computationally intensive process that involves solving the full
finite element model (3) for Ns different configurations (e.g., different boundary condi-
tions) to obtain Ns deformation maps {ψi

h}Ns
i=1, where Ns are the number of training

samples. These sample deformation maps are then processed to compute the tar-

get training matrix F ∈ RNdof×Ns comprising the terms
∫
ΓI

(
P

(
ψj

h

)
· n

)
· vhidS

for i = 1, . . . , N , j = 1, . . . , Ns. Analogously, we collect the feature training matrix
U ∈ RNθ×Ns , where Nθ are the number of features. In this work we consider the case
where the features are the nodal values of the displacement fields, i.e.,

θ = uh ≡
[[
ψh(X

Ω
1 )−XΩ

1

]T
· · ·

[
ψh(X

Ω
N
)−XΩ

N

]T]T
∈ RNdof ,

where XΩ
i , i = 1, . . . , N denotes coordinates of the ith coarse node.
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4.2.1 Simplification for Lagrange finite elements

In the present work we exclusively consider application to Lagrange finite elements. In
this case the term

∫
ΓI

(
P

(
ψ′) · n

)
·vhidS is exactly zero for basis functions not on the

interface ΓI and we only need to construct a model for basis functions on the interface

such that M(·) ∈ RN
ΓI
dof , where N

ΓI
dof = 3N

ΓI
. In this case we need only collect the

target training matrix for the N
ΓI

basis functions on the interface. This results in a

target training matrix of size F ∈ RN
ΓI
dof×Ns . Analogously, for features we employ only

the nodal values of the displacement fields on the interface, i.e., θ = uΓI
h such that

U ∈ RN
ΓI
dof×Ns . This approach will be adapted for the remainder of the manuscript.

4.3 Machine-learning model structure

Having defined the feature matrix U and the response matrix F we now outline two
candidate approaches for the ML model M.

Approach 1: Direct mapping with proper orthogonal decomposition. The
first approach we consider comprises learning a direct feature-to-response mapping
with the addition of POD to reduce the dimensionality of the input feature space and
the response space. This approach can be described as

M : uΓI
h 7→ ΦfM̂

(
ΦT
uu

ΓI
h ;w

)
+ f0,

where f0 ∈ RN
ΓI
dof is a constant vector (accounting, e.g., for body forces, preload),

Φf ∈ RN
ΓI
dof×Kf and Φu ∈ RN

ΓI
dof×Ku are basis matrices for the interface forces

and displacements, respectively, obtained through POD, Ku and Kf are the reduced
dimension for the displacements and forces, both of which are model hyperparame-
ters, M̂ : RKu × RNw → RKf comprises a machine-learned model that maps from
reduced displacement states to reduced force states, and w ∈ RNw are model param-
eters (obtained from training). The basis matrices for forces and displacements are
obtained by solving the optimization problems

Φf = arg min

Φ∗
f∈{RN

ΓI
dof

×Kf |[Φ∗
f ]

TΦ∗
f=I}

∥Φ∗
f [Φ

∗
f ]

TF∗ − F∗∥22, (7)

Φu = arg min

Φ∗
u∈{RN

ΓI
dof

×Ku |[Φ∗
u]TΦ∗

u=I}

∥Φ∗
u[Φ

∗
u]

TU−U∥22, (8)

where F∗ = F − [f0 · · · f0] . These optimization problems can be solved efficiently
with a (thin) singular value decomposition (SVD) [36]. The algorithm is described in
Appendix A. We emphasize that by employing POD, the training of the model scales
with the reduced dimensions Ku and Kf rather than the number of interface nodes.

A variety of regression models can be used to learn the reduced model M̂. Here
we investigate two approaches spanning different regimes of model complexity: linear
regression and neural networks. We investigate linear regression due to its simplicity
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and interpretability, while we investigate neural networks due to their high capacity
to learn complex functions. These two strategies are now described.

• Linear least squares (LLS). In a linear regression approach the reduced ML
model is defined by a matrix Â ∈ RKf×Ku such that the full model can be written
as

M : uΓI
h 7→ Φf ÂΦT

uu
ΓI
h + f0.

The reduced system matrix is defined by the solution to the linear least-squares
problem

Â = arg min
Â∗∈RKf×Ku

∥ΦT
fF

∗ − Â∗ΦT
uU∥22. (9)

The least-squares problem can be efficiently solved as it can be broken down into
Kf least-squares problems for each row of Â.

• Neural network (NN) This method learns a feed forward neural network for the
mapping from the (reduced) displacement field to the (reduced) force field. In this
case the ML model is given by

M : uΓI
h 7→ ΦfN

(
ΦT
uu

ΓI
h ;w

)
+ f0

where N : RKu × RNw → RKf comprises a neural network model that maps
from the reduced displacement states to the reduced force states and w ∈ RNw are
the network weights. In the present work, these network weights are obtained from
approximate minimization of the loss function,

minimize
w∈RNw

Ns∑

i=1

∥N
(
ΦT
uUi;w

)
−ΦT

fF
∗
i ∥22.

Additional details on model training are given in Section 6.2.

Approach 2: Stiffness matrix mapping with proper orthogonal decomposi-
tion. The approach outlined above is the simplest learning framework one can employ.
This approach, however, does not directly enforce any physical or mathematical prop-
erties of the underlying FEM. As will be shown later in this manuscript, we found that
embedding the above models into an FEM code often led to unstable solutions. To
address this challenge, we propose a second approach that embeds structure into the
model by learning an SPSD stiffness matrix. We again use POD to reduce the dimen-
sionality of the input feature and response spaces. This approach can be described
as

M : uΓI
h 7→ Φ∗

[
L̂
(
ΦT

∗ u
ΓI
h ;w

)] [
L̂
(
ΦT

∗ u
ΓI
h ;w

)]T
ΦT

∗ u
ΓI
h + f0 (10)

where L̂ : RK∗ ×RNw → RK∗×K∗ comprises a machine-learned model that maps from
the reduced displacement states to the lower triangular part of a reduced stiffness

matrix, and Φ∗ ∈ RN
ΓI
dof×(Kf+Ku) = orthogonalize ([Φf ,Φu]) is a basis matrix com-

bining the (orthogonalized) union of the force basis and displacement basis. We note
the orthogonalization can be performed efficiently with a QR decomposition.
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Critically, Eq. (10) can be written in matrix form as

M
(
uΓI
h

)
= KML

(
uΓI
h

)
uΓI
h + f0,

where KML(u
ΓI
h ) = [KML(u

ΓI
h )]T ∈ RN

ΓI
dof×N

ΓI
dof is an SPSD stiffness matrix. This

structure is directly enforced in the model by learning the lower triangular matrix L̂.
Enforcing our model to be SPSD makes the coupled FEM-ML system more amenable
for conjugate gradient solvers, which are commonly employed in solid mechanics.
Lastly, we note the use of the combined basis Φ∗ for both the force and displacement
field, opposed to the individual bases employed in Approach 1. The reason for employ-
ing the combined basis is that both the force field and displacement field must employ
the same basis for the model (10) to be SPSD2 . In the present work we achieve this by
combining both the bases for the force field and displacement fields. For simplicity we
consider the case where K∗ = Ku +Kf ; it is possible that a more compact represen-
tation can be obtained by considering a single POD problem where the displacements
and forces are stacked.

A variety of regression models can again be used to learn the reduced stiffness
matrix L̂. We again consider a linear regression approach and a neural-network-based
approach.

• Symmetric positive semi-definite linear least-squares (SPSD-LLS). This
approach learns a linear model for the stiffness matrix. This method is described by

M : uΓI
h 7→ Φ∗L̂L̂

TΦT
∗ u

ΓI
h + f0

where L̂ ∈ RK∗×K∗ is defined by the optimization problem

L̂ = arg min
L̂∗∈RK∗×K∗

∥ΦT
∗ F

∗ − L̂∗
[
L̂∗

]T
ΦT

∗ U∥22. (11)

By definition, SPSD-LLS learns a system matrix that is SPSD. To the best of our
knowledge, no analytic solution exists to the optimization problem (11), but it can
be solved in a straightforward manner by casting it as a constrained optimization
problem. In the present work we solve the optimization problem (11) with the
optimization package cvxpy [2, 16].

• Symmetric positive semi-definite neural network regression (SPSD-NN)
This approach learns a feed forward neural network for the mapping from the
(reduced) displacement field to the (reduced) lower triangular stiffness matrix. In
this case the ML model is given by

M : uΓI
h 7→ Φ∗

[
LNN

(
ΦT

∗ u
ΓI
h ;w

)] [
LNN

(
ΦT

∗ u
ΓI
h ;w

)]T
ΦT

∗ u
ΓI
h + f0 (12)

2For example, if we employ different bases for the force and displacement, then stiffness matrix associated

with (10) would take the form Φf

[
L̂

(
ΦT

uu
ΓI
h ;w

)] [
L̂

(
ΦT

uu
ΓI
h ;w

)]T
ΦT

u which is not symmetric.
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where LNN : RK∗ × RNw → RK∗×K∗ is the neural network model for the
reduced lower stiffness matrix. The network weights are obtained from approximate
minimization of the loss function,

minimize
w∈RNw

Ns∑

i=1

∥
[
LNN

(
ΦT

∗ Ui;w
)] [

LNN
(
ΦT

∗ Ui;w
)]T

ΦT
∗ Ui −ΦT

∗ F
∗
i ∥22.

In summary, we considered four model forms: a linear model (LLS) and nonlinear
(NN) model that directly map from the interface displacements to the interface forces,
as well as a linear model (SPSD-LLS) and nonlinear model (SPSD-NN) that directly
map from interface displacements to an SPSD stiffness matrix.
Remark 4.1. We emphasize that the above approaches learn the mapping between
displacements and forces with the purpose of removing a subdomain from the compu-
tational domain. A similar approach could be to learn, e.g., the strain–stress mapping
on the domain boundary. This type of approach was employed in Refs. [4, 37], which
leverage neural networks to learn the constitutive relationship defining the stress-strain
relationship at every point a computational domain. In the present work we directly
pursue a displacement–force mapping for ease of implementation into our finite ele-
ment solver. Specifically, the contribution of our ML model simply appears as an
additional (state-dependent) source term in the residual of the governing equations (as
opposed to, e.g., a stress field that needs to be integrated).
Remark 4.2. The above formulations are designed for path-independent static prob-
lems and will be incomplete for dynamic path-dependent problems (e.g., plasticity)
where history effects can be important.

5 Positive definiteness of coarse-scale model in a
simplified setting

In this section we demonstrate that, in the simplified setting of linear elasticity in one-
dimension with homogeneous boundary conditions, the SPSD stiffness-based models
result in a global coarse scale system that is SPD and, as a result, have invert-
ible system matrices with unique solutions. We further show that, for the direct
displacement-to-force model, we cannot guarantee an invertible system with a unique
solution.

The governing equations of linear elasticity in one dimension are

−AE
∂2u

∂x2
= b (13)

for x ∈ [0, L] where u : [0, L] → R is the displacement with boundary conditions

u(0) = u(L) = 0. In the above, A ∈ R+

is the cross-sectional area, E ∈ R+ is the
modulus of elasticity, and b ∈ R is a constant body forcing term. Discretization of (13)
into N degrees of freedom with N + 1 uniform first-order Lagrange finite elements
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results in the system for the interior DOFs,

Kuh = b (14)

where

K =
AE

∆x




2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2



, b = ∆x




b
b
...
b
b




with ∆x = L
N+1 . We note that the system is SPD, i.e., uT

h Kuh > 0, and as such is
invertible such that the system (14) has a unique solution.

We now consider the domain decomposition formulation such that the first two and
last two nodes are the “coarse-scale” nodes and the remaining inner nodes are the “fine-
scale” nodes, i.e., uh = [uh1, uh2, uhN−1, uhN ]

T ∈ R4 and u′
h = [uh3, · · · , uhN−2]

T ∈
RN−4 with boundary degrees of freedom uΓI

h = [uh2, uhN−1]
T ∈ R2. The resulting

coarse-scale problem is

Kuh + s = b (15)

where

K =
AE

∆x




2 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 2


 , b = ∆x




b
b
b
b


 ,

are the coarse-scale stiffness matrices and forcing vectors and

s =
AE

∆x




0 0 0 0
1 −1 0 0
0 0 −1 1
0 0 0 0







uh2

u′
h1

u′
hN−4

uh3




is the contribution of the interior degrees of freedom on the exterior degrees of freedom
at the interface. We emphasize that this term depends on the (unknown) interior
degrees of freedom. We further emphasize that the coarse-scale stiffness matrix is SPD
such that uT

h Kuh > 0.
Replacing s from Eq. (15) with one of the machine-learned models M outlined in

Section 4 results in the coarse-scale problem

Kuh +M(uΓI
h ) = b. (16)

We now provide a brief analysis of the models outlined in Section 4.

• Linear least-squares. For this model the reduced system becomes

[
K+KML

]
uh = b− f0 (17)
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where

KML =




0 0 0 0

0
[
Φf ÂΦT

u

]
11

[
Φf ÂΦT

u

]
12

0

0
[
Φf ÂΦT

u

]
21

[
Φf ÂΦT

u

]
22

0

0 0 0 0



.

As we place no constraints on the construction of Â, we cannot guarantee that KML

is positive (semi-)definite, nor can we guarantee a unique solution to the system (17)
without knowledge of the operator Φf ÂΦT

u, which in general is not full rank. As a
canonical example, we can consider the case where

Φf ÂΦT
u =

[
−0.5 0
0 −0.5

]
,

which is an admissible solution to the optimization problem (9). In this case the
coarse-scale equation stiffness matrix becomes

K =




2 −1 0 0
−1 0.5 0 0
0 0 0.5 −1
0 0 −1 2




which is singular. We further observe that, in general, the ML contribution will not
be symmetric. Thus, even if invertible, the system (17) cannot in general be solved
with the popular conjugate gradient method.

• Neural network. The neural network model results in the coarse-scale equation

Kuh +ΦfN
(
ΦT
uu

ΓI
h ;w

)
= b− f0. (18)

Similar to the linear least-squares model, we cannot guarantee that the Newton
iteration associated with (18) will involve full-rank matrices. In general the matrices
will not be SPD and solution via the conjugate gradient method is inappropriate.

• Symmetric positive semi-definite linear-least-squares The SPSD-LLS model
results in the reduced system

[
K+KML

]
uh = b− f0 (19)

where

KML =




0 0 0 0

0
[
Φ∗L̂L̂TΦT

∗
]
11

[
Φ∗L̂L̂TΦT

∗
]
12

0

0
[
Φ∗L̂L̂TΦT

∗
]
21

[
Φ∗L̂L̂TΦT

∗
]
22

0

0 0 0 0



.

By construction, uT
h KMLuh ≥ 0 and, as a result, uT

h

[
K+KML

]
uh > 0. Thus, the

coarse-scale system is SPD. By definition of SPD matrices, the system is invertible
with a unique solution and may be solved with the conjugate gradient method.
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• Symmetric positive semi-definite neural network. The SPSD-NN model
results in the reduced system

[
K+KML(uh)

]
uh = b− f0 (20)

where

KML =




0 0 0 0

0
[
Φ∗LNNLT

NNΦT
∗
]
11

[
Φ∗LNNLT

NNΦT
∗
]
12

0

0
[
Φ∗LNNLT

NNΦT
∗
]
21

[
Φ∗LNNLT

NNΦT
∗
]
22

0
0 0 0 0


 .

Again, by construction, uT
h KMLuh ≥ 0 and, as a result, the coarse-scale system

is symmetric positive definite for any uh. The system is invertible with a unique
solution and may be solved with the conjugate gradient method.

In summary, this section demonstrated that, in the simplified setting of linear
elasticity in one-dimension, the SPSD stiffness-based models result in coarse-scale
systems that are SPD. These systems have invertible system matrices with unique
solutions. We further demonstrated that we cannot guarantee the systems emerging
from the direct displacement-to-force mappings have unique solutions.

6 Numerical examples

We now investigate the performance of the proposed models on several exemplars,
starting from a canonical cube undergoing finite deformations to a more complex
fastener-bushing geometry undergoing finite deformations with contact.

6.1 Implementation in Sierra Solid Mechanics

The machine-learned models outlined in Section 4 are implemented in the Sierra/Solid-
Mechanics code base, which is a part of the Sierra simulation code suite developed at
Sandia National Laboratories. The ML implementation is built on top of the pocket-
tensor library [35], which provides a C++ interface for TensorFlow and Keras models.
For the direct displacement-to-force models, the stiffness matrix associated with the
ML element is computed via finite differences, while for the displacement-to-stiffness
models the stiffness matrix is directly output from the neural network. For all cases, the
nonlinear system of equations resulting from the FEM and FEM–ML models is solved
via the nonlinear conjugate gradient method with a full tangent preconditioner. We
employ hypoelastic material models for all examples and solve the governing equations
with finite deformations under a quasi-static approximation. Contact is handled using
the Augmented Lagrange algorithm. We refer the interested reader to the Sierra/-
SolidMechanics theory manual for more details [7]. We note that, while it would be
interesting to assess the performance of more generic solvers for the non-SPSD models
(e.g., generalized minimum residual), these are not available in Sierra/SolidMechanics
given the superior performance of conjugate gradient for SM problems.
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6.2 Training of ML models

All machine-learned models are trained in Python. For LLS, we directly solve the
least-squares problem using scipy.optimize.lsq linear. Given the analytic solution to the
optimization problem we do not hold out any data in training. For SPSD-LLS, we
solve the optimization problem with the splitting conic solver as implemented in the
software cvxpy [2, 16]. We again do not hold out any data for training SPSD-LLS.

Both the NN and SPSD-NN models are implemented and trained in PyTorch. For
training the networks we employ random shuffling and a standard 80/20 training/-
validation split of the data. For each model configuration, we train 10 models with
PyTorch’s default random initialization (Kaiming Uniform for dense linear layers).
We select a final model based on the loss on the (holdout) validation set. The neu-
ral networks are trained with the ADAM optimizer for 35000 epochs. We employ an
early stopping criteria if the 2000-epoch running mean of the validation loss has not
decreased. Unless otherwise noted, we employ a batch size of 50 with a learning rate
schedule of lr = {1× 10−3, 2× 10−4, 1× 10−4, 5× 10−5, 2× 10−5}, where the learning
rate is lowered after 500, 1000, 2000, 5000, and 15000 epochs. For network architecture,
we employ fully connected neural networks with three hidden layers. The number of
nodes in each layer is set to be equivalent to the size of the network input vector (e.g.,
the reduced basis dimension, K). The loss function for all models is the ℓ2 loss between
the predicted and truth reduced forces. We employ ReLU for our nonlinear activation
function. To attempt to improve the robustness, we additionally consider ℓ2 weight reg-
ularization (weight decay in PyTorch) for NN. We train models for penalty parameters
of λ = {0, 1× 10−4, 1× 10−3, 1× 10−2}, and the “optimal” model is again chosen via
loss on the validation set. We do not employ regularization for our SPSD-NN models.

Lastly, we comment on data normalization. We employ a max-abs normaliza-
tion strategy for both the NN and SPSD-NN models. Here, the reduced coordinates
associated with both the displacements and forces are normalized by their maxi-
mum absolute value across the training set. To describe this mathematically, let
Ûtrain = ΦT

uUtrain ∈ RK×ntrain denote the reduced coordinates associated with the
training set for the displacement field; we have used Utrain to denote the training data
matrix obtained after the training/validation split on U such that ntrain < Ns. We
scale these reduced coordinates by

Û∗
train =

Ûtrain

max
(
abs

(
Ûtrain

)) .

We note that max
(
abs

(
Ûtrain

))
∈ R+ provides a scalar scaling used for all reduced

coordinates. We found that this approach out-performed normalization strategies that
used an individual scaling for each reduced coordinate. The same scaling is employed
for the forces. We note that we do not center our data, which would complicate
maintaining SPD structure in, e.g., Eq. (12).

The training stage for our examples involves solving a full FEM that directly
resolves the fastener. The coarse and fine scales are then taken to be a subset of this
full FEM discretization and the training data are extracted accordingly. In theory,
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Fig. 3: Example 1, multi-element cube. Depiction of the setup of the cube problem.
The ML model replaces the interior cube, which comprises a 5× 5× 5 element block
of the full FEM model.

one could employ non-conforming decompositions (e.g., perform the training on one
discretization and learn an ML model that is applicable for other meshes via, e.g.,
interpolation). For simplicity, we do not consider this here. In practice, our training
process consists of two phases. First, we solve the full FEM that directly resolves the
coarse and fine scales. After this, we extract the fine-scale domain from the model and
execute a post-processing step to compute the internal forces.

6.3 Multi-element deformed cube

We begin by considering quasi-static deformation of a cube on the domain Ω ≡
[−1.5in, 1.5in]3. The “inner” fine-scale domain is defined as Ω′ = (−0.5in, 0.5in)3 while
the outer domain is defined such that Ω = Ω ⊕ Ω′. For discretization, the domain Ω
is discretized into 15 × 15 × 15 uniformly sized cubes in each direction resulting in

N
ΓI

= 152 interface nodes. We employ standard bilinear Lagrange finite elements.
Figure 3 depicts a setup of the problem. We employ homogeneous Dirichlet bound-
ary conditions on the bottom boundary and Dirichlet boundary conditions on the top
boundary, i.e.,

uh = 0 on ΓB ,

uh = [u1, u2, u3] on ΓU ,
(21)

where ΓB = {(x1, x2, x3) ∈ Ω|x3 = −1.5in} is the lower boundary and ΓU =
{(x1, x2, x3) ∈ Ω|x3 = 1.5in} is the upper boundary. We employ a hypoelastic mate-
rial model across the entire domain. For x ∈ Ω the material model is characterized
by a Young’s modulus of 28.5e6 psi with a Poisson’s ratio of ν = 0.3. For x ∈ Ω′ the
material model is characterized by a Young’s modulus of 29× 106 psi with a Poisson’s
ratio of ν = 0.3. As quantities of interest (QoIs), we consider integrated reaction forces
on the bottom of the cube, ΓB , as well as the error of the displacement field uh in the
outer domain. We denote these errors as exi

and eui
, i = 1, . . . , 3, respectively. We

note that all reported errors are relative errrors that are measured in the ℓ2 norm, i.e.,
for an ML-FEM solution x and a full FEM solution y, we report e = ∥x− y∥2/∥y∥2.

17



0.0 0.2 0.4 0.6 0.8 1.0

time, t (s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

B
ou

nd
ar

y
di

sp
la

ce
m

en
t

(i
n.

)

uh1

uh3

Fig. 4: Example 1, multi-element cube. Depiction of loading profile for bx1 = 0.3,
bx2 = −0.1, bz1 = 0.3, bz2 = 0.1.

Testing run number bx1 bx2 bz1 bz2

1 0.05 -0.01 -0.02 0.01
2 0.15 -0.10 -0.20 0.15
3 0.40 -0.10 -0.30 0.10
4 -0.30 -0.30 0.50 -0.05

Table 1: Example 1, multi-element cube.
Parameter values for testing configurations.

For training we solve the cube problem for 16 different non-proportional quasi-
static loading trajectories for t ∈ [0s, 1s], where t is pseudo-time and a single loading
trajectory comprises 100 time steps with the top boundary displaced by a fixed profile.
This loading profile is prescribed (in inches) for x ∈ ΓU as

uh1(t,x) =





1
2

(
bx1 + bx1 cos

((
t−0

Tx1−0

)
π − π

))
0 ≤ t ≤ Tx1

bx1 +
1
2

(
bx2 + bx2 cos

((
t−Tx1

T−Tx1

)
π − π

))
Tx1 < t < T

uh3(t,x) =





1
2

(
bz1 + bz1 cos

((
t−0

Tz1−0

)
π − π

))
0 ≤ t ≤ Tz1

bz1 +
1
2

(
bz2 + bz2 cos

((
t−Tz1

T−Tz1

)
π − π

))
Tz1 < t < T

(22)

where Tx1 = Tz1 = 0.5s. Figure 4 shows an example loading profile for bx1 = 0.3,
bx2 = −0.1, bz1 = 0.3, bz2 = 0.1.

As a training set we examine a hyper-cube of the parameters bx1 = (−0.3, 0.3),
bx2 = (−0.1, 0.1), bz1 = (−0.3, 0.3), and bz2 = (−0.1, 0.1). We sample the corners of
the hyper-cube, which results in 1600 total quasi-static solves (16 parameter config-
urations with 100 time steps per configuration). For testing we examine four loading
configurations as described in Table 1. We note that this setup comprises training runs
that deform the body by up to 10% and testing configurations that deform the body up
to 16%, both of which are beyond the small-strain region and result in non-linearities.
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Fig. 5: Example 1, multi-element cube. Residual statistical energy of the reduced
basis approximation for the interface displacement and force fields.

6.3.1 Offline training results

We first assess the reduced basis approximations as described in optimization prob-
lems (7) and (8). As there is no body forcing term, we take f0 = 0. Figure 5 depicts
the residual statistical energy (i.e., relative energy contained in the truncated singular
values) associated with the reduced basis approximation3. We observe that both the
interface force field and interface displacement field are well-represented with relatively
few basis vectors. With just 10 basis vectors the residual statistical energy of both
the interface displacement and force fields is less than 10−9. This quick decay demon-
strates that the interface can be characterized with relatively few degrees of freedom,
and justifies the ansatz of performing the learning process in the reduced space.

Next, Figure 6 shows the training error for the various ML models considered as
a function of the reduced basis dimension, K, and the number of model parameters,
Nw. We observe that LLS yields significantly more accurate results than SPSD-LLS.
SPSD-LLS saturates in accuracy around K∗ = 10 while LLS continues to converge,
reaching a training error of 10−3. We next observe that LLS results in models that are
approximately as accurate as NN and SPSD-NN. We believe that, for this example,
LLS performs as well as NN because the data are almost linear. Since LLS has an
analytic solution, we are more easily able to optimize the model. Lastly, we observe
that SPSD-NN performs as well as NN and LLS, and is significantly more accurate
than SPSD-LLS.

6.3.2 Coupled FEM-ML results

We now examine a posteriori results where the ML model is coupled to the FEM
solver. Figure 7 shows QoI errors for the various models as a function of the reduced
dimension. LLS results in accurate models for small reduced basis dimensions but
quickly goes unstable as the basis dimension grows past K = 7. We emphasize that
this instability is not observed in the offline training results and is likely a result of the
interplay between the LLS-POD model and the solver. Despite being the least accurate

3Note that the residual statistical energy bounds the error of the reduced basis approximation.
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Fig. 6: Example 1, multi-element cube. Offline training results of machine learned
models. On the left we show the training error as a function of the reduced basis
dimension K while on the right we show results as a function of model parameters,
Nw. Note that the SPSD models employ the combined basis of dimension K∗ = 2K.

model in training, SPSD-LLS results in stable and accurate models with relative errors
for both QoIs of less than 1% for all reduced basis dimensions. NN results in accurate
models, but becomes unstable for reduced basis dimensions K > 7. SPSD-NN is the
most accurate and robust model. It is stable for all reduced basis dimensions and
results in relative errors of less than 0.01% for almost all reduced basis dimensions.
Lastly, we comment on the observation that both SPSD-LLS and SPSD-NN display
little convergence with reduced basis dimension. In this example, relatively few basis
vectors capture the majority of the statistical energy. Using just a 6 dimensional basis,
SPSD-NN results in displacement fields with relative errors of approximately 0.01%,
and there is little room for improvement by adding more bases. Improved convergence
will be observed in the following examples where more basis vectors are required to
represent the interface displacements and forces.

Next, Figure 8 shows QoI results for two of the testing configurations. We plot
results for the optimal configurations (i.e., the configuration leading to the lowest error)
for each model. The optimal configurations are K = 7, K∗ = 14, K = 5, and K∗ = 18
for LLS, SPSD-LLS, NN, and SPSD-NN, respectively. We observe that all predictions
lie on top of the truth data. Overall, we observe that all models are accurate when
they converge. Lastly, Figure 9 shows the von Mises stress predicted by the SPSD-NN
model (left) and full model (right) for testing configuration #4. With the contours
shown in the figure, we observe no noticeable difference between the FEM–ML and
FEM-only solutions.

The results of this elementary example demonstrate the capability of the ML mod-
els to replace a subdomain, even when the behavior of the material is in a nonlinear
large strain regime. We additionally observed that, while LLS and NN models were
accurate in the offline phase, they rarely led to converged solutions when coupled with
the FEM solver. The SPSD-LLS and SPSD-NN models, both of which enforced an
SPSD stiffness matrix, were more robust when coupled to the FEM model.
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Fig. 7: Example 1, multi-element cube. Relative errors for coupled FEM-ML models
as a function of reduced basis dimension. The top row shows relative errors for the
integrated force QoIs, while the bottom row shows relative errors for the displacement
field QoIs. Note that the SPSD models employ the combined basis of dimension K∗ =
2K.

6.4 Fastener undergoing loading with contact

We now consider a more complex example comprising a fastener-bushing geometry
undergoing quasi-static radial loading. This geometry is derived from a test setup
which can be found in [1]. The NAS1351-3-20P fastener is modeled as a “plug” (fas-
tener head and shank with no modeling of threads) with a 0.187 inch diameter and
sits in the middle of the top bushing through hole, initially not in contact. The fas-
tener is connected to the bottom bushing with a contiguous mesh. As the joint is
loaded laterally, the 0.003 inch gap between the top bushing and fastener will close
and the two volumes will be in contact. The problem is symmetric about the x1-x3

plane, and symmetry is enforced with a symmetric boundary condition. There is no
preload in this case; preload will be considered in the next section. Figure 10 depicts
the problem. The full FEM mesh has N = 115, 292 degrees of freedom. We remove
both the fastener and the immediate domain around the fastener, which results in

an interface with N
ΓI

= 3348 nodes. We emphasize that contact occurs exclusively
within the removed domain, and as a result our ML model must be able to accurately
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Fig. 8: Example 1, multi-element cube. Results of ML–FEM and FEM-only model
on select testing configurations. Results are shown for the optimal configuration for
each model, which corresponds to K = 7, K∗ = 14, K = 5, and K∗ = 18 for LLS,
SPSD-LLS, NN, and SPSD-NN, respectively.

characterize contact. We employ homogeneous Dirichlet conditions on the exterior
of the bottom bushing and Dirichlet boundary conditions on the top boundary. The
quasi-static loading profile is given in inches for x on ΓU , t ∈ [0, 1] by uh1(t,x) = βt,
uh3(t,x) =

1
400 t; this loading configuration corresponds to radial loading (i.e., a pull

at a constant angle) whose angle is a function of the parameter β. We again employ
a hypoelastic material model across the entire domain. For x ∈ Ω the material model
is characterized by a Young’s modulus of 28.5e6 psi with Poisson’s ratio of ν = 0.3.
For x ∈ Ω′ the material model is characterized by a Young’s modulus of 29× 106 psi
with a Poisson’s ratio of ν = 0.3. As QoIs, we consider intergrated reaction forces on
the exterior of the bottom bushing in the x1 and x3 directions as well as the error of
the displacement field uh in the outer domain.

We consider 21 training configurations for β = {−0.005 + 0.0005i}20i=0 and t ∈
{0.01i}101i=1. This dataset comprises quasi-static trajectories with 101 time steps per
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Fig. 9: Example 1, multi-element cube. Results of FEM-ML coupled simulation with
the SPSD-NN model (left) and FEM-only simulation (right) for prediction of the Von-
Mises stress. Note that displacements are amplified for visualization.

trajectory for pulls ranging from approximately −65◦ to 65◦, which results in 2121
total quasi-static solves.

6.4.1 Offline training results

Figure 11 demonstrates that the interface degrees of freedom are amenable to dimen-
sion reduction by displaying the residual statistical energy associated with the reduced
basis approximation. As there is again no body forcing term, we take f0 = 0. As
compared to the previous exemplar, the residual statistical energy in the force approx-
imation decays slower. Overall, however, we again observe that both the interface force
field and interface displacement field are well-represented with relatively few basis
vectors. With just 10 basis vectors the residual statistical energy of the interface dis-
placement field is less than 10−10 and the interface force field is less than 10−6. This
quick decay again demonstrates that the interface can be characterized with relatively
few dimensions.

Figure 12 shows the training error for the various ML models considered as a
function of the reduced basis dimension, K, and the number of model parameters, Nw.
We observe that SPSD-LLS results in the highest training errors and that increasing
the basis dimension no longer results in lower errors after around K∗ = 8. In training,
the standard LLS model is much more accurate than SPSD-LLS and results in accurate
models that achieve a relative error around 10−3. We observe that NN is more accurate
than LLS for low reduced basis dimensions, but is surprisingly less accurate for larger
basis dimensions. Given that the data are inherently nonlinear due to contact, we
theorize that this result is due to LLS over-fitting to the data when there are many
model parameters; note that LLS is analytically solved and is not subject to any
optimization process like NN. For small reduced basis dimensions, where the models
have fewer parameters, NN presumably outperforms LLS due to its ability to model
nonlinear responses. We observe that SPSD-NN is significantly more accurate than
SPSD-LLS and is competitive with both LLS and NN. This result demonstrates that
we are able to generate a structure-preserving SPSD stiffness matrix model with a
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Fig. 10: Example 2, fastener contact. Problem schematic for fastener example. On
the left we show the decomposition between the resolved FEM domain and the ML
domain along with the loading configuration, while on the right we show a sample
training solution at α ≈ 65◦. We show contours of max Von Mises stress with the
fastener subdomain colored in white. Displacements are amplified for visualization.

comparable accuracy to LLS and NN. It is interesting to observe that the improvement
between SPSD-NN and SPSD-LLS is far greater than between NN and LLS.

Figure 13 reports the CPU time required for performing the FEM training sim-
ulations and training (one realization of) the different ML models. We observe that
the training time of all the ML models is small compared to the time required to run
the high-fidelity training simulations; the cost of running the high-fidelity models is
over 500x more than the most expensive ML model (SPSD-LLS) and is approximately
5000x more than the neural-network-based ML models. Comparing the different ML
models, we find that the training cost of LLS and SPSD-LLS tends to increase with
reduced basis dimension, while the cost of NN and SPSD-NN is relatively constant.
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Fig. 11: Example 2, fastener contact. Residual statistical energy of the reduced basis
approximation for the interface displacement and force fields.
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Fig. 12: Example 2, fastener contact. Offline training results of machine learned mod-
els trained on the fastener dataset. On the left we show the training error as a function
of the reduced basis dimension K while on the right we show results as a function
of model parameters, Nw. Note that the SPSD models employ the combined basis of
dimension K∗ = 2K.

6.5 Coupled FEM-ML results

We now examine results for when the ML model is coupled to the FEM solver. We
consider 9 runs for

β = {−0.005,−0.00475,−0.0045,−0.00425,−0.0025,−0.00125,−0.001,−0.00025, 0.000}.

This set of runs contains configurations that were in the training set as well as novel
testing configurations. Figure 14 shows the convergence of the relative error summed
over all cases as a function of reduced basis dimension. The top row shows errors in the
predicted x1-reaction and x3-reaction forces while the bottom row shows errors in the
predicted x1 and x3 displacement fields. We observe that SPSD-NN is by far the best
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Fig. 13: Example 2, fastener contact. CPU times required for conducting the high-
fidelity training simulations and ML model training. Note that the SPSD models
employ the combined basis of dimension K∗ = 2K.

performing method. We observe that it remains stable and becomes more accurate as
the model complexity grows; the most complex model tested led to relative errors of
around 0.2%. We next observe that LLS is inaccurate and goes unstable as the model
complexity increases. The performance of NN is mixed. While the K = 9 configuration
led to good results, most other configurations performed poorly. In particular, we
highlight the discrepancy between, e.g., the performance of the K = 8 model when
coupled to the model (Figure 14) as opposed to in the offline training phase (Figure 12).
We additionally note that convergence of NN with reduced basis dimension is poor.
Lastly, we observe that SPSD-LLS remains stable as the reduced basis dimension
grows, but similarly to Figure 12, the model is unable to improve as we allow it to
have more parameters. This lack of improvement can be attributed to the fact that
the data are nonlinear and the SPSD-LLS model cannot be overfit to the data in the
same way that LLS can due to the structure we impose on the model. The SPSD-NN
model does yield improved results as the reduced basis dimension grows.

Figure 15 shows the relative error of the best performing model of each method as a
function of loading angle for the various cases; the best performing models correspond
to K = 3, K∗ = 6, K = 9, and K∗ = 18 for the LLS, SPSD-LLS, NN, and SPSD-
NN models, respectively. We note that contact occurs in the FEM for all cases when,
approximately, |α| > 40. As expected SPSD-NN is by far the best performing method
and leads to relative errors of under 0.2% in all cases. NN is the next best performing
method, while SPSD-LLS and LLS both associate with relatively high errors. This is
particularly true when there is contact in which case all methods associate with > 10%
error when it comes to predicting the x1-reaction force.

Figure 16 shows the reaction forces predicted by the coupled FEM-ML models
for several testing configurations. We observe that SPSD-NN is the best performing
method and leads to predictions that lie on top of the truth values. The optimal con-
figuration of NN additionally performs well and results in predictions that almost lie
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Fig. 14: Example 2, fastener contact. Coupled FEM-ML results for various ML models
as a function of reduced basis dimension. The top row shows relative errors for the
integrated force QoIs, while the bottom row shows relative errors for the displacement
field QoIs. Note that the SPSD models employ the combined basis of dimension K∗ =
2K.
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Fig. 15: Example 2, fastener contact. Coupled FEM-ML results for various ML models
as a function of loading angle. Results are shown for the optimal configuration for
each model, which corresponds to K = 3, K∗ = 6, K = 3, and K∗ = 18 for the LLS,
SPSD-LLS, NN, and SPSD-NN models, respectively.
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on top of the truth data. Both models are able to correctly capture contact and cor-
rectly predict the change in the stiffness. For larger reaction forces, which correspond
to larger (absolute) loading angles, both models are able to capture the ramp-like
behavior of the reaction force. For lower absolute loading angles, in which case contact
does not occur and the response is mostly linear, SPSD-NN and NN are able to still
predict the correct stiffness without being “contaminated” by its ability to capture
the increased stiffness once contact occurs. Both LLS and SPSD-LLS, which are linear
models, are unable to model the contact non-linearity and simply bisect its behavior.
This leads to an under-prediction of the stiffness in the post-contact regime and an
over-prediction of the stiffness in the pre-contact regime.

Figure 17 shows contour plots of the max von Mises stress throughout the outer
bushing as predicted by the coupled FEM-ML model with the best performing SPSD-
NN model (left) and FEM-only model (right). For this range of von Mises stress
contours, the coupled FEM-ML model leads to results that are visually identical to
the FEM-only model. Figure 18 reports the relative CPU times of the FEM–ML
reduced-order models as compared to the FEM–only full-order model. We note that
we only show CPU times for the SPSD-LLS and SPSD-NN models given that LLS and
NN did not converge for many configurations. We observe that the SPSD-LLS model
results in speedups between 3-20x, depending on the model configuration, while SPSD-
NN results in speedups between 5-25x, again depending on the model configuration.
Interestingly, we observe that the SPSD-NN model is, on average, faster than the
SPSD-LLS model. An investigation into this reveals that, in the conjugate gradient
solver, converging the FEM–ML model with the SPSD-NN model requires, on average,
significantly fewer iterations than the SPSD-LLS model. This result suggests that the
SPSD-NN model is producing better conditioned stiffness matrices, and highlights
adding penalties on the conditioning of the stiffness matrix as an interesting path for
future work. Lastly, we highlight that we observe a slight increase in CPU time for
SPSD-LLS as the reduced basis dimension is increased, suggesting that conditioning
of the resulting stiffness matrix degrades as the basis dimension is increased. No such
pattern is apparent for the SPSD-NN model.

Lastly, we comment on the combined offline and online cost of the FEM-MLmodels.
This example employed 11 samples for training the coupled FEM-ML model. As shown
in Figure 13, running the high-fidelity model for these 11 samples is the dominant
cost of the offline training phase. The gain realized from using the coupled FEM-ML
models depends on the number of online samples that are required. Figure 19 reports
the theoretical cost ratio of employing an FEM-ML model for an analysis opposed
to the FEM-only model as a function of the number of online samples. We report
results for FEM-ML models associating with 2.5%, 5%, 10%, and 20% relative run
times, which covers the cost ratios associated with the SPSD-NN models reported in
Figure 18. The theoretical cost ratio is computed by

CostRatio =
Ns +Nonline

s
FEM−ML−cpu−time
FEM−only−cpu−time

Nonline
s

. (23)
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(a) Sample 1 (β = −0.00475)
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(b) Sample 4 (β = −0.00425)
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Fig. 16: Example 2, fastener contact. Coupled FEM-ML results for select testing
configurations. We show the measured reaction force in the x1 (shear) direction on the
left and the measured reaction force in the x3 (tensile) direction on the right. We note
that contact is more predominant in the shear direction. Values with small absolute
loading angles correspond to the cases with low reaction forces in the shear direction,
while values with large absolute loading angles correspond to cases with large loading
angles in the shear direction.
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Fig. 17: Example 2, fastener contact. Predictions for the max von Mises stresses by
the FEM-ML (left) and FEM-only (right) models. Note that the displacements are
enlarged by a factor of 10 for visualization.
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Fig. 18: Example 2, fastener contact. Relative CPU times for the FEM–ML coupled
reduced-order models (i.e., CPU time of the FEM-ML model divided by CPU time of
the FEM-only full-order model which resolves the fastener). The reported CPU times
are averaged across the nine testing configurations.

We observe that an overall speedup is obtained after 11-15 online samples, and by 100
online samples all models are giving over a 3x gain in efficiency.

6.6 Fastener undergoing three-dimensional radial loading with
contact and preload

The final problem we consider is again a fastener-bushing geometry, but this time
we consider a three-dimensional loading profile with an initial preloaded state. The
problem configuration is shown in Figure 20. The full FEM mesh comprises N =
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Fig. 19: Example 2, fastener contact. Cost ratio associated with using the FEM-ML
model for an analysis opposed to the FEM-only model as a function of the number of
samples. The cost of the FEM-ML model includes the offline training time required
for generating the 11 training simulations.

234, 750 degrees of freedom. We remove the immediate domain around the fastener,

which results in an interface with N
ΓI

= 6840 nodes. We again emphasize that contact
occurs exclusively within the removed domain, and as a result our ML model must
be able to accurately characterize contact. We again employ homogeneous Dirichlet
conditions on the bottom boundary. The quasi-static loading profile for x on ΓU is
given, in inches, by

uh1(t,x) = βt

uh2(t,x) = αt

uh3(t,x) =
1

400
t.

(24)

We consider 121 training configurations for β = {−0.005+0.001i}10i=0, α = {−0.005+
0.001i}10i=0, and t ∈ {0.01i}101i=1 s. This dataset comprises quasi-static trajectories with
101 quasi-static time steps per trajectory for pulls ranging from approximately −65◦

to 65◦ in both directions. In addition, for this example we consider a preloaded state
such that, at time t = 0, the initial force on the interface is finterface = fpreload ̸= 0. This
preload is applied through the use of an artificial strain in the axial direction of the
fastener.

We employ the same material configuration as the previous two exemplars. For
x ∈ Ω the material model is characterized by a Young’s modulus of 28.5e6 psi with
Poisson’s ratio of ν = 0.3. For x ∈ Ω′ the material model is characterized by a Young’s
modulus of 29× 106 psi with a Poisson’s ratio of ν = 0.3. As a QoI, we again consider
the integrated reaction forces on the exterior of the bottom bushing and displacement
fields in the outer domain.
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Fig. 20: Example 3, fastener with preload and contact. Schematic of the problem
configuration. On the left we show the outer computational mesh and on the right we
show the geometry clipped down the middle. The middle region highlighted by the red
box comprises the fastener-bushing domain that will be replaced with the ML model.

For this complex exemplar we only investigate the performance of the SPSD-NN
model given its superior performance over other formulations. We additionally note
that we employ a slightly different training configuration for this example: the batch
size is 60 and our initial learning rate is lr = 2.5 × 10−4. The rest is the same as is
described in Section 6.2.

6.7 Offline training results

We again first assess the reduced basis approximations. To capture preload, the force
offset vector is set to be the force state resulting from preload, i.e., f0 = fpreload

4.
Figure 21 depicts the residual statistical energy associated with the reduced basis
approximation. As compared to the previous examples, we observe a much slower decay
in the residual statistical energy of the interface force field: 40 basis vectors are required
to reach a residual statistical energy of 10−6, while in the previous two exemplars this
tolerance was achieved with only 10 basis vectors. This result demonstrates the more
sophisticated physics present in this example. Despite the slower decay in singular
values associated with the interface forces, we are still able to identify a subspace of a
much reduced dimension capable of representing the majority of the statistical energy
of the force and displacement interface fields.

Figure 22 reports the CPU time required for performing the training simulations
and training the ML models. We again observe that the training time of the ML mod-
els is small compared to the time required to run the high-fidelity training simulations;

4The preload force vector is non-uniform and is extracted from the FEM simulation in the training phase.
In future work, we plan to parameterize the preload force to handle different types of preload.
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Fig. 21: Example 3, fastener with preload and contact. Residual statistical energy of
the reduced basis approximation for the interface displacement and force fields.
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Fig. 22: Example 2, fastener contact. CPU times required for conducting the high-
fidelity training simulations and ML model training.

running the high-fidelity models costs 5000-10000x more than training the ML mod-
els. Comparing the different ML models, we find that the training cost is relatively
insensitive to the reduced basis dimension.

6.8 Coupled FEM-ML results

We move directly to the coupled FEM–ML results. We consider a set of out-of-sample
testing runs for β = {0.0005 + 0.001i}4i=0, α = {0.0005 + 0.001i}4i=0. Figure 23 shows
QoI predictions for K∗ = 50 for select testing samples. Focusing on the reaction force
in the x3 direction, we observe that the ML model is able to replicate the initial
preloaded state by virtue of the constant offset vector. We further observe that the ML
model is able to simulate the change in stiffness that occurs due to the initial preload
around t ≈ 0.05. Next, examining the reaction forces in the x1 and x2 directions, we
observe the ML model is able to accurately characterize the change in stiffness due
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to contact. The model correctly predicts both when contact occurs, as well as the
magnitude of the resulting reaction force. We emphasize that all results are for out-
of-sample configurations. Next, Figure 24 shows the convergence of the QoI errors as
a function of the reduced basis dimension. We observe almost monotonic convergence
for all QoIs. Figure 25 shows contour plots for the max von Mises stress as predicted
by the FEM–ML, with the SPSD-NN model at a reduced basis dimension of K∗ = 40,
and FEM-only models. No differences in results are distinguishable.

Figure 26 presents the relative wall-times of the various FEM–ML coupled models
as compared to the FEM-only model. We observe that, for all basis dimensions, the
FEM–ML coupled systems result in over 100x speedups. We again do not observe a
noticeable change in cost with increasing the reduced basis dimension. Next, we assess
the combined offline and online cost of the FEM-ML models. This example employed
121 samples for training the coupled FEM-ML model. Running the high-fidelity model
for these 121 samples is the dominant cost of the offline training phase (Figure 22).
Figure 27 reports the theoretical cost ratio of employing the FEM-ML model for an
analysis opposed to the FEM-only model as a function of the number of online samples.
We report results for FEM-ML models associating with 0.5%, 0.75%, and 1% relative
run times, which covers the cost ratios associated with the SPSD-NN models reported
in Figure 26. The theoretical cost ratio is computed as in Eq. (23). As expected we
observe that an overall speedup is obtained after 122 online samples. By 1000 online
samples, all models are giving over a 5x gain in efficiency.

The present example employed 121 configurations in the training set; as such the
model will not be useful if less than 121 online samples are required. The training cost
can be reduced by using a smaller training set size. To this end, we consider ML models
with a reduced basis dimension of K∗ = 20 trained using three different training sets,

1. β = {−0.005 + 0.0005i}10i=0, α = {−0.005 + 0.005i}10i=0,
2. β = {−0.005 + 0.0005i}i=0,2,4,6,8,10, α = {−0.005 + 0.005i}i=0,2,4,6,8,10,
3. β = {−0.005 + 0.0005i}i=0,3,6,9, α = {−0.005 + 0.005i}i=0,3,6,9.

All three data sets employ t ∈ {0.01i}101i=1 s. For each case we test on the same out-
of-sample testing runs as before. Figure 28 shows the convergence of the reaction
QoI errors as a function of the training dataset size, denoted by |Dtrain|. We observe
monotonic convergence in all QoIs as the number of training data increase. For the
coarsest training dataset, we observe relatively large QoI errors around 3%, while for
the finest dataset we observe sub 1% QoI errors. As expected, these results indicate
that decreasing the training set size reduces the total offline cost, but also decreases
model accuracy. The trade-off between offline cost and model accuracy will depend on
the analysis in which the FEM-ML model is being used.

7 Conclusion

This work introduced a machine-learning strategy for finite element analysis of solid
mechanics wherein we replaced hard-to-resolve portions of a computational domain
with a data-driven surrogate. We proposed two types of data-driven surrogates: one
that maps directly from the interface displacements to the interface forces, and one
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(a) Sample 8 (β = 0.0015, α = 0.0025)
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(b) Sample 13 (β = 0.0025, α = 0.0025)
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(c) Sample 24 (β = 0.0045, α = 0.0035)

Fig. 23: Example 3, fastener with preload and contact. Coupled FEM-ML results
for select testing configurations. From left to right, we show the predicted reaction
force in the x1 (shear), x2 (shear), and x3 (tension) directions, respectively. Each line
corresponds to a different quasi-static trajectory obtained from a different value of β
and α.
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Fig. 24: Example 3, fastener with preload and contact. Relative errors of coupled
FEM-ML results with the SPSD-NN ML model as a function of reduced basis dimen-
sion. The top row shows relative errors for the integrated force QoIs, while the bottom
row shows relative errors for the displacement fields. From left to right, we show the
predictions in the x1 (shear), x2 (shear), and x3 (tension) directions, respectively.

Fig. 25: Example 3, fastener with preload and contact. Predictions for the max Von
Mises stresses by the FEM-ML (left) and FEM-only (right) models for β = 0.0045,
α = 0.0035. Note that the displacements are enlarged by a factor of 10 for visualization.
The FEM–ML solution was obtained approximately 130x faster than the FEM-only
solution.
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Fig. 26: Example 3, fastener with preload and contact. Relative CPU times for
the FEM–ML coupled reduced-order models (i.e., CPU time of the FEM-ML model
divided by CPU time of the FEM-only full-order model which resolves the fastener).
The reported CPU times are averaged across all testing configurations.
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Fig. 27: Example 3, fastener with preload and contact. Cost ratio associated with
using the FEM-ML model for an analysis opposed to the FEM-only model as a function
of the number of samples. The cost of the FEM-ML model includes the offline training
time required for generating the 121 training simulations.
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Fig. 28: Example 3, fastener with preload and contact. Relative errors of coupled
FEM-ML results with the SPSD-NN ML model as a function of training data set size.
From left to right, we show the predicted reaction force in the x1 (shear), x2 (shear),
and x3 (tension) directions, respectively.
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that maps from the interface displacements to the interface forces by virtue of a stiff-
ness matrix that is enforced to be SPSD. We demonstrated, in a simplified setting,
that this latter formulation results in a global coarse-scale problem that is symmet-
ric positive-definite (SPD) which guarantees a unique solution and makes the form
amenable to conjugate gradient solvers.

We presented numerical experiments across three exemplars spanning a range of
physics. These exemplars demonstrated that, in general, direct force-to-displacement
models are not robust when combined with a conjugate gradient solver. At this time
it is not clear if this lack of robustness is due to interplay between the model form
and the conjugate gradient solver, or if rather it is due to the resulting problem being
ill-posed. Even if model robustness can be attributed to the conjugate gradient solver,
in which case improved performance could be obtained, e.g., by switching to a general
minimized residual-based solver, this is still a significant issue given the wide use and
effectiveness of conjugate gradient-based solvers in SM.

Our numerical experiments demonstrated that the displacement-to-force via an
SPSD stiffness matrix approach resulted in robust and efficient models. In all of our
testing cases, the FEM-ML model with the SPSD-NN approach was able to predict
QoIs with a relative error of less than 0.5%. On the final exemplar, which was the
most complex test case, this formulation led to sub 0.25% errors with speed-ups of
over 100x as compared to the standard FEM simulation.

The results of this work demonstrate the promise of using machine-learning for
alleviating the computational burden associated with hard-to-resolve portions of a
computational domain, like threaded fasteners, for traditional finite element methods.
Follow on work will focus on aspects including (1) extension to more sophisticated
material models, e.g., elastic-plastic, where history behavior may become important,
(2) extension to component-level exemplars with fasteners, where the same fastener
model is repeated throughout the domain, (3) adding additional physical constraints to
our models, e.g., rigid body rotation, and (4) prediction of QoIs within the substituted
subdomain, such as fastener stress and fastener failure.
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A Proper orthogonal decomposition

Algorithm 1 provides the algorithm for computing the POD basis used in this work.
We note that the basis dimension K can be determined from the decay of the singular
values; for simplicity, we treat it as an algorithm input. We emphasize that the first

Algorithm 1 Proper orthogonal decomposition (POD)

Input: Snapshot matrix, S ∈ RN×Ns ; desired basis dimension K.
Output: POD basis, Φ ∈ RN×K , K ≤ Ns.
Steps:

1. Compute the (thin) singular value decomposition

S = UΣV T , (25)

where U ≡ [u1 · · · uNs
].

2. Truncate the left singular vectors such that Φi = ui, i = 1, . . . ,K.

K singular vectors ui, i = 1, . . . ,K form a basis which comprises the solution to, e.g.,
the optimization problem (7) with the input snapshot matrix being F∗ or (8) with
the input snapshot matrix being U. The accuracy of the POD approximation can be
bounded by energy contained in the truncated singular values,

∑Ns

k=K Σ2
kk.
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