
DISCLAIMER 

This report was prepared as an account of work sponsored by an 

agency of the United States Government. Neither the United States 

Government nor any agency thereof, nor any of their employees, 

makes any warranty, express or implied, or assumes any legal liability 

or responsibility for the accuracy, completeness, or usefulness of any 

information, apparatus, product, or process disclosed, or represents 

that its use would not infringe privately owned rights. Reference 

herein to any specific commercial product, process, or service by 

trade name, trademark, manufacturer, or otherwise does not 

necessarily constitute or imply its endorsement, recommendation, or 

favoring by the United States Government or any agency thereof. The 

views and opinions of authors expressed herein do not necessarily 

state or reflect those of the United States Government or any agency 

thereof.  Reference herein to any social initiative (including but not 

limited to Diversity, Equity, and Inclusion (DEI); Community Benefits 

Plans (CBP); Justice 40; etc.) is made by the Author independent of 

any current requirement by the United States Government and does 

not constitute or imply endorsement, recommendation, or support by 

the United States Government or any agency thereof. 



SANDIA REPORT
Printed Feb 2025

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

A Taxonomy and Feature set for
Server-Side Identification of Proxies
Charles Smutz

SAND2025-02246



Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology
& Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2



ABSTRACT
Malicious actors frequently use proxies and VPNs to evade detection and hide their origin. Current
challenges to information security include the use of residential proxies to blend in with normal
traffic and Man-in-the-Middle phishing proxies that are used to compromise accounts protected
with mult-factor authentication. We advance a taxonomy and feature set for the identification of
proxied traffic based on the network layer where proxying occurs. We describe how these features
apply to common proxy types and how to use these features in the classification of the proxied
traffic. Collection of these additional features is feasible using existing network sensors and web
servers, while only adding about 30% volume to commonly deployed network sensor logs.
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1. INTRODUCTION

Proxies and Virtual Private Networks (VPNs) are network traffic intermediaries that can be used
to route internet traffic indirectly and can cause traffic to appear to originate from a network that
is different from the actual traffic origin. Proxies are used for many reasons including privacy of
individual internet users, and enhanced authentication and confidentiality of organizational traffic.
Unfortunately, they can also be utilized to mask the origin of malicious activity.

The malicious use of proxies is enabling new attack vectors and evasion of existing defensive
mechanisms in internet services. For example, Proofpoint recently reported a "surge of over 100%
in successful cloud account takeover incidents" attributed to Adversary-in-the-Middle phishing (also
known as MitM) which is "based on a reverse proxy architecture, which allows attackers to steal
MFA-protected credentials and session cookies".1 According to Microsoft, this increase in business
email compromise is fueled by the use of residential IP proxies that "match the victim’s location"
and "which empower cybercriminals to mask their origin".2 This allows attackers to circumvent
"impossible travel" timings and other location-related indicators of account compromise. Microsoft
also reported on an attack group that was seeking persistent access to critical infrastructure. They
reported that this attacker "tries to blend into normal network activity by routing traffic through
compromised small office and home office (SOHO) network equipment, including routers, firewalls,
and VPN hardware."3 The use of these types of adhoc proxied infrastructures are a growing part of
emerging tactics that is challenging information security practitioners.

Current approaches to proxy detection predominately focus on a reputation model where a database
of proxy exit node IP addresses is constructed using information derived from internet scanning,
proxy network infiltration, or the collection of reported exit node IPs. In this model, a network
defender queries a database to determine if traffic from a given IP is likely proxied based on
previous findings. This approach has numerous limitations including the timely detection of new
exit nodes and separating direct traffic from proxied traffic in the case that two types of traffic both
originate from the same IP (as is common with residential proxies). Alternatively, we are focused
on detecting the malicious use of proxies from the perspective of a web service provider using
attributes of the traffic itself, instead of reliance on previous observations and classification.

There are two related goals in countering the malicious use of proxies. First, a network defender
gains an advantage from being able to reliably detect the use of proxies whether or not the traffic
coming from the proxy is malicious. Second, there is added benefit from being able to isolate

1https://www.proofpoint.com/us/blog/email-and-cloud-threats/cloud-account-takeover-
campaign-leveraging-evilproxy-targets-top-level

2https://www.microsoft.com/en-us/security/business/security-insider/reports/cyber-
signals/shifting-tactics-fuel-surge-in-business-email-compromise/

3https://www.microsoft.com/en-us/security/blog/2023/05/24/volt-typhoon-targets-us-
critical-infrastructure-with-living-off-the-land-techniques/
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specific proxy networks and patterns that identify traffic from a specific adversary. In the case of
a persistent adversary using a custom proxy network or common proxies in a unique way, the use
of proxy profiling serves as a way to counter subsequent malicious activity such as the use of an
unknown exploit or the use of newly compromised authentication tokens. Our approach differs
from most privacy research in that our primary goal is to identify the tooling and infrastructure
of malicious actors and is not focused on determination of the real-world identities or geographic
location of the actor.

We propose a taxonomy for categorizing proxies/VPNs based on the network layer where prox-
ying occurs. This taxonomy employs features derived from network path artifacts and software
fingerprinting that highlight discontinuities across the network stack. These specific features can
be collected by network sensors or at the web server. We demonstrate that this taxonomy and
feature set is applicable in identification of recent attack vectors utilizing well-studied and relevant
examples. We have implemented the collection of these feature sets in a couple of open-source
and widely deployed network sensors and web servers. We focus on HTTPS traffic because of the
ubiquitous nature of these types of web services, but most of the approaches described here can also
be applied to other protocols and use cases. We also demonstrate that it is feasible to collect the
metadata necessary for proxy identification at the network edge. Lastly, we briefly address some
potential evasion mechanisms and show that some forms of evasion open attackers to additional
detection opportunities.

Our contributions include:

• A taxonomy of proxy types based on network artifacts

• A feature set for server side proxy identification

• Feasibility of these methods as demonstrated by a real-world deployment

• Examples showing that many evasion methods may result in additional detection opportunities

In section 3, we briefly outline our proxy taxonomy. In section 4, we expound the proposed features
used in proxy identification with examples of common proxies used in current attacks. In section 5,
we show this method is feasible for broad deployment. In section 6, we address evasion methods
of countering evasion.
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2. RELATED WORK

Anonymity networks, such as Tor [3], have been extensively studied, attacked, and improved [14,
9, 18]. Xue et al. demonstrated that OpenVPN can be fingerprinted from the point of view of an
ISP using network payload fingerprinting and active probing of potential OpenVPN servers [25].
We build upon this privacy research but attempt to address a different problem. We advance the
detection of malicious web clients from the perspective of a web service provider.

Habibi et al. developed a feature set that includes inter-packet and flow times, bytes transferred, and
duration to determine the type of traffic (web browsing, video chat, etc) transferred through Tor [6].
These features have been used for numerous feature space studies, using various computational
and machine learning methods [1, 17]. This approach and feature set is effective for determining
the type of traffic transferred through a proxies whereas we focus on detecting the type of proxy
used.

Residential IP (RESIP) proxy networks are utilized primarily as a way to defeat server-side blocks
and are frequently used for criminal activities. Mi et al. describe how residential IP proxies operate
through infiltration (acting as a client) and port scan fingerprinting both from the inside and outside
of the proxy network [13]. Tosun et al. use flow analysis, especially matching of inbound to
outbound flows at the ISP level to detect RESIP traffic [21]. Yang et al. perform an extensive
enumeration of RESIPs in China, adding features derived from web crawling of RESIP provider
web sites and passive DNS information [26]. Similarly, our taxonomy and features apply directly
to RESIPs, but we add the ability to identify proxied traffic at the target web server.

Kondracki et al. study the emergence of MitM phishing toolkits and demonstrate that they can
be detected using timing and TLS fingerprint features from the client perspective but limit their
evaluation to comparing TLS fingerprints with HTTP User-Agent strings on the server side [11].
We enumerate complementary detection opportunities including identification of HTTP header
changes made by the MitM proxy and the practical implementation of TLS RTT on the web server
side.

Features based on timing analysis and network protocol fingerprinting have been studied extensively
for a variety of purposes. In one of the earliest public reports of a widespread intrusion by an
apparent espionage actor, Stoll demonstrated that timing analysis provided evidence that malicious
activity was originating from a distant source [20]. Webb et al. further demonstrate server-side
detection of some types of proxies by comparing TCP RTT and HTTP RTT [24]. Our taxonomy
clarifies how specific timing analysis features apply in various proxy network types. Ramesh et al.
advance a similar method for detecting proxies based on comparing differences in RTT at various
layers of the TCP stack and employ a novel method for measuring IP RTT [16]. We advance a
similar layer-based approach to server-side detection of proxies but provide a more granular and
comprehensive taxonomy that incorporates additional timing and fingerprinting features.
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Similarly, studies of network protocol fingerprinting (both active and passive fingerprinting of
the TCP stack to identify operating systems) date back to before the turn of the century [19, 5].
Netalyzer by Kriebich et al. used a java applet on the client to gather information on path MTU,
DNS resolution, HTTP caching, etc. for debugging various network issues [12]. These features
were found to be useful for detecting some types of forward proxies [23]. TCP fingerprinting has
been used to identify both vulnerable target and malicious origin systems for decades. For example,
p0f1 is a passive OS network fingerprinting tool that was written in 2000 and was widely used in
edge security devices and network sensors but has since been abandoned, with the last revision of
p0f being released in 2016. Unfortunately, many of the previously studied fingerprinting references
and tools are no longer up to date with current operating systems and attack methods.

JA32 was released in 2017 and is a widely used implementation of TLS fingerprinting. The recently
released JA43 is designed to address some of the weaknesses of JA3. JA4 is also incrementally
adding features such as TCP and latency. Our work overlaps with JA4 in the type of data collected,
but we focus on identifying proxy networks using cross-layer comparisons.

Fingerprinting of individual user devices can be used to both counter fraud and to weaken user
privacy. Alaca et al. survey various fingerprinting methods including TCP fingerprinting, DNS
side channels, and browser fingerprinting to improve authentication [2]. Iqbal et al. demonstrate
that browser fingerprinting is widely deployed and offer improved countermeasures [8]. Kol et al.
exposed a flaw in the Linux ephemeral port selection algorithm that allowed tracking of individual
systems [10]. We complement these approaches by advancing features for proxy profiling without
de-anonymizing individual users or devices.

1http://lcamtuf.coredump.cx/p0f3/
2https://github.com/salesforce/ja3
3https://github.com/FoxIO-LLC/ja4
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3. TAXONOMY FOR IDENTIFYING PROXIES

In this section, we present a taxonomy for classifying proxies based on the layer of the network stack
where the proxy operates. More precisely, we propose classifying proxies based on the fundamental
unit of information that is transferred through the proxy network. This fundamental unit (packet,
data stream, or application layer request) corresponds to the lowest layer of the network stack that is
end-to-end across the communication. Figure 3-1 shows examples of the three major proxy types,
highlighting the end-to-end nature of the unit of data that is transferred with each proxy type.

We propose classifying proxies by network stack layer because this organization helps highlight
cross-layer discontinuities visible to web service providers. In this effort, we focus on two major
classes of attributes at each layer: software fingerprints and path artifacts (including round-trip time
(RTT) estimates). Table 3-1 enumerates the attributes at each layer of the network stack separated
by the proxy types. Attributes above the layer of a given proxy type are artifacts of the original
system, attributes below that layer are artifacts of the proxy network/exit node, and artifacts at the
same layer are unique to that proxy variety.

Cross-layer comparisons of the artifacts from the original client against artifacts from the exit node
are important because many of the artifacts at a given layer are common, but combinations of
artifacts across the stack provide opportunities for discernment. For example, TCP/IP operating
system fingerprinting can rarely be used as a sole indicator of proxy use. There are a relatively small
number of common operating systems and these operating systems are used with many proxy types
and can be found exhibiting both benign and malicious activity. However, if a TCP/IP fingerprint
indicates the operating system is different from that indicated by TLS fingerprinting, then an L4
proxy may have been employed. Similarly, rarely is a path indicator such as a specific round trip
time (RTT) alone a reliable indicator of malicious activity, and most observed RTTs fall within
a common range of values. However, a discrepancy that exists between TCP and TLS RTT can
provide evidence that an L4 proxy is being employed. Furthermore, the delay between the finish
of the TCP handshake and the TLS client hello can help narrow the type of L4 proxy that is being
employed.

This multi-layer approach to proxy network analysis is important not only for detecting the use of a
proxy network, but also for profiling specific proxy networks and identification of specific threats.
For example, a specific threat may be identified by cataloging unique exploitation patterns (such
as specific URLs) even though the traffic appears to originate from many IP addresses because a
proxy is used to front the traffic. If a unique proxy profile can be created for the threat activity,
novel activity using unknown exploit URLs and new IP addresses can be detected by identifying
similar traffic with overlapping proxy indicators. These types of proxy profiles are often possible
to construct by combining many attributes across the network stack and side channels.

17
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Figure 3-1. Examples of proxy types demonstrating end-to-end nature of network stack layer where
proxy operates

Source Path Artifact Fingerprint Data
Browser HTTP RTT HTTP Headers

L7: App. Proxy Header Changes

TLS Library TLS RTT TLS extensions

L4: Stream Proxy Hello delay

Operating Sys. TCP RTT TCP/IP options

L3: Packet Proxy MTU (MSS)

Internet Scan IP RTT (Ping) Port Scan, Banners
IP Reputation Geolocation Known Exit Nodes

Table 3-1. Attributes used for identifying proxies organized by network stack layer and separated by
proxy types
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This taxonomy focuses on artifacts of network traffic that can be used to identify proxies by service
providers. Additionally, the taxonomy complements and enhances alternate approaches to counter
the malicious use of proxies and can supplement the use of IP reputation databases, detection of
side channels, and detection of overt malicious behavior.
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4. EXAMPLE PROXIES AND FEATURES

In this section, we will describe features that will be useful for proxy identification through examples
that are representative of common proxy deployments at different layers of the network stack. These
examples were chosen because they are easily repeatable but provide broad coverage across current
threat vectors and proxy types.

4.1. L4: Tor Anonymity Network

Tor is an L4 or stream proxy whose anonymity guarantees have been studied extensively and that is
used widely in practice. Tor provides clients a SOCKS interface, which is a common client interface
for L4 proxies. Other examples of L4 proxies include web proxies that use the HTTP CONNECT
method, various port forwarding tools, and malware such as the reGeorg1 backdoor. While detecting
Tor traffic is not challenging because exit nodes are publicly published, we demonstrate methods
of detection and characterization applicable to L4 proxies generally that can be observed by web
service providers.

4.1.1. TCP and TLS Timing

One of the strongest indicators of an L4 proxy is calculated as the difference in TCP RTT and
TLS RTT timings. In an L4 proxy, TLS is end-to-end while TCP is terminated at the proxy exit
node. Measurement at an endpoint, such as the web server, is straightforward since the kernel can
be queried for the TCP RTT. The TLS handshake RTT measurement was just recently added to
OpenSSL. Care must be taken, however, when measuring RTTs on an intermediate monitor that
does not terminate the connection. Assuming that a monitor is "pretty close" to an endpoint makes
a monitor susceptible to evasion by proxies designed to circumvent edge defenses (e.g., reGeorg).
Network intrusion detection systems (NIDS) should measure the time from observation of the first
transmission to the observation of the 3rd transmission in a synchronous conversation, such as the
TCP 3-way handshake (i.e., 2-way is not enough). Figure 4-1 demonstrates timing measurements
using passive NIDS sensor. Recent studies have stated that TCP sequence numbers prevent trivial
TCP handshake-based RTT manipulation [16], but this notion overlooks the fact that ACKs can
be easily spoofed by an intermediary. In fact, geosynchronous satellite internet providers routinely
employ various TCP acceleration mechanisms to lower effective traffic latency, resulting in some
artifacts of L4 proxies in almost all traffic from these service providers.

Measuring TLS RTT is similar to measuring TCP RTT. TLS handshake messages aren’t guaranteed
to fit in a single packet (e.g., large certificate chains) and there is more computational expense in

1https://github.com/sensepost/reGeorg
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TLS handshakes (e.g., PKI operations), but some points in TLS handshakes are guaranteed to be
synchronous due to cryptographic operations used for key negotiation. TLS version 1.2 and older
usually have an observable 4-way handshake in the case of a new connection and a 3-way handshake
for some forms of session resumption. TLS 1.3 supports 0-RTT for resumed TLS sessions, but new
sessions still have an observable 3-way handshake. Since TLS handshakes can involve potentially
high latency tasks, such as certificate status checks or an additional TCP RTT due to TCP window
exhaustion, the lowest observed TLS RTT for a client should be used as an estimation of the signal
propagation delay taken by the TLS communication.

TLS hello delay is a metric that can be used to differentiate L4 proxies based on their buffer-
ing/connection setup strategy. In a direct web connection, the TLS client hello immediately follows
the TCP handshake. However, in a SOCKS proxy system, the client signals to the SOCKS proxy
to establish a connection and after the TCP connection is established and ready to use, the SOCKS
proxy signals back to the browser that the connection is established. If the client waits for a signal
from the proxy that the upstream TCP connection has been established before beginning the TLS
connection, there will be a large apparent timing gap as observed by the server. Other L4 proxies
establish a TCP connection with the client and then buffer the TLS Client Hello at the exit node
resulting in no TLS client hello delay (or a smaller delay depending upon where buffering occurs
relative to TCP termination). Hello delay represents the signal propagation time from the observed
exit node to the SOCKS proxy or where TLS connection is blocked/buffered. In Tor and similar
systems that use a SOCKS proxies local to the browser, this timing delay represents the distance
from the exit node to the browser. In Tor, the sum of TCP RTT and TLS client hello delay is usually
close to TLS RTT. Since Tor uses a SOCKS interface, and because the multihop nature of Tor adds
significant propagation distance, TLS RTT and TLS client hello delays are very high on an absolute
scale, frequently surpassing 500ms. We believe that we are the first to describe and implement
TLS hello delay for proxy profiling. Since all major browsers have chosen to not implement TCP
fast open (which would combine the TCP ACK and TLS client hello into a single packet), the hello
delay applies consistently to web traffic.

We propose the use of synchronous RTT measurements at the connection handshake with care to
separate out the latency of each network layer in proxy identification measurements. Inter-packet
delay is commonly implemented to profile the traffic transferred through the proxy [6, 18] and is
not relevant for our goal of fingerprinting proxies by network defenders. Focusing on handshake
RTTs also helps minimize the impact of buffers at multiple layers and better supports taking action
on malicious requests.

4.1.2. TCP and TLS Fingerprinting

Network stack fingerprinting relies on observable differences in protocol implementations to iden-
tify the software employed. This type of fingerprinting can be used to identify specific devices and
software, but identification of a specific operating system or browser alone is rarely enough for a
meaningful identification. However, proxies can be detected and profiled by comparing fingerprints
at each layer of the network stack. In an L4 proxy, for instance, it is common for the exit node TCP
fingerprint to be incompatible with the client TLS fingerprint.
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Passive fingerprinting, such as that implemented by p0f, has largely fallen into disuse, but the
same features are largely relevant in the context of proxy profiling. It is possible to separate
major operating system families using TCP fingerprinting. In Appendix A, we document a more
comprehensive description of the features useful for fingerprinting current operating systems.

ja32 is a widely used passive TLS fingerprinting tool, often used in NIDS (e.g., Zeek3) and internet
scanners (e.g., Shodan4). ja3 hashes the types and order of various TLS parameters including the
offered cipher suites and extensions. TLS fingerprints reflect the software and configuration of the
client and usually maps to a range of versions of a given software. ja3 hashes can be impacted
by the client’s operating system if browser relies on libraries or configuration from the operating
system.

Since ja3 uses a cryptographic hash for fingerprint digests, it is very brittle. A browser may exhibit
different ja3 digest values simply based on the use of extensions for server name identification,
session resumption, or even optional padding. To use ja3 to link related hashes, either the full
pre-hash values must be used or a database mapping ja3 hash values to raw values must be
maintained. We concur with other researchers and recommend retaining full pre-digest values [7]
for fingerprinting. In Appendix B, we enumerate the attributes that can be useful for fingerprinting
TLS software.

In the case of Tor, the TCP fingerprint as observed by the web server reflects the operating system
of the exit node (in practice this is usually Linux or BSD). In fact, the lack of diversity in relay
nodes is so extreme that the project has asked for more non-Linux relays. 5 The Tor browser reports
the same User-Agent of Firefox on Windows 10 regardless of whether it is running on Windows or
Linux. Hence, traffic from the Tor browser consistently exhibits a mismatch between the exit node
(Linux or BSD) and the reported User-Agent (Windows 10), whether or not a mismatch actually
exists. Additionally, the ja3 of the Tor browser is distinct from the default configuration of Firefox
(on which it is based) because it offers a smaller list of cipher suites, making the ja3 singularly
useful for profiling the Tor browser. An additional discerning artifact that we observed is that the
default behavior of Firefox is to open two TCP/TLS connections to a target web server upon initial
communication whereas the Tor browser only opens a single connection in similar situations. We
observed the same behavior in a default install of Firefox: two initial connections when connecting
directly and a single initial connection when connecting through an OpenSSH SOCKS proxy.
Further, the Tor browser is easy to profile because it exhibits indicators that do not necessarily exist
in other proxy networks.

Comparing TCP Fingerprints to TLS Fingerprints (or HTTP Fingerprints) can also be useful for
generalized proxy detection. For example, if a client reports a ja3 associated with a graphical
browser but matches the TCP fingerprint of a headless IoT device, this could indicate that the IoT
devices is being used as an L4 proxy.

2https://github.com/salesforce/ja3
3https://zeek.org
4https://www.shodan.io/
5https://community.torproject.org/relay/technical-considerations/
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4.1.3. Side Channels

When used correctly, Tor has strong anonymity guarantees at the network layers, but is also known
to be susceptible to side channels via user behavior and browser artifacts [3]. These side channels
all represent opportunities to profile specific malicious actors.

4.2. L3: Residential VPN

We use the generic example of a VPN server on a residential network, which is representative
of a capability frequently provided by consumer network devices, regardless of the specific VPN
protocol. Common proxy protocols include PPTP, IPSEC, OpenVPN, and WireGuard. While
many residential proxies operate at L4, we choose this example configuration because it is easy
for researchers to replicate. Most of the properties described here will apply to broader use of
L3 VPNs, but because residential proxies represent a pressing security challenge regardless of the
layer of operation, we will focus on this configuration in our examples.

4.2.1. MTU (MSS)

The Maximum transmission unit (MTU) of packets exiting a L3 proxy can be used to identify L3
proxies, and can often help identify the specific VPN type or client configuration of the VPN client.
Because L3 proxies operate by encapsulating packets inside other packets, the maximum packet
size on a L3 proxy client interface will be lower than normal. Typically, the maximum packet size
in a proxied packet is reduced in size by at least 40-100 bytes, depending on the protocols used
and other conventions. Maximum packet size is efficiently inferred by NIDS via the advertised
maximum segment size (MSS) in the initial SYN packet which advertises the maximum TCP
payload size that can be transmitted through the network. MTU can also be inferred from the
largest packet observed, but this requires the endpoint to send data large enough to reliably fill a
whole packet. The Linux kernel tracks the MSS advertised by a peer, the MSS determined by Path
MTU discovery (ICMP), and the size of the largest segment received. Canonical values for IPv4
on ethernet are 1500 for MTU and 1460 for MSS. The IP header in IPv6 is 20 bytes larger, so 1440
is a common value for MSS for IPv6 on ethernet. Common default values for MSS for different
VPNs include 1380 for Wiregaurd and 1360 for the builtin VPN client on Windows.

MTU can also be influenced by various network properties. Some residential ISPs utilize Point-to-
Point Protocol over Ethernet (PPPoE) which decreases MTU and MSS by 8 bytes. If a double VPN
is employed, where one VPN is tunneled through another VPN, MSS will be reduced even further.
Most VPN clients allow customization of MTU so that an unnecessarily low or unique MSS value
can be used to profile VPN specific software, VPN services, or individual client configurations.
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4.2.2. IP RTT (ping)

In the case of a L3 proxy, packets are end-to-end from the client to the server. However, since the
IP layer is responsible for internet routing, many IP-layer and IP-based artifacts are actually based
on the exit node. For example, pinging the apparent source IP of traffic leaving a VPN exit node
will often result in a response from the exit node instead of the original endpoint. This is especially
true in the case of residential networks were NAT is the norm, but other factors can cause similar
results. Care must be taken to discern if IP layer artifacts are from the VPN client or the exit node.
It is possible for a server to observe IP headers from both the client and the exit node associated
with the same connection. Considering the case of a VPN client that is not configured to advertise
a reduced MSS, traffic in the main TCP channel will have IP headers that originate from the VPN
client but the resulting ICMP messages that notify the server to reduce MSS will typically originate
from the VPN exit node.

The simple timing comparison would be to compare exit node IP RTT to VPN client TCP RTT.
This is difficult in practice because IP RTT is difficult to measure passively and some methods of
IP RTT measurement are dependent upon VPN type or network policies. Ping and other ICMP
methods are challenging to use because ICMP is inconsistently blocked and ICMP methodologies
typically involve side-channels or other active changes to network traffic.

Regardless if the VPN client has a public IP address or not, traffic to the observed source IP is
routed through the internet based on the path to the exit node. This means that most data based
on the apparent client IP address such as geolocation and Internet scan data is a function of the
network of the exit node.

4.2.3. Geolocation

Residential proxies are often used to defeat IP-based geolocation restrictions, such as ensuring that
traffic is originating from a residential network or a certain geograpic region. Databases such as
MaxMind GeoIP 6 are widely integrated into edge security tools including network sensors and
web servers. Previous work [15] has shown that the relationship between geographic distances to
network RTT is not linear and accurate to 100s of km depending upon circumstances.

An alternative to comparing RTT to geographic distance is to compare the TCP RTT of proxied
traffic with the minimum RTT of traffic from the same ISP and geographic region. In practice, if
legitimate users are known to be located in a small geographic region, then static thresholds can
be used to identify attackers originating from distant locations, especially where traversing oceans
helps create a gap between local and distant traffic.

4.2.4. Internet Scans

One other source of discrepancy that can be used to identify L3 proxies is comparing the software
fingerprint of the network stack with internet scan data. Since packets are end-to-end in a L3 proxy,

6https://www.maxmind.com/
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the TCP fingerprint of the traffic matches that of the original client. An important exception here
is that since NAT is the norm in residential routers, the ephemeral port selection criteria of traffic
usually matches that of a router that performs NAT instead of that of the original host.

Internet scan data (e.g., data provided by Shodan or Censys7) is widely available to network defend-
ers and is frequently integrated with NIDS and security event analysis systems. The information
in these internet scans can be used to identify internet accessible services including software vul-
nerabilities and to identify specific device types. In the context of proxy detection, inferred device
type can be compared to the TCP fingerprint of traffic originating from the same IP for differences.
Internet scan data can also be used to identify exposed VPN services or other related indicators
(ex. TLS certificate subjects/issuers) [25]. Unsurprisingly, it is common for consumer devices
like residential routers that are used in malicious proxy networks to have management consoles or
other services exposed to the internet, sometimes with specific vulnerabilities or mis-configurations
directly observable in the scan data (ex. outdated firmware version). Presumably, these exposed
services are a common pathway for compromise of these devices and their integration in mali-
cious proxy networks. However, care must be taken when using the systems identified by internet
scan data because port forwarding often combines the services of multiple devices, especially on
residential networks.

4.2.5. IP TTL

IP TTL or (hop limit for IPv6) is a counter that is decremented each time the packet is forwarded
by a router. As such, it is a path artifact and can be used to compare relative distance if two
packets share a common path. However, IP hop count alone is not a reliable predictor of geographic
distance or latency. Since packets are encapsulated and encrypted in a L3 proxy, TTL is only
decremented when outside of the VPN tunnel (i.e., it is not an end-to-end metric like TCP RTT).
Inferred default IP TTL is more commonly used to fingerprint broad operating system families
and is often combined with TCP attributes. Relying on IP TTL alone can expose a discrepancy
in operating system if IP headers from the client and ICMP from the exit node indicate a different
default TTL.

4.3. L7: Evilginx MitM

To demonstrate the properties of L7 proxies, we use Evilginx8 as an example of an application
layer proxy. Evilginx is a man-in-the-middle (MitM) phishing toolkit that facilitates collection of
credentials and session tokens by covertly acting as an intermediary between legitimate clients and
web sites. Countering this type of MitM phishing, which can defeat some types of multifactor
authentication, is a current challenge. When a MitM proxy is used, the end client is usually an
unwitting victim. Despite the differences in attack roles, most of the indicators for a L7 proxy
are the same for malicious clients using a L7 proxy to hide their origin and MitM proxies used to
compromise the accounts of benign clients.

7https://censys.io/
8https://github.com/kgretzky/evilginx2
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4.3.1. Browser Fingerprinting

Any discrepancy identified in TLS and browser fingerprints can be a strong indicator of the use
of a L7 proxy. Evilginx is written in Golang, resulting in TLS fingerprints (ex. ja3) that overlap
with other applications written in Golang. These TLS fingerprint values are both predictable and
distinct from commonly used browsers such as Firefox, Safari, or Chrome.

The TLS fingerprint of Golang can be compared with either the User-Agent HTTP header or other
browser fingerprinting methods. We provide no unique contributions to the myriad of browser
fingerprinting methodologies. Advanced methods of browser fingerprinting can be used to identify
specific users [10], however, individual user resolution is not necessary to identify L7 proxies, and
reliable identification of the source browser software is sufficient. Comparing TLS fingerprints with
User-Agents was described in prior work [11], but scripting languages like Golang are frequently
observed with spoofed User-Agents for various reasons. Therefore, additional features will be
necessary to reliably identify MitM phishing attacks.

4.3.2. HTTP RTT

In an L7 proxy, HTTP requests originate at the client and are replayed to the server, usually
with minor modifications. TLS is necessarily terminated at the MitM proxy. Hence, the timing
discrepancy in a L7 proxy is between the HTTP and TLS layers. Calculating HTTP RTT is so well
established and so ubiquitous that many browsers have implemented a method where the server
can ask the browser to provide the HTTP RTT as measured by the browser. 9 We provide no
additional contributions to the many known pathways for measuring HTTP RTT on the server side.
We simply note that measuring HTTP RTT is not straightforward with passive network sensors
when encrypted with TLS and that web server logs should contain at least millisecond resolution
timestamps for this analysis.

4.3.3. HTTP Header Modifications

Commonly, L7 proxies pass HTTP requests from the client to the server with minimal modifi-
cations. However, the modifications that do occur are an opportunity to detect specific proxy
implementations. For example, Evilginx modifications include adding and removing headers, al-
phabetizing headers and request query parameter order, and changing the case of headers. Many of
these changes are not necessary for MitM proxy operation, but do allow identification of Evilginx-
specific behavior. Other L7 proxies used by malicious clients to hide their origin might add headers
such as "Via" or "X-Forwarded-For". These examples show the value of analyzing all HTTP head-
ers including details such as header order and capitalization. If only select headers are analyzed or
if headers are normalized, then the ability to detect these anomalies is curtailed.

9https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/RTT
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4.3.4. Side Channels

In a phishing MitM L7 proxy scenario, a small number of domains are proxied and often they are
domains used for authentication. The boundary between the proxied domains and other domains
is the location of many useful indicators. For example, web resources and subsequent pages that
are not intercepted by the phishing proxy will exhibit a referrer of the phishing domain instead of
the expected authentication domain. It is common for requests to different domains to originate
from both the original client IP and the IP of MitM proxy contemporaneously, which differs from
a client that is simply moving from one IP to another. When the stolen authentication cookie (or
other secret) is used in another browser, there are numerous potential side channels for detection
including inconsistencies in browser fingerprint, cookies, web cache, etc.
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5. EVALUATION

This section will evaluate the overhead that collecting the values needed for proxy identification
will add to a realistic network sensor deployment. For this evaluation, we measured data taken
from the webserver and network monitor of a mid-sized organization (about 10,000 people) for a
single day. This data set includes over 1.5 million web requests and over 500,000 TLS connections
from over 28,000 unique client IPv4 addresses. In this collection, there is no known bias (i.e., it
represents a typical day).

5.1. Performance

We measure the additional computational complexity and increase in log volume that proxy iden-
tification features add to a typical network monitor by comparing resources used by a default Zeek
installation to the additional resources required for the Zeek extensions that collect TCP and TLS
proxy features. We replay an approximately 12 minute packet capture taken from the internet
boundary of a network having an average bandwidth of about 1.5 Gbps. Hence the packet capture
is over 100 GB in size and includes over 1 million packets. Testing against all edge traffic in lieu
of only traffic to the web server represents a more realistic network monitor deployment for many
organizations. We replayed the same capture 5 times with each set of extensions, taking the average
of CPU time and reporting uncompressed log sizes.

Table 5-1 shows the increase in CPU time and logs sizes for additional Zeek exentions. The CONN
log contains metadata for every unique Layer 4 (UDP, TCP, ICMP) connection and the SSL log
contains metadata for every TLS connection. The ja3 extension adds TLS fingerprints to the SSL
log. The gait1 software package is used to add TCP fingerprint and timing metadata to the CONN
log and TLS timing information to the SSL log. Adding both ja3 and gait results in about 19%
additional computational workload and about a 30% increase to log sizes. The additional resources
reported here will vary based on factors such as composition of traffic, but this shows that collecting
these features is feasible as the resources required would represent a fraction of that already being
used in many environments.

1https://github.com/sandialabs/gait
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CPU Time CONN log SSL log
Zeek Time Delta Size Delta Size Delta

Extensions (s) (%) (MB) (%) (MB) (%)
none 1536 0 723 0 123 0
ja3 1564 2 723 0 147 20
gait 1788 16 947 31 135 10

ja3 + gait 1831 19 947 31 160 30

Table 5-1. Additional CPU time and log sizes for Zeek with ja3 and gait extensions
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6. EVASION AND COUNTERING EVASION

All of the proxy identification features and detection mechanisms outlined in this paper are subject
to evasion through spoofing, obfuscation, and layering of evasive capabilities. Therefore, it is not
possible to provide a robust evaluation of all possible evasion techniques. However, in this section,
we will provide some representative examples of evasion methods and possible countermeasures
to these methods. Our goal is to show that most evasion techniques actually open the attacker
up to additional, more targeted detection and profiling. Some fundamental constraints in proxy
methodologies are hard to disguise or require trade-offs in performance/usability.

6.1. Known Trade-Offs in Tor

Tor has long balanced well known trade-offs in anonymity and performance [3]. It is known that
mechanisms such as padding and traffic shaping will provide better anonymity, limiting the ability
to perform attacks such as traffic profiling, but these mechanisms come with performance costs.
Latency itself is an example of a fundamental tension between anonymity (which is enhanced by
additional hops and higher average latency) and usability (which benefits from fewer hops and
lower latency). Tor itself does not implement protocol cleansing which makes traffic going over the
network susceptible to protocol layer de-anonymization attacks, but also allows for a wide range of
client tools and features. The free nature of Tor improves anonymity and simplifies use, but also
frequently results in more demand than available capacity in the network [4]. No anonymity tools
can fully mask truly unique user behaviors, such as exploiting previously unknown vulnerabilities
or very specific targeting.

6.2. MTU/MSS in L3 Proxies

Decreases to MTU as reflected by the advertised MSS are a well-known artifact of L3 proxies.
However, the correct advertisement of MSS is important for proper network operation. If MSS is
not advertised correctly, it can result in connections stalling due to large packets being dropped.
Even if path MTU discovery allows connections to function when MSS is misconfigured or spoofed,
the discrepancy between discovered path MTU and advertised MSS can be detected.

Some commercial VPNs provide a L3 VPN interface to clients but function as L4 proxies at the
exit node, translating traffic from the L3 interface to an L4 proxy interface. Since the exit node
terminates the TCP connection in this scenario, the advertised MSS of the connection appears
normal. However, depending on how much buffering occurs in the translation of L3 packets to the
L4 stream occurs, the reduced MTU of the client connection may still be expressed as an effective
maximum packet size observed in client uploads. It should be noted that common TCP stack
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implementations, such as the Linux kernel, can track and provide attributes such as the advertised
MSS (tcpi_advmss), MTU derived from path MTU discovery (tcpi_pmtu), and largest observed
segment (tcpi_rcv_mss).1

It may not be practical to disguise the diminished MTU in the case of a residential proxy where
the malicious client is utilizing functionality built into the device. Of course, a compromised
device can always have additional software installed or the kernel parameters modified, but these
discrepancies also provide an opportunity for more specific profiling.

Individual users and service providers can change the MTU from the default for most VPN software,
but departing from default values can make the traffic stand out even more significantly. Even if not
directly observable through advertised MSS, the use of a L3 VPN is often still detectable through
observing maximum packets sizes or ICMP messages used for path MTU discovery. Again,
this highlights the trade-off inherent in disguising fundamental properties of proxied traffic and
maintaining usability/performance.

6.3. Chrome TLS Extension Randomization

Chrome recently introduced TLS extension permutation where the order of TLS extensions is
randomized.2 This is specifically designed to ensure future implementation flexibility. While this
does change the value of ja3 hashes, it really does not prohibit identification of Chrome as the
browser since only a portion of the fingerprint source is changed and only the order is randomized
(not the values). The successor to ja3, ja43, deals with extension order randomization by making
the fingerprint extension order independent. This approach decreases the number of digests that
map to Chrome, but abandons the discriminatory power of extension order.

As mentioned in Section 4.1.2, TLS extensions change frequently in normal conditions requiring
the use of the full fingerprint or a lookup database. Prior research has shown that randomization
itself can be fingerprinted and serve as a detection mechanism [22]. In this case, the randomization
implemented by Chrome makes it stand out due to high entropy and actually permits differentiation
from Chrome derived browsers that do not implement this features. Of course, a client could
actually change the TLS negotiation values, instead of just extension order, but that would have real
impacts on security and compatibility as well as serving as an additional detection opportunity.

6.4. Evilginx Internet Scan Cloaking

As described in prior work [11], Evilginx implements various cloaking mechanisms to prevent
phishing content-based detection via web scans. If a client connects without providing the correct
phishing domain, then the TLS connection is dropped and the source IP is blocked. In Evilginx
versions prior to 3.0, port 80 is open by default for Let’s Encrypt domain validation. When a web
request is made to this port, it redirects to HTTPS which is immediately blocked if the phishing

1https://github.com/torvalds/linux/blob/master/include/uapi/linux/tcp.h
2https://chromestatus.com/feature/5124606246518784
3https://github.com/FoxIO-LLC/ja4
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domain is not requested. Furthermore, when domain based scanning is implemented, Evilginx will
block and ban source IPs that do not request a specific phishing URL. While cloaking does prevent
trivial content-based phishing detection of Evilginx, the cloaking behavior itself is observable and
abnormal, providing detection opportunities. Cloaking to evade content-based detection opens
Evilginx to detection of cloaking behavior.

6.5. Compound Proxies

In practice, multiple proxy types can be combined. Proxy combinations are used to evade multiple
types of filters or to provide presumed higher anonymity. As an example of evading multiple filters,
Evilginx supports SOCKS proxies for connections to the phished website. Evilginx could be hosted
on a typical web hosting provider but route upstream traffic through a residential proxy such that
clients connect to the web hosting provider and traffic to the phished website appears to originate
from a residential network. However, this combination further increases the detection opportunities
because the targeted server can observe indicators of both L4 and L7 proxies.

Some users combine multiple proxy types with the assumption that layered proxies provide higher
anonymity. For example, users may use a double VPN or two layers of VPN. Path indicators, such
as timing analysis, compound in these scenarios, resulting in the potential to identify users who
employ combinations of proxies and separate these users from normal proxy users.
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7. AVAILABILITY

In our efforts to implement and research methods for conducting proxy identification, we have
authored a tool, gait1, as an open source offering that can be utilized to generate the features
outlined in this paper. Gait is a Zeek extension that collects metadata relevant for proxy detection at
the IP, TCP, and TLS layers. In addition to the development of the gait tool, we have also mentored
undergraduate research projects that have implemented the collection of relevant metadata in
OpenSSL and the NGINX web server. For example, TLS RTT calculation was added to OpenSSL
version 3.22 as a part of these efforts.

1https://github.com/sandialabs/gait
2https://github.com/openssl/openssl/blob/master/doc/man3/SSL_get_handshake_rtt.pod
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8. FUTURE WORK

While software fingerprinting has been studied extensively in the past, there is a need to research
current problems and systems such as identifying traffic originating from IoT devices. Updated
tools and databases would be welcomed by the network defender community.

It is expected that broad adoption of proxy profiling features and techniques will lead to improve-
ments including more efficient feature collection or new features. Availability of these feature sets
will facilitate research in machine learning techniques to enable automated classification of proxied
traffic and identification of anomalies.

A related area of research is improving fingerprinting principles generally, especially as it relates
to usability of fingerprint representations. For example, we have highlighted the trade-off of using
cascading hash functions to represent fingerprints which make it easy to identify changes but make
comparing related fingerprints difficult. The community would benefit from standards and tools
for sharing and effectively applying specific proxy profiles.
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9. CONCLUSIONS

Proxies can be effectively categorized by the layer which separates artifacts from the original client
and the exit node. Features based on path artifacts and fingerprinting discontinuities improve
detection of proxies at the network edge. Collection of this feature set requires modest increases in
CPU and storage and is implemented as open source extensions to widely deployed systems. While
proxies can frustrate current defenses, they also present an additional detection opportunity.
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APPENDIX A. TCP Attributes for Fingerprinting

TCP fingerprinting relies on identifying attributes that are artifacts of operating system defaults
or software such as network scanners that override system defaults. Typically, attributes are taken
from the SYN packets during connection establishment.

A.1. Most Important TCP Attributes

The following TCP/IP attributes are useful for identifying the software used to generate network
traffic from initial SYN packets in approximate order of importance and consistency. The most
important attributes vary based on the operating systems compared. This list is compiled based on
our own analysis but it largely overlaps with other TCP fingerprinting tools such as p0f.

A.1.1. IP TTL

IPv4 Time-to-live (TTL)/IPv6 hop limit is effective for identifying some operating system families.
It is especially helpful because it is present in all IP traffic including UDP/ICMP traffic. Typically,
the default TTL is not directly observed but is inferred from a small number of common values (64,
128, or 255).

A.1.2. TCP Options

The list of TCP option identifiers are useful for discriminating operating systems. Order is important
for separating some operating systems. Options 0 (end of list) and 1 (no-op) should be included
in the fingerprint to ensure fingerprints account for the full length of the options field, allowing
correlation to SYN packet size.

A.1.3. TCP Window Scale

TCP window scale is an option where the value is useful for fingerprinting operating systems and
device configurations. For some operating systems, the default window scale varies based on
available system memory.
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A.1.4. TCP Window Size

TCP window size is a field where the value is useful for fingerprinting operating systems but
can also depend on network configuration. The default value for this field is hardcoded for some
operating system but for some operating systems, this value is a multiple of MSS.

A.2. Other TCP Attributes

A.2.1. TCP MSS

For most modern operating systems, the default MSS TCP option value is not a function of the
operating system, but is most commonly a function of the network configuration (based on MTU).

A.2.2. TCP Timestamps

In the past, the timestamp option could be used to identify uptime for certain hosts, but in modern
operating systems where these values are randomized, the value is not known to be useful for
fingerprinting (the existence of the timestamp option is already reflected in the options list).

A.2.3. IP DF Flag

The IP Don’t Fragment (DF) bit is enabled for most major operating systems and path MTU
discovery has been universally adopted. However, this bit may not be set for some scanner software
that overrides system defaults.

A.2.4. IP and TCP ECN Flags

Use of Explicit Congestion Notification (ECN) can help strengthen prediction of the relatively few
operating systems that use ECN by default.

A.3. Ephemeral Port Selection

In addition to attributes visible in individual SYN packets, the patterns of source port selection
(ex. range of values and incrementing vs. random values) across multiple connections are an
artifact of the operating system. Understanding operating system defaults can be used to identify
modifications made during the traffic path (NAT changes to source port) or source host traffic
patterns.
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APPENDIX B. TLS Attributes for Fingerprinting

TLS fingerprinting relies on attributes that are typically determined by the client software including
web browsers. Attributes are taken from the Client Hello (and Server Hello) message. Similar to
TCP, there are both primary fields and extensions (similar to options). TLS is different from TCP
in that the Client Hello message is usually 100s of bytes, versus a TCP header which is 10s of
bytes. As a result, the data available for fingerprinting of TLS is much larger and there is larger
variance in TLS fingerprints than TCP fingerprints. It is possible to create compact fingerprints
using counts of values in fields/extensions, abstracting specific values and ordering, and allowing
for efficient similarity comparisons.

B.1. Most Important TLS Attributes

The following TLS attributes are the most useful for identifying client software based on our
analysis. These attributes are used in either ja3 or ja4–most are reflected in both. These are
roughly ordered by classification value and consistency but this varies depending upon the software
profiled.

• Cipher Suites

• Supported Groups

• Signature Algorithms

• Application Layer Protocol Negotiation

• Supported Versions

• Extensions (list of extension numbers)
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