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Executive Summary

This report extends the linear spring dashpot collision model the discrete element method available in MFIX-
Exa to include static a static tangential friction force. Additionally, two rolling friction models frequently
used in the literature are also implemented. The governing equations are provided with an emphasis on the
new terms. The new model is validated by comparison to existing experimental data of single particle oblique
collisions. The model is then tested on three dense granular flow problems: the formation of static piles, the
discharge from a flat-bottom hopper and the self-induced granular Rayleigh-Taylor instability.
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Dense granular flows with MFIX-Exa

Chapter 1: Introduction

MFIX-Exa (https://mfix.netl.doe.gov/mfix-exa) is a recently released multiphase computational fluid
dynamics (CFD) code for the simulation of particle-laden gas-solid flows. There are two primary modeling
options for the solids phase: discrete element method (DEM) or particle-in-cell (PIC). Whether using
high-fidelity DEM, which models individual particles, or low-fidelity PIC, which models statistical elements,
MFIX-Exa was developed for performance portability by using the AMReX software framework (https:
//github.com/AMReX-Codes/amrex) which provides the iterators, parallel communication routines, and
other tools to support highly efficient operations on structured grid and particle data [6, 7]. To date, the
code has been scaled out to at least 512 GPUs on ALCF’s Aurora and Polaris, NERSC’s Perlmutter and
OLCF’s Frontier and Summit leadership computers.

MFIX-Exa was originally developed as part of the joint DOE Office of Science and NNSA Exascale
Computing Project (ECP) as an Energy Application code [8, 9]. Each ECP application code had an associated
challenge problem that was used as a benchmark to demonstrate exascale capabilities. For MFIX-Exa, the
challenge problem was a (very short time duration) simulation of NETL’s pilot-scale 50kW chemical looping
reactor (CLR) [10] with the CFD-DEM method. While the challenge problem helped drive and focus code
development, it also drove decisions which narrowed the scope of the resulting code, i.e., the goal was not to
develop a general purpose replacement for the MFiX code (https://mfix.netl.doe.gov/mfix), but, rather,
a performant code possible of simulating the basic physics of the CLR on Frontier or Aurora. (OLCF’s
Frontier, as it turned out.)

After the challenge problem was satisfied and ECP began to sunset, MFIX-Exa was released publicly
and began a new chapter as NETL supported software. As such, the code base is begining to increase in
modeling capabilities targeting wider use cases and a wider user base. In this work, we consider the simplified
form of tangential friction in the DEM collision model. In MFIX-Exa, only the dynamic tangential force,
i.e., Coulomb friction, is applied [11]. The code footprint is reduced by neglecting the static force because
the tangential overlap, a neighbor-dependent history (time integrated) term, does not need to be calculated
and stored for each colliding pair. This approximation is generally acceptable for multiphase flows [12]–as
in the CLR–because the interfacial forces, i.e., drag, typically dictate solids behavior. This is not the case,
however, for dense granular flows where solids behavior is dicated entirely particle collisions (or primarily if
a gas-phase is included). The details of the simplified and full tangential force within the DEM model are
provided in the following section. Additionally, two simple rolling friction models are implemented which
may be relevant in some scenarios. Following sections provide validation results and case studies highlighting
the improvement of MFIX-Exa DEM to model dense granular flows.

Chapter 2: Discrete Element Method

2.1 Governing Equations

The DEM models individual particles with Newtonian mechanics. The equations governing the position, xi,
linear velocity, ui, and angular velocity, ωi, of a given particle i are,

dxi

dt
= ui , (1)

dmiui

dt
= mig + fiw +

N
(c)
i∑

j=1

fij , (2)

and

dIiωi

dt
= τiw +

N
(c)
i∑

j=1

τij , (3)

respectively, where mi and Ii are the mass and moment of inertia of particle i. Currently in MFIX-Exa, all
particles assumed to be spherical so mi ≡ πρid

3
i /6 and Ii ≡ mid

2
i /10 where ρi and di are the density and

diameter of the ith particle. In this work we assume that the particle properties are constant in time, i.e.,

1



Dense granular flows with MFIX-Exa

Figure 1: Sketch particles i and j showing collision parameters. Note that only a 2-D
projection is shown and that the overlap between the particles has been exaggerated for
clarity.

non-reacting, so that mi and Ii can be brought outside of the time derivatives. The force and torque due to
contact between particle i and the wall is represented by fiw and τiw, respectively. Similarly, the contact

force and torque between the particle i and particle j are given by fij and τij for all j particles in N
(c)
i , i.e.,

the set of neighboring particles that are in contact particle i. We also note that, in general, there is also a
term fgi in Eq. (2) which is due to the gas-phase acting on particle i, i.e., the interfacial force. This term is
dropped because only granular flows are considered herein.

2.2 Collision Model

There are a variety of soft-sphere collision models available in literature [13, 14], with linear spring-dashpot
(LSD) [15] and Hertzian [16] varieties being the most commonly applied models for fluidization [17, 18].
MFIX-Exa uses the simpler LSD model originally owing to Cundall and Strack [15]. The essence of the
LSD model is that contact forces can be described by a conservative spring and a dissipative dashpot or
damper. The collision model is detailed below for particle-particle contacts, which particle-wall contacts are
a simplification of, as highlighted in Sec. 2.4.

As shown in Fig. 1, particle i is located at xi, particle j is located at xj and the position of particle j
relative to particle i is xji = xj − xi. The two particles are determined to be in contact if the (normal)
overlap is positive, i.e., δn > 0, where

δn = ri + rj − δx , (4)

ri = di/2 and rj = dj/2 are the particle radii, and δx = |xji| is the distance between the particles. The unit
normal,

n = xji/δx . (5)

The distance to the contact plane from the centers of particles i and j is

ℓci =
δx2 + r2i − r2j

2δx
and ℓcj =

δx2 + r2j − r2i
2δx

, (6)

respectively. Equivalently, we could write ℓcj = δx− ℓci or vice versa. The total relative velocity, i.e., linear
and rotational, at the contact surface is

uij = ui + ℓcin× ωi − (uj + ℓcj(−n)× ωj)

= ui − uj + (ℓciωi + ℓcjωj)× n . (7)

2



Dense granular flows with MFIX-Exa

The normal and tangential components of the relative velocity are,

u
(n)
ij = (uij · n)n and u

(t)
ij = uij − u

(n)
ij , (8)

respectively.
The contact force acting on particle i from particle j is decomposed into normal and tangential components,

f
(n)
ij = f

(n)
ij + f

(t)
ij .

The normal force, when in contact (δn > 0), is given by,

f
(n)
ij = −knδnn− ηnu

(n)
ji , (9)

where kn and ηn are the normal spring stiffness and dashpot coefficients, respectively. In MFIX-Exa, these
modeling parameters are assumed to be constant for all particles. Likewise, the tangential force is given by

f
(t)
ij = −ktδt − ηnu

(t)
ji , (10)

where kt and ηn are the tangential spring stiffness and dashpot coefficients, respectively. Although the
LSD form of the tangential force of Eq. (10) is exactly the same as the normal force in Eq. (9), a very
important difference is concealed in the overlap. In the normal direction, the overlap can be computed from
the instantaneous information of particle i and particle j. And the displacement vector is simply δn = δnn.
In the tangential direction, the displacement must be calculated by integrating the relative tangential velocity,
Eq. (8), as [19, 20, 21],

δt =

∫ t

t0

u
(t)
ij dt . (11)

where t0 denotes the first time step for which collision between particles i and j is detected, δn > 0. The
tangential displacement is a “history” term which must be stored because it can not be calculated from
instantaneous particle data. Although not particularly computationally taxing, this can present a non-
negligible increase in the memory footprint of the code because this array must be allocated for each particle
for each colliding neighbor. In the current implementation, we have set the maximum number of colliding

partners to ten. If N
(c)
i > 10 at any time step for any particle, the code throws an error and terminates.

Further, because the frame of reference of the contact plane may rotate during a collision, the tangential
displacement may need to be adjusted to remain perpendicular to the normal vector, n, i.e., projected onto
the tangential plane. David [19] and van der Hoef et al. [22] provide alternative methods for this correction.
We have followed the simpler method of David [19],

δt = δ′t − (δ′t · n)n ,

where δ′t is the tangential displacement from the previous iteration. Lastly, the tangential force must be
limited by the Coulomb condition, ∣∣∣f (t)

ij

∣∣∣ ≤ µpp

∣∣∣f (n)
ij

∣∣∣ , (12)

where µpp is the particle-particle friction coefficient. Currently, MFIX-Exa only supports two friction
coefficients, µpp for particle-particle collisions and µpw particle-wall collisions. We note that, technically, µ
in Eq. (12) should be a static friction coefficient to determine the onset of sliding and a dynamic friction
coefficient after sliding begins. However, only a single value is used here because the two coefficients are
typically similar and rarely differentiated (if either is even measured at all) in experimental works. The static
force in Eq. (10) and the Coulomb limit in Eq. (12) can be combined in two ways. The first, and most obvious
way, is to limit the tangential force [15, 20],

f
(t)
ij = min

(
−ktδt − ηnu

(t)
ji , −µpp

∣∣∣f (n)
ij

∣∣∣ t) ,

where t is the tangent direction, discussed below. The second method instead limits the tangential displacement
so that the Coulomb limit of Eq. (12) is never exceeded,

δt ≤
(
µpp

∣∣∣f (n)
ij

∣∣∣ t− ηnu
(t)
ji

)
/kt . (13)

3
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Here, we chose to limit the tangential overlap which is recommended in some previous works [23, 24, 21].
Again, t in Eq. (13) is the tangent direction, which has some ambiguity. The obvious choices for the tangent
direction are

1. the direction of the tangential overlap, t = δt/ |δt|,

2. the direction of the tangential relative velocity, t = u
(t)
ij /

∣∣∣u(t)
ij

∣∣∣, or
3. some combination of the two, chiefly the linear in Eq. (10), t = f

(t)
ij /

∣∣∣f (t)
ij

∣∣∣.
We note that MFiX uses option (1) while the current develop branch of MFIX-Exa uses option (2). Following
David et al. [19], we apply option (3) because it makes the direction of the tangential force continuous as the
Coulomb limit is exceeded. Additionally, option (3) eliminates the need for some logic to avoid floating point
exceptions (divide by zero) in the numerical implementation.

The torque is decomposed into two components,

τij = τ
(c)
ij + τ

(r)
ij ,

due to the tangential force from contact and rolling friction, respectively. The contact torque is given by,

τ
(c)
ij = ℓcin× f

(t)
ij . (14)

Torque due to rolling friction is not currently modeled in MFIX-Exa. Two different types of models are
considered here. Following Zhou et al. [4], Ai [25], Wensrich and Katterfeld [26], Blais et al. [21], and others,
the two types of rolling friction considered are labeled Model A and Model B. Model A rolling friction is given
by

τ
(r)
ij = −µr r̂ij

∣∣∣f (n)
ij

∣∣∣ ωij

|ωij |
, (15)

where µr is a coefficient of rolling friction, r̂ij = rirj/(ri + rj) is the harmonic mean of the radii of particles
i and j, and ωij = ωi − ωj is the relative angular velocity of particle i relative to the angular velocity of
particle j. Model B rolling friction is given by

τ
(r)
ij = −µr r̂ij

∣∣∣f (n)
ij

∣∣∣u(ω)
ij , (16)

where u
(ω)
ij = riωi − rjωj is the rotational velocity of particle i relative to particle j in the direction of the

relative angular velocity difference, ωij . Technically, the velocity at the contact plane should use ℓci and ℓcj
instead of ri and rj , respectively. We stick with the approximate version here for consistency with previous
works. Additionally, because there is so much uncertainty in modeling this term, the difference between ℓci
and ri is negligible by comparison.

Note that there are two differences between these two rolling friction models of Eq. (15) and Eq. (16).

The first is the use of ωij versus u
(ω)
ij . The second is that Model A only uses ωij to determine the unit

normal, while in Model B τ
(r)
ij linearly depends on u

(ω)
ij . Each of these models have an obvious shortcoming.

Because Model A does not depend on the angular velocity, it does not vanish in a static assembly. For
example, normal forces encountered in a static pile will induce a torque through rolling friction even when
the pile is at rest for very long times. Model B fixes this issue, now, however, the rolling friction coefficient

must have units of inverse velocity,
[
µ
(B)
r

]
= s/m. Of course there is a third modeling option [27], Model

C, which use a spring and dashpot with a Coulomb-type limiter very analogous to the tangential friction
model [25, 21]. This modeling approach can be extended further to include an additional torque term due to
twisting resistance. Each additional modeling capability requiring closures which are increasingly difficult to
measure experimentally. The current approach is to pursue only options Model A and Model B, flawed as
they are. If the detailed granular modeling offered by including history terms for rolling and twisting torques
is needed, it may be best to consider a different code, such as LAMMPS https://www.lammps.org.

The models that were neglected in the “current,” released version of MFIX-Exa, denoted here as develop,
were added in a branch, tangential history, on D.R.’s fork. At the time of this writing, these code
modifications exist as merge request !1245 on the main repository. In the following sections, we will see how
the inclusion of the static tangential force (i.e., the history term) and rolling friction model(s) play a crucial
role in the modeling of dense granular flows.

4
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2.3 Modeling Approach

To close the linear collision model outlined in Sec. 2.2 one must specify at least five unknowns: kn, ηn, kt, ηt,
µpp, and a sixth, µr, if rolling friction is considered. In MFIX-Exa, kn, kt, µpp and µr are scalars, i.e., they
take only a single value for all particles. However, the dashpot coefficients are specified on basis of a solids
phase or type, referring to a collection of particles. In the equations below, we again consider an i-j collision
with particle i belonging to solid phase p and particle j belonging to solid phase q, The normal dashpot
coefficient, ηn, is related to the coefficient of restitution [28] by

epq = exp

(
−ηn,pqδt

(c)
pq

2m̂pq

)
. (17)

The effective mass (harmonic mean) is,

m̂pq =
m̄qm̄q

m̄p + m̄q

where m̄p and m̄q is the arithmetic mean of all particles of types p and q, respectively. The (normal) collision

duration, δt
(c)
pq , is related to the spring constant by

δt(c)pq = π

[
kn
m̂pq

−
(
ηn,pq
2m̂pq

)]−1/2

, (18)

Because the restitution coefficient is an easily measurable property, it is more physically intuitive to rearrange
Eqs. (17) and (18) as,

ηn,pq =
−2
√

m̂ijkn |ln epq|√
π2 + ln2 epq

. (19)

The restitution coefficient must be provided as an upper triangular matrix with the size equal to the total
number of solids phases. Following Shäfer et al. [29], Silbert et al. [28], Garg et al. [20] and others, the
tangential spring and dashpot coefficients are given as a constant fraction of the normal coefficients: kt = Ckkn
and ηt,pq = Cηηn,pq. Note that Cη is a scalar, not a tensor. If not specified by the user, the “default” values
in MFIX-Exa are Ck = 2/7 and Cη = 1/2, originally owing to Shäfer et al. [29].

Finally, we note another rearrangement of Eqs. (17) and (18),

kn = m̂pq
π2 + ln2 epq(

δt
(c)
pq

)2 , (20)

giving the spring constant as a function of collision duration. In granular flows it is common, especially when
using a Hertzian collision model, for the spring constant to be related to material physical properties such as
the Youngs modulus. In CFD-DEM it is much more common to a set the spring constant based on a desired
collision duration, which is often set to be “small” compared to the fluid time scales. In this way, particles
can be made much softer than in reality, significantly speeding computations with minimal impact on bulk,
system hydrodynamics. In this work, the determination of a suitable collision duration (equivalently kn) will
be subject to guess-and-check.

2.4 Particle-Wall interactions

The contact force and torque, fwi and τwi, from collisions with the walls are computed separately from particle-
particle collisions. The collision model is the same as presented in Sec. 2.2 with the obvious adjustments,
e.g., r̂ij = rj , m̂pq = mp, etc. The additional terms that must be specified are the particle-wall friction

and restitution coefficients, µpw and epw, for each p particle phase and a particle-wall spring constant, k
(w)
n ,

common to all particles phases. Additionally, there are also particle-wall specific scaling coefficients for the
tangential spring and dashpot coefficients. However, with limited evidence to the contrary, these are almost

always the same as particle-particle collisions, C
(w)
k = Ck and C

(w)
η = Cη, which is used throughout this work.

5



Dense granular flows with MFIX-Exa

Numerically, a level set function is constructed for embedded boundaries, whether from simple AMReX
implicits (e.g., cylinder, box) or complex constructive solid geometry files. The minimum of the level sets
signed distance function of is taken as the distance to the contact plane, ℓci, for each particle i, which is in
contact with a wall if ℓci ≤ ri. Additionally, the collision normal, n, is simply the wall normal which is taken
as the gradient of the level set function at a value of zero. Because only the minimum level set value is used,
e.g., only one ℓci, each particle can only have one wall contact at a given time, i.e., no corner contacts with
two or three planes of a box at once.

2.5 Numerics

The governing equations of Eq. (1) - (3) are discretized with a simple backward Euler time integration scheme,

In+1
i ωn+1

i − Ini ω
n
i

∆t
=
∑

τn
i , (21)

mn+1
i un+1

i −mn+1
i un+1

i

∆t
= mn

i g +
∑

fn
i , (22)

xn+1
i − xn

i

∆t
= un+1

i , (23)

where n+ 1 and n are the new and old time levels and the summations indicate all forces and torques on
particle i. The time step, ∆t = tn+1 − tn, is given as a fraction of the minimum collision time,

∆t =
1

C∆
min

[
min δt(c)pq ,min δt(c)pw

]
. (24)

This rudimentary numerical scheme is often sufficient in CFD-DEM simulations where the particles are
sub-cycled with a particle (DEM) time step which is often orders of magnitude smaller than the fluid (CFD)
time step. Further, error introduced by advancing the particles with a frozen fluid field is often thought
to dwarf round-off error from the first-order scheme and the largest source of numerical error is assumed
to be statistical error, i.e., finite statistical certainty in quantities of interest due to randomness–whether
true randomness due to an unknown initial particle configuration or the pseudo-randomness found applying
Ergodic theory to a single fluctuating steady state. This typical multiphase reasoning may not be as applicable
to purely granular flows.

Although only cold flow studies are considered herein, we note that the particle mass and species fractions
are updated first, then the velocities and position, as shown, followed by the particle enthalpy [30]. In
MFIX-Exa, each i-j collision is calculated just once, for particle i or j, depending on which appears first in
memory. While the normal and tangential forces are symmetric, i.e., fji = −fij , the contact torque between
two particles is not necessarily symmetric due to possible differences in the distance to the collision plane,

ℓcjn ≠ −ℓcin, and τ
(c)
ji is computed for particle j using Eq. (14). Finally, we note that particle walls, either

fixed or moving, are not a feature of either develop or !1245 and have been “hacked” into the codes by
forcing un+1

i = un
i and ωn+1

i = ωn
i for specific particle phases.

Chapter 3: Oblique Collision

3.1 Setup

For the first test of the full collision model, i.e., including the tangential history term in !1245, we consider a
single particle-wall collision. This test has been considered in a number of experimental works, most notably
the experiments of Kharaz, Gorham, and Salman [1]. In the experiment, a single aluminium oxide particle
is dropped onto a thick soda-lime glass anvil with varying degrees of incident inclination angle, θi, so that
the collision can be adjusted from normal to glancing. The particle properties are provided in Table 1. The
distance between the release point and the anvil is fixed so that the impact velocity is constant, which is
estimated as ui = 3.9 m/s. A camera is used record the rebounding velocity, ur and vr, and angular velocity,
ωr. The normal and tangential restitution coefficients are measured from en = vr/vi and et = ur/ (vi tan θi).
The rebound angle is measured from θr = tan−1 vr/ur. So far, all of these properties are referring to the
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center of mass of the particle. The final reported quantity is the rebound angle of the contact patch, i.e., the
point on the particle surface that impacts the anvil, which is measured as θ∗r = tan−1 (ur − rpωr) /ur.

In the simulations, the experiment is transformed by rotating the frame of reference by −θi so that
the wall is always horizontal, n = (0 , 1 , 0). 85 particles are placed above the bottom wall separated by
δz = 10 mm. The particles sweep a collision angle from θi = 1◦ to 85◦, each incremented by 1◦. The initial
particle velocity is given by

ui = |ui| sin θi
ui = |ui| cos θi
wi = 0

where |ui| = 3.9 m/s, i.e., ui measured in the experiment. The incident angle of each particle is simply
θi = iπ/180 where i is the particle index, 1 to 85. Each particle is placed at a position so that it takes
δt = 2 ms for the particle to collide with the x-centerline of the domain,

x0 = Lx/2− δt |ui| sin θi
y0 = dp/2 + δt |ui| cos θi
z0 = iδz

The simulation is run for 2δt = 4 ms and the rebound particle velocities, ur, vr and ωr are used to determine
the coefficients of restitution, the rebound angle and the rebound angular momentum. We note that the
angular momentum is unsigned and actually directed in the −z-direction, i.e., ωr = (0 , 0 ,−ωr).

Table 1: Summary of simulation parameters for single particle oblique collisions.

domain
Width Lx 0.8 m
Height Ly 1.0 m
Depth Lz 1.0 m
particle properties
diameter dp 5.0 mm
density ρp 4000 kg/m3

collision properties
restitution coefficient epw 0.98
friction coefficient µpw 0.092
normal spring stiffness kn 1.72e+7 N/m
tangential spring coefficient Ck 0.86
tangential dashpot coefficient Cη 0.5
time step coefficient C∆ 50

3.2 Results

The particle properties, see Table 1, were taken from Di Renzo and Di Maio [2] who also compared numerical
solutions to the data of Kharaz, Gorham, and Salman [1]. Di Renzo and Di Maio [2] used a Hertzian normal
force model coupled with the micro-slip theory of Mindlin and Deresiewicz. They also considered a simpler
“no-slip” model which is quasi-linear in the tangential overlap, although still depends on the square root of the
normal overlap. The data for this model has also been digitized with the experimental data and compared
with MFIX-Exa predictions in Fig. 2. When the full linear tangential force is considered as implemented in
!1245, the results compare very favorably to both the experimental data and the model of Di Renzo and
Di Maio [2]. The tangential restitution coefficient, et, shows the sharp decay with increasing inclination angle
to a minimum at approximately θi = 20◦, and the increases towards one as θi → 90◦. The rebound angle of
the contact patch, θ∗r , bottom set of curves and square data points in the middle figure of Fig. 2, initially
increases, then becomes negative due to the rotation of the rebounding particle, then increases to meet θr
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Figure 2: Comparison of MFIX-Exa results with the experimental data of Kharaz et
al. [1] and the no-slip Hertzian-Mindlin-Deresiewicz model of Di Renzo and Di Maio [2]
for single particle oblique collisions with a solid wall.
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with increasing angle. The rotation, ωr, increases sharply at first, reaches a maximum around θi = 23◦. (Note
that the experimental data for ωr show measured values as circles and calculated values using the measured
tangential restitution coefficient as squares.) The truncated model in MFIX-Exa develop shows some clear
discrepancies. Perhaps most obviously, the restitution coefficient is initially constant (with some noise) with
a value of et = 0.71 until an angle of approximately θi = 33◦ before matching the !1245 result. This result
compares well to a similar finding by Capecelatro et al. [12]. An analogous result is seen for the rebound
angle of the contact patch, θ∗r . The rebound angle (of the center of mass) and the angular velocity show the
correct trends but with a linear dependence rather than the more complex behavior reproduced by the full
model. Clearly, the near-normal regime are the types of collisions for which the static force is important,
with glancing collisions being dominated by dynamic (Coulomb) friction force so that the simplified model is
sufficient. We end this section by noting that even in the case of the largest discrepancy of the simplified
model, the resulting error is relatively minor for single collisions. If the tangential rebound velocity is 20%
higher or lower for near-normal collisions, this likely has little impact in the overall dynamics of a large,
driven system such as a fluidized bed. However, as will be shown in Sec. 4, the tangential history term can
be significant in dense granular systems.

3.3 Parametric study

In this section we explore how these results change by adjusting certain parameters and including rolling
friction. To be clear, we are not attempting to improve the agreement observed in Fig. 2. The data, model of
Di Renzo and Di Maio [2] and the develop results have been dropped. In each subsequent figure, only one
parameter is changed at a time from the !1245 model used to generate the results in Fig. 2.

First, we include rolling friction models, starting with Model A in Fig. 3. The rolling friction coefficient is
increased two orders of magnitude from µ = 1 · 10−4. The rebound angles change little in this range; the
maximum angular velocity decreases with increasing µr, but not substantially. The most noticeable, and
seemingly nonphysical, impact is on the tangential restitution coefficient at near normal impacts. For the
largest value of µr at the smallest incident angle, θi = 1◦, et is actually negative, indicating that the particle
has actually rebounded with u < 0. For smaller, and more reasonable values of µr, the et curve only curls
down as θi → 0. Unfortunately the experimental data is too sparse to indicate if this behavior is physical or
not.

Next we consider rolling friction Model B in Fig. 4 with the rolling friction coefficient increasing two
orders of magnitude from µr = 1 · 10−3 s/m. This model has a more substantial impact on the solution.
While the et curve does not bend down through zero, it does decrease with increasing µr in the near-normal
regime. The angular velocity decreases more significantly, not only at the maximum but throughout the
θi-range. The decreased ωr impacts θ∗r and even a minor effect on θr at small thetai can be observed.

The tangential spring constant is considered in Fig. 5 by varying the coefficient Ck = kt/kn from 1 to
a little under 0.3. Surprisingly, this has a significant impact on the solution, although restricted to the
near-normal regime, specifically for θi < 30◦. As Ck (and kt) decreases, the local maximum of et near θi = 0
is pulled down until a little below Ck = 0.4, et is a constant from 0◦ < θi < 20◦. This result us unchanged for
a range of lower values of Ck, including Ck = 2/7 as shown in Fig. 5. Although et decreases with decreasing
Ck, ωr increases until it becomes linear in θi up to the maximum. These results are surprising because the
lowest value, Ck = 2/7 is the recommended value in MFIX-Exa and also the default value in MFiX. This
value comes from Shäfer et al. [29], also studying oblique particle collisions. In their work, Shäfer et al. [29]
observed that “it does not seem to make much of a difference which value of [Ck] is chosen.” However, it
should be noted that they did not consider et in their work and the value of the friction coefficient may have
been higher. Regardless, the findings in Fig. 5 are in stark contrast to the findings of Shäfer et al. [29] and a
larger value of Ck may need to be considered going forward.

On the other hand, the tangential dashpot is varied in Fig. 6 by adjusting Cη from 1 to 0.2. The results
are virtually indistinguishable. For this parameter we can borrow from Shäfer et al. [29] and say that it does
not seem to make much of a difference which value of Cη is chosen.

So far, we have used a spring constant that was chosen by Di Renzo and Di Maio [2] to reproduce a

measured collision duration, δt
(c)
pw. While not exactly a material parameter, such as selected for their Hertzian

model, this high value approximates the stiffness of a realistic collision. In CFD-DEM it is most typical to
select a suitable collision time that is roughly an order of magnitude below the hydrodynamic time scales, and
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Figure 3: MFIX-Exa !1245 results for oblique collisions with varying rolling friction
coefficient, µr, with model A.
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Figure 4: MFIX-Exa !1245 results for oblique collisions with varying rolling friction
coefficient, µr, with model B.

set kn using Eq. (20). For the current value of kn = 1.72 · 107, the collision duration is δt
(c)
pw = 8.67 · 10−6 s;

typical values in CFD-DEM may be 10−4 or higher [31, 32, 33]. In Fig. 7, kn is adjusted to vary δt
(c)
pw two

orders of magnitude from 10−5. For the first order of magnitude, i.e., up to δt
(c)
pw = 10−4, the results are

acceptable with the most noticeable error being a slight decrease in et in the near-normal regime. The

error becomes more significant as δt
(c)
pw increases above 10−4 with the results resembling high rolling friction

coefficient values for Model B, compare with Fig. 4. Clearly, kn is too soft for approximately δt
(c)
pw > 2 · 10−4.

Finally, we consider the time step (subcycling) coefficient, C∆ = δt
(c)
pw/∆t. In granular flows, C∆ is often

50 or as high as 100 [2, 34, 35, 36]; in CFD-DEM–especially for the first author–it is more common to relax
this value down to 20. For the reference spring stiffness, C∆ is varied from 10 to 100. For C∆ > 50 the results
are converged and visually indistinguishable. Even for C∆ down to 10, the results are very similar. However,
as shown in Fig. 8, if we zoom in on the et minimum, it is clear that the lowest values of C∆ have introduced
some numerical noise. This result indicates that at least C∆ ≥ 30 is probably required to minimize numerical
error in granular simulations.

Chapter 4: Static Piles

In this section we investigate static piles, i.e., heaps of particles at rest. As it turns out, how the piles
are formed matters. Two configurations are considered, each with experimental data. In both cases, the
experiments begin with a static bed of particles in a container resting on a support which is removed (in
places) causing granular motion. In the first case, there is a single opening and the pile that forms in the
lower container is of interest. This is referred to as a constrained pile. In the second case, both ends of the
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Figure 5: MFIX-Exa !1245 results for oblique collisions with varying tangential spring
stiffness coefficient, Ck.
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Figure 6: MFIX-Exa !1245 results for oblique collisions with varying tangential dashpot
coefficient, Cη .
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Figure 7: MFIX-Exa !1245 results for oblique collisions with varying collision time,

δt
(c)
pw coll.

11



Dense granular flows with MFIX-Exa

10 15 20 25

θ
ι

0.58

0.59

0.6

0.61

0.62

0.63

0.64

e
t

C
∆
 = 60

C
∆
 = 50

C
∆
 = 40

C
∆
 = 30

C
∆
 = 20

C
∆
 = 10
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support are removed. A V-shaped pile is formed below, but, here the pile of interest is what remains above
the support that remains in place. This is referred to as a free pile.

4.1 Constrained pile

The experiment Li et al. [3] consists of a pair of nested boxes. All of the particles are originally contained
within the inner box, which is raised, allowing the particles to spill out into the outer box. The outer box
has a width and depth of Lx = 418 mm and Lz = 78 mm. In the original experiment, the outer box had a
height of 260 mm. In the model, summarized in Table 2, a slightly shorter box is considered, Ly = 240 mm,
which is still sufficiently high to contain the final piles. A uniform grid of 24× 12× 4 is applied with a mesh
size dx = 20 mm. The container is modeled with a box EB within the full domain. Only the lower plate
of the inner box is modeled, which is done so with a rectangular array of 5 mm particles which are given a
uniform translation corresponding to the raising of the inner box. The wall particle array has a gap, i.e., the
opening which particles spill out of, of size δlx = 30 mm and δlz = 60 mm, the latter of which corresponds to
the physical dimension of the inner box. There are two locations for the gap, either in the center or on the
left. For the center gap, δlx corresponds to the distance between particle edges, i.e., 40 mm between particle
centers within the same z-row. For the left-hand gap, δlx corresponds to the distance between the EB and
particle edge.

The actual particles are a tri-disperse mixture of diameter d
(1)
p = 13 mm, d

(2)
p = 12 mm and d

(3)
p = 11 mm

numbering N
(1)
p = 750, N

(2)
p = 1500, and N

(3)
p = 750. Other than size, the properties of the glass beads are

assumed to be monodisperse with measured density of ρp = 2456 kg/m3 and particle-particle and particle-wall
kinetic friction coefficients of µpp = 0.15454 and µpw = 0.1333, respectively. A coefficient of restitution of
epp = epw = 0.98 is assumed for all types of particle and wall collisions. The minimum collision duration

occurs between two of the smallest particles, δt = δt
(c)
1−1. The spring constant is set to kn = 211170 (N/m),

and k
(w)
n = 2kn, giving δt = 0.2 ms. The subcycling coefficient is C∆ = 32.

The “wall particles,” i.e., the artificial particles used to model the lower plate, are given the same collision

properties as the real particles. The diameter is d
(w)
p = 5 mm. Because the wall particles are much smaller

than the real particles, they are made very dense, ρ
(w)
p = 5 ·105 kg/m3, so that they do not affect the timestep.

The tri-dispersed particles are generated in a random array and allowed to settle under gravity for 1 s so
that most of the motion has slowed and the particles form a dense bed. The end state of this initialization is
used to generate a new initial condition for the primary simulations. The particles are raised by 5 mm and the
wall particles are placed underneath, with either a center or left opening. This causes an initial perturbation
as the particle bed adjusts from laying on a flat plate to hovering slightly above a (semi-)spherical array. In
order to capture the statistical uncertainty in the DEM simulation method, ten different randomized initial
conditions are considered. These ten configurations are used for all subsequent simulations and the results
are reported as a mean of the outcome with a 95% confidence interval (CI) given by a t-distribution.

A visualization of a typical simulation is shown in Fig. 9 for center opening (left column) and right opening
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Figure 9: Visualization of a tangential history (!1245) simulation using the model
settings provided in Table 2 without rolling friction. At right, the experiment [3] for the
left opening is shown at times 0, 5 and 15 s, corresponding to the simulation times. The
last two rows of the right column show the final conditions (time unknown) of left and
center opening experiment, respectively.
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Table 2: Summary of simulation parameters for the constrained pile of Li et al. [3].

domain
Width Lx 418 mm
Height Ly 240 mm
Depth Lz 78 mm
particle properties

diameter d
(1)
p 11 mm

diameter d
(2)
p 12 mm

diameter d
(3)
p 13 mm

density ρp 2456 kg/m3

collision properties
p-p restitution coefficient epp 0.98
p-w restitution coefficient epw 0.98
p-p friction coefficient µpp 0.1333
p-w friction coefficient µpw 0.1545
normal spring stiffness kn 211170 N/m
tangential spring coefficient Ck 0.9
tangential dashpot coefficient Cη 0.9
time step coefficient C∆ 32

(middle column). The left-opening experiment is shown in the right column for the first three times, and the
final times of the left and center opening experiments are shown in the final panels. This simulation utilizes
the tangential history term implemented in !1245 but no rolling friction. It can be seen, even qualitatively
in Fig. 9, that the final piles are not as steep as the corresponding experiments. Note that the simulations
shown in Fig. 9 had a final angle of repose closest to the mean of the ten replicates, i.e., the values reported in
Table 3. The comparison of the left opening at t = 5 s is also noteworthy. The experiment shows a triangular
pile with some “spillage” near the bottom that extends to roughly the x-centerline of the box; the simulation
shows that the discharged particles have run all the way to the opposite wall. The wall particles move up
with a velocity of 10 mm/s. This is faster than used by Li et al. [3], however the comparisons between
simulation and experiment at times t = 5 and 15 s are quite agreeable–if anything, the experiment appears to
be slightly faster. By t = 24 s, the bottom plate vanishes out of the pressure outlet at y = Ly along with any
real particles that had remained on top of it. The bed is allowed to come to rest awhile longer, ending at
t = 30 s, at which point the angle of repose is measured.

The angle of repose is measured by first binning the particles into 5 mm bins spanning the width of the
bed. The 1-D elevation, h(x), is found by taking the center of the highest particle contained in each bin.
Because the width of the bed is not an integer product of the bin width, the excess space is given to the
center bins for the center opening simulations and to the right most bin for the left opening experiment. The
angle of repose, θR, is determined from a linear fit to h(x). The individual results for the cases visualized
in Fig 9 are shown in Fig. 10. For center opening simulations, two θR results are taken, for the left- and

right-side slopes. Note that θ
(right)
R and θ

(left)
R should not be statistically different because the simulation

is symmetric. For the center opening, the two bins nearest the walls and the four central bins of each left
and right h(x) are ignored to eliminate wall effects and some rounding off of the top of the pile. For the left
opening, two bins on the left are ignored and four on the right. This was necessary because the particles
tended to run up the right-side wall early in the simulation, see Fig. 9 at t = 15 s.

Simulations were run with (!1245) and without (develop) the tangential history term. For both
configurations, the tangential history term increases the angle of repose by approximately 3◦. However, this is
still significantly lower than the θR = 26◦ measured in the experiment. Increasing the friction coefficient–here
we have increased both µpp and µpw together–improves the agreement. Without tangential history, this
increases θR to approximately the that of the tangential history model with the measured friction coefficient
values. Increasing the friction coefficient, µ, with tangential history gets the angle repose for the center opening
almost inline with experimental result. However, the left opening is still low. Note that the discrepancy
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Figure 10: Angle of repose measurements for the cases shown previously in Fig. 9.
Circles show the discretized particle height function, h(x), and lines show the linear fits.

Table 3: Summary of angle of repose simulation results (θ
(left)
R and θ

(right)
R correspond

to the center opening; θR corresponds to the left opening).

model θ
(left)
R θ

(right)
R θR

develop 16.38± 0.91 17.06± 0.78 15.46± 0.37
develop w/ µ = 0.3 18.75± 0.57 18.70± 0.61 18.57± 0.31
develop w/ µ = 0.6 19.54± 0.47 19.44± 0.73 19.34± 0.25
!1245 19.48± 0.64 19.31± 0.96 18.06± 0.44
!1245 w/ µ = 0.3 24.50± 0.70 23.96± 0.93 21.35± 0.30
!1245 w/ µ = 0.6 26.07± 0.61 26.24± 0.74 22.39± 0.28
!1245 w/ model A µr = 10−4 20.20± 0.77 20.21± 0.69 18.32± 0.43
!1245 w/ model A µr = 10−3 19.57± 0.88 20.33± 0.58 18.63± 0.34
!1245 w/ model A µr = 10−2 20.77± 0.63 20.69± 0.62 18.92± 0.26
!1245 w/ model B µr = 10−3 19.57± 0.88 20.33± 0.58 18.63± 0.34
!1245 w/ model B µr = 10−2 19.73± 0.82 20.18± 0.90 18.32± 0.43
!1245 w/ model B µr = 10−1 20.02± 1.04 20.00± 1.17 18.47± 0.26

between the center opening θR’s and the left opening θR is not observed in the experiment which reported
θR = 26.3◦ for center opening and θR = 26.4◦ for left opening [3]. Interestingly, when rolling friction is
included–with µr of both models varied over three orders of magnitude–there is no impact on the angle of
repose for either configuration. This is in stark contrast to the findings of Zhou et al. [4] who reported that
“a larger rolling friction coefficient leads to more spheres in the stagnant zone and a larger angle of repose.”

Finally, we note that for all cases reported in Table 3, θ
(left)
R and θ

(right)
R are not statistically significantly

different, in accordance with our assumption of a symmetric system.

4.2 Free pile

In this section we attempt to address one of the glaring inconsistencies of the previous section: the lack of an
influence of rolling friction on the angle of repose. Here, we consider a slightly different static pile formation
method. Again, particles are filled into a container and discharged into a reservoir. However, here, we are
now concerned with the particles that remain in the initial, elevated region.

The model and particle properties, summarized in Table 4, correspond to the experiment of Zhou et al. [4].
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Figure 11: Visualization of the simulation of the experiment of Zhou et al. [4] with
time advancing from left to right: t = −2.0, 0−, 0.16, 0.32, 1.0, and 3.0 s. Note that the
EB support is not shown.

The container is of width Lx = 300 mm and depth Lz = 40 mm. The total height of the domain is taken to be
Ly = 600 mm. A uniform grid of 24× 48× 4 is applied with a of mesh size dx = 12.5 mm. In the experiment,
a wooden block of unspecified thickness is fixed such that the upper plane is located at an elevation of
y = 150 mm. The fixed support spans the depth of the container but is only 200 mm in width. Adjustable
supports initially fill in the open 50 mm gaps at either end. After particles are filled in and allowed to settle,
the adjustable supports are abruptly removed or retracted, causing the particles to discharge into the open
zone below the support. (Exactly how this is achieved is unknown.) In the model, both the container and
fixed support are modeled with a single EB constructed from a csg format file. The thickness of the fixed
support is 25 mm (two mesh cells). The removable supports are modeled with wall particles, discussed below.

Table 4: Summary of simulation parameters for the free pile of Zhou et al. [4].

domain
Width Lx 300 mm
Height Ly 600 mm
Depth Lz 40 mm
particle properties
diameter dp 6 mm
density ρp 2500 kg/m3

collision properties
p-p restitution coefficient epp 0.4
p-w restitution coefficient epw 0.7
p-p friction coefficient µpp 0.4
p-w friction coefficient µpw 0.7
normal spring stiffness kn 14800 N/m
tangential spring coefficient Ck 0.9
tangential dashpot coefficient Cη 0.9
time step coefficient C∆ 32

The experiment considered two sizes of glass beads, dp = 10 and 6 mm. Here we only consider the latter,
for which there are 6000 particles of diameter ρp = 2500 kg/m3. We note that the collision properties, given
in Table 4, are very dissipative compared to what is typically used for glass beads. The spring constant is set

to kn = 14.8 (kN/m), and k
(w)
n = 2kn, such that ∆t = 10−5 s with a subcycling coefficient of C∆ = 32. The

wall particles are d
(w)
p = 5 mm with the same collision properties as the real particles. The density is set to

ρ
(w)
p = 2ρp so as not to affect the timestep.
Unlike the setup in the previous section, the wall particles are included in the domain during the
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Figure 12: Comparison of the number of particles remaining in the domain without
(develop) and with tangential history (!1245).

initialization so that no collision details are lost, i.e., avoiding the tangential history being re-set by a new
initial condition. The particles are randomized above the support and allowed to come to rest for 2 s at
which point the wall particles are abruptly deleted. The static particle bed abruptly falls with the particle
supports removed and discharges from both sides, leaving a triangular pile sitting on the fixed (EB) support
as shown in Fig. 11. Although most of the dynamics happen within the first few seconds, it can take a long
time to reach the infinite time limit behavior of upper pile. To speed up the simulations, the bottom of the
domain is chopped off by placing a pressure outflow at an elevation of y = 100 mm. Therefore, particles that
fall off of the support are simply deleted. The simulations are run for 100 s, which is sufficient for most of ten
replicate ICs to equilibrate. The result is characterized simply by the number of particles, Np(t), remaining
in the domain.

Figure 12 compares Np with (!1245) and without (develop) tangential history. The differences are
minimal and the final results are the same: Np(t → ∞) → 0. In other words, regardless of whether or not
tangential history is included in the collision model, all of the particles run off the support. There is no angle
of repose because there is no static pile. This behavior changes when rolling friction is included. Figure 13
compares four orders of magnitude variation in µr for rolling friction model A (left) and B (right). Now,
particles remain on the support, at least with the larger values of µr, note µr = 10−5 for model A and
µr = 10−4 and 10−4 s/m for model B are essentially indistinguishable from µr = 0. However, Fig. 13 is
presented in log-log form to highlight one important difference: piles with model A reaches an equilibrium
value; piles with model B continue to shrink in size. This is because the rolling torque of model B depends
on the relative rotational velocity at the contact plane. Therefore, as the particles stop rotating the rolling
torque vanishes, see Eq. (16), meaning that the results of model B should approach the results of no rolling
friction, i.e., no pile at all, as t → ∞ in the absence of external forces.

For model A with rolling coefficient values of µr = 10−2, 10−3, and 10−4, the average number of remaining
particles are 465, 197, and 78. This highest value is in reasonable agreement with the experiment, reported
between 786± 11 remaining. This is also in good agreement with the simulations of Zhou et al. [4]. Note
that Zhou et al. [4] reported good agreement with a rolling coefficient of 2.5 × 10−5 to 5 × 10−5 m which
is a dimensional coefficient that contains the particle radius, see Eq. (15). For comparison, for µr = 10−2,
dpµr/2 = 3×10−5. The final piles for rolling friction model A are shown in Fig. 14. Although not visualized, it
should be noted that, like the bounding domain itself, the support is rounded at either end. This discrepancy
with the simulation method of Zhou et al. [4] might explain the smaller particle count.
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Figure 13: Comparison of the number of particles remaining in the domain with
tangential history (!1245) and rolling friction model A (left) and model B (right) for
different values of the rolling friction coefficient, µr.

Figure 14: Final (t = 100 s) pile formations for the simulations of the experiment of
Zhou et al. [4] including rolling friction model A, left to right µr = 10−2, 10−3, and
10−4.
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Chapter 5: Hopper Discharge

The discharge of a granular material from a hopper is one of the most fundamental industrial problems of
interest. In this section, we model and simulate a flat-bottom hopper from the experiments of Beverloo
et al. [5] that was used to develop their seminal correlation,

ṁ = Cρb
√
g (Do − kdp)

2.5
, (25)

where ṁ = dm/dt is the mass flow rate, ρb = ϕ0ρp is the bulk density, Do is the orifice diameter and C and
k are constants. The general form of the widely used Beverloo correlation uses C = 35 and k = 1.4 which
was determined from an average over several granular materials. Here, however, only sand is considered, so
the specific best-fit for sand is used, C = 38.8 and k = 2.9.

Beverloo et al. [5] originally considered a number of hoppers, orifice sizes, orifice shapes and granular
materials. For demonstration purposes, we consider only one here. As is now well known, and shown by
Beverloo et al. [5], the hopper diameter and the static height of the granular material do not have a significant
influence on the discharge mass flow. Therefore, for computational efficiency, we choose the smallest hopper
diameter and bed height, D = 5 cm and H0 = 10 cm, respectively. For this hopper size, mass flow results
are given for orifice diameters of Do = 0.25, 0.50, 0.75, 1.00, 1.25, and 1.50 cm. We select sand as the
granular material which has been sieved to a range of 210 to 300 micron. It is assumed that there is a
uniform distribution of particle diameters from this minimum to maximum range. The particles are generated
uniformly throughout the domain in a hexagonal close packed lattice at a volume fraction of ϕ = 0.32,
roughly half the expected ϕ0 in twice the volume (Ly/H0 = 2). The particles are given an initial granular
temperature,

√
T0 = 0.1 m/s, to prevent the particles from settling into a structured lattice. The particles are

seeded into 90 discrete 10 micron bins and the density is constant at the measured value, ρp = 2620 kg/m3.
The collision properties were assumed and the values used are provided in Table 5. Because all particles are
of a single type or phase, the average diameter is used to calculate the collision duration. We set the spring

constant to kn = 11.237 N/m (and k
(w)
n = 2kn) which gives δt = 10−4 s with d̄p = 255 micron.

Table 5: Summary of simulation parameters for the hopper simulations.

domain
Width Lx 5.0 cm
Height Ly 20.0 cm
Depth Lz 5.0 cm
Hopper Diameter D 5.0 cm
Orifice Diameter Do 0.25 - 1.50 cm
Static Bed Height H0 10 cm
particle properties
diameter dp 210 - 300 micron
distribution F(N) uniform (90 bins)
density ρp 2620 kg/m3

collision properties
p-p restitution coefficient epp 0.9
p-w restitution coefficient epw 0.9
p-p friction coefficient µpp 0.25
p-w friction coefficient µpw 0.35
normal spring stiffness kn 11.237 N/m
tangential spring coefficient Ck 0.9
tangential dashpot coefficient Cη 0.9
time step coefficient C∆ 32

Although the geometry of the hopper is fixed, the discharge behavior was modeled in several different
ways. First, the bottom of a cylinder (the bottom of the hopper) was connected to a smaller cylinder
(the orifice) and a pressure outlet was placed just one mesh cell away from this intersection. While this is
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Figure 15: Comparison of hopper discharge mass flow rates between the cyclic and
reservoir hoppers for the largest and smallest orifice diameters using !1245.

the most computationally efficient setup, we were concerned that the discharge rate might have a strong
influence on how particles are deleted as they exit through the pressure outlet. Therefore, a cyclic hopper
was considered. In this case, the bottom and top of the domain are a periodic boundary condition. Particles
flow out of the exit, reappear at the top of the domain and pour back onto the top of the static bed in this
infinitely discharging hopper configuration. While this avoids any direct influence of the BC on the discharge,
visualization of this process1 created a new cause for concern: that the stream of particles impacting the bed
may create a significant downward force, not present in the experimental setup, which may affect the results.
To test this, a third configuration was considered. The domain was doubled in the vertical dimension and a
reservoir, also of D = 5 cm, was included.

To begin, the case including the discharge reservoir was only simulated including tangential history (!1245)
for the largest, Do = 1.50 cm, and smallest, Do = 1.50 cm, orifice diameters. In all cases, a Lagrangian mass
flow rate monitor is placed at the bottom of the orifice with a thickness of δy = 10min dp. The results are
compared to the results of their corresponding cyclic hoppers in Fig. 15. In both extremes, it is difficult to
distinguish the two configurations from one another for most of the first two seconds of simulation. (Note
that t = 2 s is the end-of-simulation time for the cyclic hopper configuration because it was determined that
a quasi-steady state flow rate could be determined after approximately t = 0.5 s for all orifices.) At later
times, the results diverge as the reservoir configuration will eventually empty of particles in the hopper, as
seen for Do = 1.50 cm slightly after t = 3 s in Fig. 15. This result indicates that there is no adverse affect of
discharging the hopper back into itself. In fact, the cyclic hopper results appear to be slightly more stable
than in the reservoir configuration. Figure 16 shows the time averaged mass flow rates with (!1245) and
without (develop) the tangential history term for all orifice diameters. The simulations tend to over-predict
the empirical correlation, but including tangential history significantly improves the comparison. By plotting
in a log-log scale, bottom of Fig. 16, we can see that both models show a deviation in ṁ earlier, i.e., at
smaller Do, than the correlation predicts.

It appears that most of the improvement with the inclusion of tangential history can be attributed to

1http://edx.netl.doe.gov/dataset/baedff18-c799-401b-b02b-7e0795ecd2eb/resource/0a19314d-9b00-4974-8d6b-53152e1f6807
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Figure 16: Comparison of the cyclic hopper discharge mass flow rates using the cyclic
hopper configuration to the original correlation of Beverloo et al. [5] for sand, i.e., Eq. (25)
with C = 35 and k = 1.4
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Table 6: Solids packing fraction in a 5.0 cm tall region near the bottom of the cyclic
hopper.

Do (cm) ϕ0 (develop) ϕ0 (!1245)
0.25 0.685 0.647
0.50 0.683 0.640
0.75 0.678 0.640
1.00 0.672 0.641
1.25 0.669 0.641
1.50 0.667 0.638

a better estimation of the bulk density, or, equivalently, the solids packing fraction. A volumetric monitor
was included to measure the solids volume fraction between elevations of y = 2 cm and y = 7 cm. It
should be pointed out that while this region of the simulation is relatively packed, the particles are still in
motion as they exit through the orifice and return from above. The time-averaged solids volume fraction
for (develop) and (!1245) simulations are provided in Table 6. With tangential history, the solid volume
fraction is relatively steady at 64 % which is consistent with random close packed monodisperse spheres.
Without tangential history, the solids volume fraction is slightly higher, increasing from 66.7 to 68.5 %
with decreasing orifice diameter. While this may not be excessive for this slightly disperse material, it is
significantly higher than reported. For reference, the measured bulk density would give a static packing
fraction of ϕ0 = ρb/ρp = 57.25 %.

Chapter 6: Self-Induced Granular Instability

In the final test of the tangential history term, we try to replicate a recently discovered phenomena termed
the Self-Induced Granular Rayleigh-Taylor (SIGRT) instability. First reported by D’Ortona and Thomas [34],
the SIGRT arises in particles sliding down an inclined plane. The particles are made of a bi-disperse mixture
of small, light particles, and larger, heavier particles. The SIGRT pits two instabilities against one another.
The Brazil nut effect causes the larger particles to rise to the surface of the flow. Conversely, once a sufficient
amount of large (heavy) particles at at the top, this creates a Rayleigh-Taylor instability with a denser layer
superimposed over a lighter layer. The RT instability portion, of course, requires that the granular materials
be sufficiently fluidized, in this case by gravity (inclination) and surface roughness.

The simulation setup follows that of D’Ortona and Thomas [34]. The small particles have diameter

and density, d
(s)
p = 6 mm, ρ

(s)
p = 1308 kg/m3. The large particles are twice as large, d

(l)
p = 2d

(s)
p , and one

and a half times as dense, ρ
(l)
p = 1.5ρ

(s)
p . Each are given ±5% variability in diameter, randomly seeded

throughout the range, in order to prevent crystallization. The restitution coefficient is epp = 0.87 and the
friction coefficient is µpp = 0.7. There are no wall collision properties because there are no walls in the main
simulation. The average diameter of the small particles is used to calculate the collision duration. Assuming

the actual average diameter is approximately equal to the mean of the range, d̄
(s)
p , we set the spring constant

to kn = 71 kN/m which gives δt = 10−4 s. The remaining collision parameters are given with the simulation
summary in Table 7.

The domain is set to Lx = 100d̄
(s)
p = 0.6 m in the flow direction and Lz = 200d̄

(s)
p = 1.2 m in the spanwise

direction. Periodic boundary conditions are used in both x- and z-dimensions. The height or flow thickness

is set a priori to H = 36d̄
(s)
p . Assuming a packing fraction of ϕ0 = 0.64, the “flow volume” would be filled

by approximately 110,000 large particles. For an equal volume ratio of large and small particles, the flow is

seeded with N
(l)
p = 55000 large particles and N

(s)
p = 23N

(s)
p = 440000 small particles.

The simulation is run in three separate stages. The first stage is used to create the ramp surface, i.e., the
lower boundary condition. The domain is an EB box which is substantially larger than Lx and Lz so as to
not interfere with the periodic boundary conditions. The height of the box is set to Ly and shifted down by
4 mm, i.e., the domain extends from y = −0.004 to 2.396 m. The ramp is made of small particles without
dispersity (i.e., all particles have 6 mm diameter). 40000 particles are seeded in a lower region, 0 < y < 0.1 m,
which is estimated to be approximately twice as many required. The particles are allowed to settle under
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Table 7: Summary of simulation parameters for the SIGRT simulation.

domain
width Lx 0.6 m
height Ly 2.4 cm
depth Lz 1.2 m
flow height H 0.216 cm
inclination angle θ 23◦

small particle properties

diameter d
(s)
p 5.7 - 6.3 mm

distribution F(N) uniform random

density ρ
(s)
p 1308 kg/m3

large particle properties

diameter d
(l)
p 11.4 - 12.6 mm

distribution F(N) uniform random

density ρ
(l)
p 1962 kg/m3

collision properties
p-p restitution coefficient epp 0.87
p-p friction coefficient µpp 0.7
normal spring stiffness kn 71× 103 N/m
tangential spring coefficient Ck 0.9
tangential dashpot coefficient Cη 0.9
time step coefficient C∆ 32

gravity for t = 2 s. After this initial settling period, all particles with elevations below zero are frozen in place.

There are 17958 particles in the ramp for an area fraction ϕ
(2−D)
0 ≈ 0.7. A head on (x-normal) and overhead

(y normal) view of the ramp is shown in Fig. 17, indicating that a vast majority of the particles are resting on
the EB, i.e., yp = −1.0 mm , and a few particles resting on that layer. All remaining particles are removed.

In the second stage, the large and small particles are seeded in the domain and allowed to settle under
gravity for t = 2 s on top of the fixed-particle ramp. The particles are seeded randomly and uniformly. Note
that in both of the preliminary settling stages, gravity is aligned in the y-dimension, gy = − |g| = −9.81 m/s2

and gx = gz = 0. Finally, in the third stage, the ramp is “inclined” by adjusting gravity to gx = |g| sin θ,
gy = − |g| cos θ. The development of the instability is monitored with a simple scalar segregation (mixing)
index,

Is =
ȳ
(l)
p − ȳ

(s)
p

H/2
. (26)

Values of Is = −1, 0 and 1 indicate perfectly segregated with small particles on top, well mixed, and perfectly
segregated with large particles on top. For convenience, a simple number average, rather than a volume
average, is used to compute the mean particle elevations, effectively neglecting the slight size distributions.

In the first test, nothing happened. Any motion persisting after the settling period decayed to zero and
froze into a completely static array. This indicates that perhaps the particle ramp is too rough. In order
to “kick start” the third stage, the particles were given a streamwise velocity of up(t = 0) = 0.5 m/s. (For
reference, this is about one third of the long-time, pseudo-steady state, domain averaged streamwise velocity.)
This kick did not seem to be too violent and allowed the flow to start developing naturally. The segregation
index in Fig. 18 follows the same general trend as that originally observed by D’Ortona and Thomas [34]. We
do note, however, that the peak magnitude of Is is lower here, possibly due to the larger height considered,

H = 36d̄
(s)
p versus H = 20d̄

(s)
p .

In order to visualize the dynamics of the process, all particles are averaged onto a two-dimensional z − y

map and binned into a 100× 50 grid of edge size 12 mm (i.e., d
(s)
p ). On this grid the volume averaged fraction

of small (and large) particles is computed as well as the volume-weighted velocities of each “phase.” We
originally tried to examine large- and small-particle velocity profiles separately, but, ultimately, it was simpler
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Figure 17: Views of the particles frozen in place to create the ramp; colored by particle
center elevation, yp, in mm.
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Figure 18: Development of the segregation index in the SIGRT simulation.

and clearer to average them together into a single volume-weighted mean velocity. The averaged 2-D plane
is shown in Figs 19 and 20 at six key times which are indicated by circles in Fig. 18. The behavior of the
system at these key times is discussed below.

• 15 s: The instability is developing. The Brazil nut effect is causing large particles to rise to the top. A
white layer can be seen at the top of the flow, indicating a nearly pure layer of large particles. Particle
flow (in the z-y plane) is noisy, lacking a well-defined large-scale pattern.

• 30 s: We have reached peak Is. At this instance we see a larger white layer at the top which has
started fingering. For large scale velocity we see the fingers moving downward. This is the (granular)
Rayleigh-Taylor instability which looks, at this instant, quite similar to the traditional fluid-fluid RT
instability. From here, Is decreases as the large-particle fingers spill and mix into the mixture below
and the competing instabilities are established: the Brazil nut effect drives large particles to the surface
and the RT instability pushes them down through the fingers. Large scale recirculation begins.

• 43 s: Initially there are 4 fingers which merge into three at this instant (two fingers on the right
becoming one).

• 53 s: A local minima of Is, the surface has become relatively depleted for large particles which begins
to recover.

• 90 s: Near a local maxima of Is we see another merging event, two fingers (now on the left) are about
to merge into one leaving just two.

• 180 s: The flow is relatively stable over the last minute and a half of the simulation with two large-scale
recirculation cells emanating from two RT fingers, supplied by a relatively thin surface layer of large
particles.

This simulation was run with !1245. However, we note that, somewhat unfortunately, the same general
behavior was also observed on develop without the tangential history term.
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Figure 19: Contour plots of volume-weighted concentration and mean velocity in a
2-D z − y plane at times t = 15 s, 30 s, and 43 s (top to bottom). Filled contour shows
fraction of particle sizes ranging from entirely small particles (black) to entirely large
particles (white). The black region near the top is devoid of particles. To distinguish
the void space, the single cyan contour indicates the zero-particle line.
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Figure 20: Continuation of Fig. 19 at times t = 53 s, 90 s, and 180 s (top to bottom).
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Chapter 7: Performance

Before closing, we should discuss the performance of the proposed changes of !1245. The current cost of
running simulations with tangential history included is two-fold: one is the cost of memory, and the other
is the cost of computation. Both costs are directly related to the input parameter TAN HIST MAX CONTACTS

which sets the maximum number of contacts tracked per particle. The memory increase comes from storing a
list of three Reals and two Integers per particle-contact which keeps track of the tangential force and uniquely
identifies the contact particle from the previous particle substep. Additionally, there is a temporary list
of Bools per particle-contact in each particle substep that accounts for whether a particle-contact can be
removed from tracking so that the space can be reused, which happens when colliding particles go out of
contact in the current substep. The increase in compute time comes from looking up the appropriate contact
from the tangential history particle-contact list so that the force can be added in every particle-neighbor
iteration. The performance of the newly implemented model is summarized in Table 8. The performance
penalty is the ratio of the time to solution on !1245 to develop. For comparison, we have also included
the max contacts setting (i.e. TAN HIST MAX CONTACTS) as well as the ratio of largest to smallest particle,
γ = max di/min di, for each case. It is acknowledged that the performance of the current implementation is
far from optimal and there are several ways to improve it. For example, improving the speed of lookup from
the tangential history particle-contact list through a map-like operation and getting rid of the temporary Bool
storage by determining removable contacts through a separate kernel launch up front, are two suggestions for
potential performance improvement. Because the performance penalty was not prohibitive for the simulations
conducted in this report, it was not investigated in detail. A systematic profiling study to identify the main
performance bottlenecks and addressing them is proposed as future work.

Table 8: Performance of the tangential history term as implemented in !1245 for the
cases studied in this work.

case penalty max contacts γ
constrained pile (center) 1.42 12 1.18
constrained pile (left) 1.31 12 1.18
free pile 1.23 12 1
hopper (Do = 0.25 cm) 1.67 20 1.43
hopper (Do = 1.50 cm) 1.64 20 1.43
SIGRT 3.76 30 2.21

Chapter 8: Conclusions

MFIX-Exa (https://mfix.netl.doe.gov/mfix-exa) is a multiphase CFD code primarily targeting particle-
laden gas-solid flows. The code was originally developed with large scale simulation in mind; targeting
extreme-scale computing from the ground up with the AMReX (https://github.com/AMReX-Codes/amrex)
HPC software framework provided. As such, MFIX-Exa is a powerful tool for multiphase flow simulation
which may extend beyond the originally targeted physics encountered in reacting fluidized systems. This
report extends the soft-sphere DEM model so that it may be more applicable to dense granular flows.
Additionally, this more complete model may have potential use to simply check assumptions or estimate
model form uncertainty in cases that may be well-fluidized in general but be in certain locations or periods of
time, e.g., in the L-valve of a CLR [10].

The linear spring dashpot collision model originally developed in MFIX-Exa, i.e., as it appears in the
main develop branch of the code, neglects a static friction term in the tangential force, see Eq. (10). In other
words, the tangential force is always assumed to be the Coulomb limit, see Eq. (12). This simplification is
made because, one hand it is not expected to be significant in fluidized systems while, on the other, including
the static tangential friction adds complexity and computational expense. Specifically, the linear spring
term depends on a tangential overlap that, unlike the normal overlap, can not be directly computed from
the instantaneous particle positions. Instead, the tangential overlap must be time-integrated, see Eq. (11),
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requiring each particle to store this value for each other particle that it is in contact with. Additionally, two
common rolling friction models were also investigated in this work.

The collision model is outlined in detail in Section 2. The new collision model, i.e., including static friction
term, and the rolling friction models are implemented on a branch of the code which is referred to in this
document by its merge request identifier, !1245. The new collision model is validated against the single
particle oblique collision data of Kharaz et al. [1]. We find good agreement with the data as well as the
previous numerical results of Di Renzo and Di Maio [2] for tangential restitution coefficient, rebound angle
and rebound angular velocity. Without static tangential friction, i.e., the existing model as implemented in
develop, the largest resulting error is an under-prediction of the tangential restitution coefficient for small
incident angles 0θi < 8◦ (i.e., nearly normal collisions) and an over-prediction for incident angles between
approximately 8 < θi < 32◦. There is no change in the prediction for glancing collisions of θi > 33◦. With
the oblique collision test we also do a simple parametric study on some unclosed coefficients of the model.
We suggest values of the tangential spring coefficient, Ck = 0.9, the tangential dashpot coefficient, Cη = 0.9,
and the time step coefficient C∆ = 32, which are used in the remainder of the test cases.

Three further test cases are studied: static piles, hopper discharge, and the self-induced granular Rayleigh-
Taylor instability (SIGRT). Two different static pile configurations are considered. In the first case, referred
to here as a constrained pile, replicates the experiment of Li et al. [3]. The particles are initially contained in
a box which rises and the particles are discharged through one of two openings into a second box containing
the first. We find that the simplified develop model predicts a much lower angle of repose than observed
experimentally. Including static tangential friction in the !1245 model increases the angle of repose, but still
under-predicts the data unless the friction coefficient is increased significantly beyond the measured value.
Interestingly, neither rolling friction model has an impact on the solution. In the second static pile test, a
static bed of particles is also discharged by removing supports. In this case, however, we are interested in the
pile that remains on the fixed support rather than the one that forms below the openings. This free pile was
studied experimentally and numerically by Zhou et al. [4]. Very much opposite of the constrained pile, we find
that tangential force model has no impact on the long-time behavior. However, for the free pile, we find that
the rolling friction coefficient and model form directly impacts the resulting pile. Good agreement with the
experiment is only seen with ModelA and µr ≈ 0.01. The hopper considered here is a cylindrical flat-bottom
hopper of diameter D = 5 cm which is one of the same originally used by Beverloo et al. [5] to obtain the
now famous Beverloo equation, see Eq. (25). The granular media considered is sand. While develop shows
acceptable agreement with the empirical correlation, !1245 matches very well. The difference is traced to the
solids volume fraction. In the last test, we attempt to reproduce the recently discovered SIGRT instability
recently discovered and explained by D’Ortona and Thomas [34]. Though only qualitative, the instability
has several unique, defining characteristics that were all faithfully reproduced: initial segregation due to the
Brazil nut effect, inverse stratification leading to a Rayleigh-Taylor instability, merging events leading to a
stable quasi-steady state similar to a Rayleigh-Bénard instability with counter-rotating vortices.

Finally, the performance of the new model is assessed using the test cases. For monodisperse particles, the
slow down is reasonable, only 23% for the free static pile. As the size ratio between the largest and smallest
particles, γ increases, the number of possibly colliding neighbors that need to be allocated for each particle
must be increased from the suggested default value of 10. For the SIGRT with γ = 2.21, the max contacts
parameter was increased to 30 which resulted in nearly a factor of 4x slowdown.

8.1 Epilogue

The collision model as implemented in !1245 was merged into the main develop branch of the codebase.
The model will be made available to users with the 25.04 release. The new input keywords are

# enable static tangential friction

dem.tan history = "true"

dem.tan history.max contacts = 20

# enable rolling friction

dem.rolling friction = "ModelA" #"ModelB"

dem.rolling friction.coefficient = 1.0e-3
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