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Abstract

The Exascale Computing Project (ECP) Software Technology and Co-Design teams addressed the growing
complexities in high-performance computing (HPC) by developing scalable software libraries and tools that leverage
exascale system capabilities. As we enter the exascale era, the need for reusable, optimized software solutions that
can handle the unique challenges posed by these systems becomes increasingly important. The primary challenges
the ECP teams faced were to create software libraries and tools that are performant on exascale architectures and
portable and usable across diverse hardware platforms. Efforts addressed issues related to concurrent execution,
memory management, and the integration of heterogeneous computing resources, such as GPUs from multiple
vendors. The ECP’s strategy involved a structured development process encompassing the creation, optimization,
and deployment of software in collaboration with industry, academia, and national laboratories. The project was
organized into several technical areas: co-design of domain-specific suites with target applications, programming
models and runtimes, development tools, mathematical libraries, data and visualization tools, and software ecosystem
and delivery mechanisms. ECP has successfully developed a large portfolio of software libraries and tools that
demonstrate significant improvements in performance and scalability on exascale systems. These products have been
integrated into the Department of Energy’s computing facilities, supporting various scientific applications and ensuring
robust performance across different hardware setups. ECP advancements in software development for exascale
computing highlight the importance of a collaborative and adaptive approach to handling next-generation HPC systems
complexities. The lessons learned emphasize the need for continuous engagement with end-users and vendors, and
the importance of maintaining a balance between innovation and practical implementation. Future efforts will focus on
ensuring scalability, keeping pace with rapid hardware advancements, and further enhancing the interoperability and
usability of the software ecosystem. Subsequent articles in this special issue provide in-depth discussions and case
studies into specific library and tool efforts.
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Introduction

In 2016, the United States Department of Energy (DOE)
initiated the U.S. Exascale Computing Project (ECP) (Kothe
et al. 2019)," with the organizational structure shown
in Figure 1. ECP efforts produced dozens of scalable
applications (Alexander et al. 2020), supporting software
libraries and tools (Heroux et al. 2022), and other technology
investments that led to the successful demonstration of the
Frontier exascale system, capable of performing just over
one exaflop, or a billion-billion (10'®) calculations per
second. In addition, the Aurora and El Capitan systems at
Argonne and Lawrence Livermore National Laboratories are
well on the way to completion, slated to surpass Frontier
once completed. ECP, as a project, reached its completion
in December 2023.

ECP’s inception was driven by objectives critical to both
scientific advancement and national security. The computa-
tional power of exascale systems was targeted to facilitate
breakthroughs in various research domains, including cli-
mate science, materials science, energy sustainability, and
national security missions. ECP was sponsored by the DOE’s
Office of Science and the National Nuclear Security Admin-
istration and executed across the DOE laboratory complex,
with important contributions from academic partners and
private industry.

Among ECP’s significant achievements has been the
development and optimization of specialized software and
algorithms in the form of reusable libraries and tools
designed to exploit the capabilities of exascale computing
platforms. As indicated in Figure 1, these reusable libraries
and tools were developed by ECP Software Technology and
Co-Design teams. In this paper, we provide an overview of
ECP libraries and tools, organizing the discussion by the
various technical areas, as illustrated in Figure 2. We also
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dedicate discussion to important crosscutting efforts with
Spack,T software development kits (SDKs), and the Extreme-
Scale Scientific Software Stack (E4S).* Subsequent articles
in this special issue provide details about the individual
library and tools efforts funded by ECP. Related topics are
discussed in a special issue of IEEE CiSE (Willenbring et al.
2023; Anzt et al. 2023; Mclnnes et al. 2023; Heroux 2023;
Adamson et al. 2023; Gerber et al. 2023).

Overview

In this section, we introduce the ECP software ecosystem,
including E4S, SDKs, and the ECP Software Technology
(ST) project (Heroux et al. 2022).

Why a Libraries and Tools Effort

As the field of high-performance computing matures, there
is a natural incentive to encapsulate useful functionality
into reusable libraries and tools. However, preparations
for exascale systems required an increased emphasis on
reusability. The critical innovation that enabled exascale
systems was the integration of very powerful GPU devices
from multiple vendors. These devices rely on massively
concurrent execution with complicated memory system
architectures where architecture details differed across
vendors, as do programming languages and execution
environments. Moreover, the increasing complexity of next-
generation scientific challenges, which increasingly involve
the integration of modeling, simulation, analysis, and
learning (MclInnes et al. 2021; Draeger and Siegel 2023),
demands software ecosystem perspectives, or collections
of interdependent products whose development teams have
incentives to collaborate to provide aggregate value, where
the whole is greater than the sum of its parts.

How Project Scope was Defined and Managed

The scope of the ECP Software Technology Focus
Area (sometimes called a ’project’ in the following
discussion) was developed through collaboration among
experts from academia, industry, and government. This
collaborative effort ensured that the project stayed relevant
to technological advancements and user needs. Managing
the scope involved balancing innovation with practical
application and adapting to changes as the project
progressed.

Planning, Execution, Tracking, and Assessing

The ECP Software Technology Focus Area followed a
structured project management approach (Heroux 2023).
Clear goals and timelines were set, with specific milestones
to track progress. Execution of these plans was closely
monitored, with regular assessments to ensure alignment
with the initial objectives. This approach helped in dealing
with challenges and adjusting the course when necessary.

*https://exascaleproject.org
Thttps://spack.io
fhttps://e4s.io
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Exascale Computing Project Organizational Structure
Three Focus Areas

Develop and enhance the predictive
capability of applications critical to DOE

25 applications
Mational security, energy, Earth systems,

aconomic security, materials, data

€ co-design centers
machine learning, graph analytics, mesh

Software Technology (ST)

Dalivsr expanded and vertically integrated
software stack to achieve full potential of

exascale computing
70 unigue software products

spanning programming models and

runtimes, math libraries,
data and visualization,

development tools

Hardware and Integration (HI)

Integrated delivery of ECP products
on targeted systems at leading
DOE HPC facilities
& US HPC vendars
focused on exascale node and system

design, application integration, and software

deployment to faciliies

refinement, PDE discretization, particles,
online data analytics

Figure 1. The Exascale Computing Project was composed of three Focus Areas, each with a distinct but complementary
responsibility. Application Development (AD) focused on the adaptation of existing application codes and the creation of new ones
to produce scientific results on the exascale computing systems at Oak Ridge National Laboratory (the Frontier system), Argonne
National Laboratory (the Aurora system), and Lawrence Livermore National Laboratory (the El Capitan system). AD also included
efforts in domain-specific suites of reusable libraries and tools in six co-design centers. Software Technologies (ST) focused on
developing widely used libraries and tools meant for broad deployment to support applications in their use of the exascale systems.
Hardware and Integration (HI) supported vendor efforts and facilitated AD and ST teams’ porting efforts to early-access systems
and the exascale systems as they were being prepared for deployment. The articles in this special issue come from Software
Technology (see Figure 2 for a further breakdown into Technical Areas) and Co-Design teams, circled in the above diagram.
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same planning,
reporting and
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Figure 2. The ECP Software Technology Focus Area was composed of six technical areas. Each area was led by a recognized
leader in the community who understood the technical portfolio and the teams. ECP relied on these people to oversee efforts,
gather input from the development and user communities, and manage the budget of their technical area. The first five areas were
organized by functional scope. The NNSA area was the collection of NNSA-funded efforts that were also focused on open-source
development and could benefit from being part of ECP activities and contribute to overall ECP success.

Better Together: Managing a Portfolio This hierarchical approach provided the integration essential
for progress across the software ecosystem, while also
enabling flexibility through smaller efforts to meet specific

needs.

A key decision was whether to develop the libraries and tools
as one large project or as several smaller, independent ones.
A single large project (i.e., the ECP Software Technology
Focus Area, with a portfolio of efforts in complementary
technical areas) offered better integration and direction, but
this approach also brought challenges in managing a large-
scale operation and the associated risks of interdependencies.

Lessons Learned

Several important lessons emerged from the project. The
value of collaboration across different fields was clear, as
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was the importance of keeping a balance between innovative
ideas and their practical implementation. Continuous
engagement with end-users was essential to ensure the
tools developed were not only advanced but also met the
needs of the scientific community. Additional lessons learned
regarding ECP overall were documented as part of the
project completion, with the goal of informing future large-
scale collaborative efforts. Issues from a perspective of ECP
applications are discussed in (Draeger and Siegel 2023).

Future Challenges and Next Steps

As work on reusable libraries and tools moves forward,
the community faces challenges such as ensuring scalability
and efficiency in the face of increasing computational
demands. Keeping pace with rapid hardware advancements
is another challenge. Addressing these will involve ongoing
research and development, incorporating new technologies
like artificial intelligence, and advancing dialogue between
developers and users. This approach will help libraries and
tools efforts continue to evolve so that software ecosystems
maintain their key role as a foundation for collaboration and
discovery in high-performance computing.

ECP ST Development Subprojects

ECP ST efforts supported development in the following soft-
ware subprojects spanning five technical areas: (1) Program-
ming Models & Runtimes, see Table 1; (2) Development
Tools, see Table 2; (3) Mathematical Libraries, see Table 3;
(4) Data & Visualization, see Table 4; and (5) Software
Ecosystem & Delivery, see Table 5. Each table lists related
products and a link to further information.

The following sections describe the activities and
subprojects® of each technical area.

Programming Models & Runtimes

The goal of the Programming Models and Runtimes area in
ECP was to develop production-ready exascale programming
models and runtimes to be used by ECP applications and
libraries, co-designed with vendors as appropriate, tuned for
application needs and deployed at DOE computing facilities
either via the vendor’s software stack or as part of E4S.

Background and Context for the Portfolio

The subprojects in this portfolio were selected in 2016
from among the programming models used in applications
on DOE HPC systems at that time as well as a few new
subprojects. One of the challenges in selecting the portfolio
was that it was not known exactly what the architecture
of future exascale systems would be or who the vendors
of those systems would be. Our best guess was based on
roadmaps and architectural trends. At that time, it was
generally acknowledged that exascale systems would have
powerful multicore nodes. Although GPUs and GPU-based
systems existed, it was not known that all exascale systems
would have GPUs and would derive most of their computing
power from GPUs. Also, the selection of the exascale
systems is the result of a competitive procurement process
run independently by the DOE computing facilities, the
outcome of which is known only at the end of the process
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when the result is announced. Therefore, deciding which
programming models would be needed for unknown systems
was challenging.

Some roadmaps in 2016 and earlier suggested that
exascale systems could have millions of compute nodes.
However, it turned out that the presence of accelerator
hardware on compute nodes resulted in individual compute
nodes becoming very powerful. As a result, the actual
number of compute nodes on the exascale systems is two
orders of magnitude lower than the millions expected. Such
issues have implications for the programming model and its
efficient implementation.

Another challenge was the historical trend of a general
reluctance among application communities to embrace new
programming models until they have some assurance that
the new model will last for a long time, perform well on a
variety of platforms, and the effort to port their codes to the
new model would be worth it. In other words, there was no
guarantee that a new programming model would be adopted
by applications.

Programming Models and Runtimes
Subprojects

The PMR area included the following subprojects and
software products.

1. MPICH: This effort extended the widely used MPICH
implementation of MPI to run efficiently on exascale
architectures. The subproject worked closely with the
vendors (HPE and Intel) to enable the vendors to
provide tuned MPI implementations based on MPICH
on all three exascale systems (Frontier, Aurora, El
Capitan). The group also participated in the MPI
Forum standardization process on extensions to the
MPI Standard for exascale.

2. OMPI-X: Since MPI is such a critical component
on an HPC system, ECP also supported a second
MPI implementation for risk reduction. This effort
extended another widely used MPI implementation,
Open MPI, to run efficiently on exascale architectures.
The group also participated in the MPI Forum
standardization process on extensions to the MPI
Standard for exascale.

3. UPC++: UPC++ provides high-level productivity
abstractions for a Partitioned Global Address Space
(PGAS) programming model, such as remote memory
access, remote procedure call, support for GPUs,
and asynchronous mechanisms to hide communication
costs.

4. GASNet-EX: GASNet-EX is a portable, high-
performance communications middleware library that
leverages hardware support to implement remote
memory access and active message communication
primitives. GASNet-EX serves as the communication

§Subproject is a specific term that was used within the ECP as the
organizational label for the smallest aggregation of individuals as a team
developing software capabilities.
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Table 1. Programming Models & Runtimes (19 total).
Product Website
AML https://github.com/anlsys/aml
Argobots https://github.com/pmodels/argobots
CAMP https://github.com/LLNL/camp
CHAI https://github.com/LLNL/CHAI
GASNet-EX | https://gasnet.1lbl.gov
Kokkos https://github.com/kokkos
Legion https://legion.stanford.edu
Metall https://github.com/LLNL/metall
MPICH https://www.mpich.org
NRM https://github.com/anlsys/libnrm
Open MPI https://www.open-mpi.org
PaRSEC https://icl.utk.edu/parsec
Qthreads https://github.com/Qthreads
RAJA https://github.com/LLNL/RAJA
SICM https://github.com/lanl/SICM
UMap https://github.com/LLNL/umap
Umpire https://github.com/LLNL/Umpire
UPC++ https://upcxx.1lbl.gov
Variorum https://github.com/LLNL/variorum

Table 2. Development Tools (23 total).

Product Website

BOLT https://github.com/pmodels/bolt

Caliper https://github.com/11nl/caliper

Dyninst Binary Tools Suite https://www.paradyn.org

Flang/LLVM Fortran compiler | https://www.flang-compiler.org
FPChecker https://github.com/LLNL/FPChecker
Gotcha https://github.com/11nl/gotcha
HPCToolkit https://hpctoolkit.org

Kitsune https://github.com/lanl/kitsune

LLVM https://1lvm.org/

LLVM OpenMP compiler https://github.com/SOLLVE

mpiFileUtils https://github.com/hpc/mpifileutils
openarc https://ft.ornl.gov/research/openarc
OpenMP V & V Suite https://bitbucket.org/crpl_cisc/sollve_vv/src
PAPI https://icl.utk.edu/exa-papi

Papyrus https://csmd.ornl.gov/project/papyrus
Program DB Toolkit https://www.cs.uoregon.edu/research/pdt
PRUNERS Toolset https://github.com/PRUNERS/PRUNERS-Toolset
QUO https://github.com/lanl/1libquo

SICM https://github.com/lanl/sicm

TriBITS https://tribits.org

SCR https://github.com/11nl/scr

STAT https://github.com/LLNL/STAT

TAU https://tau.uoregon.edu

library for programming models such as UPC++,
Legion, and Chapel.

. Legion: Legion is a data-centric, task-based program-
ming model for portable parallel programming on
distributed, heterogeneous architectures.

. PaRSEC: PaRSEC (Parallel Runtime Scheduler
and Execution Controller) is a runtime system
and programming toolkit that supports the parallel
execution on distributed, heterogeneous systems of
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programs expressed as a directed acyclic graph of
micro-tasks.

. Kokkos: Kokkos is a C++ performance portability

abstraction that enables users to write portable
code that can run efficiently on heterogeneous node
architectures. It uses different backends (CUDA, HIP,
SYCL, HPX, OpenMP, C++ threads) to support
CPUs and GPUs from multiple vendors. It provides
abstractions for both parallel execution of code and
data management.
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Table 3. Mathematical Libraries (19 total).

Product Website

AMReX https://amrex-codes.github.io/amrex/

ArborX https://github.com/arborx/ArborX

DTK https://github.com/ORNL-CEES/DataTransferKit
FFTX https://github.com/spiralgen/fftx

ForTrilinos https://trilinos.github.io/ForTrilinos

heFFTe https://icl.utk.edu/fft/

hypre https://www.11lnl.gov/casc/hypre

Kokkoskernels | https://github.com/kokkos/kokkos-kernels
libEnsemble https://github.com/Libensemble/libensemble
MAGMA https://bitbucket.org/icl/magma

MFEM https://mfem.org/

PETSc/TAO https://www.mcs.anl.gov/petsc

SLATE https://icl.utk.edu/slate

STRUMPACK | https://portal.nersc.gov/project/sparse/strumpack
SUNDIALS https://computing.llnl.gov/sundials

SuperLU https://portal.nersc.gov/project/sparse/superlu
Tasmanian https://github.com/ORNL/TASMANIAN

Trilinos https://github.com/trilinos/Trilinos

xSDK https://xsdk.info

Table 4. Data & Visualization (23 total).

Product Website

ADIOS https://github.com/ornladios/ADIOS2

ASCENT (ALPINE) https://github.com/Alpine-DAV/ascent

In Situ Algorithms (ALPINE) | https://github.com/Alpine-DAV/algorithms
Catalyst (ALPINE) https://www.paraview.org/in-situ

Cinema https://github.com/cinemascience

Darshan https://www.mcs.anl.gov/research/projects/darshan
FAODEL https://github.com/faodel/faodel

GUFI https://github.com/mar-file-system/GUFI

HDF5 https://www.hdfgroup.org/downloads

HXHIM https://github.com/hpc/hxhim

10SS https://github.com/gsjaardema/seacas

MarFS https://github.com/mar-file-system/marfs
Mercury https://www.mcs.anl.gov/research/projects/mochi
Parallel netCDF https://parallel-netcdf.github.io/

ParaView (ALPINE) https://www.paraview.org

ROMIO http://www.mcs.anl.gov/projects/romio

ROVER https://github.com/LLNL/rover

SZ https://szcompressor.org

UnifyFS https://github.com/LLNL/UnifyFS

VeloC https://veloc.readthedocs.io

Vislt (ALPINE) https://wci.llnl.gov/simulation/computer-codes/visit
VTK-m https://m.vtk.org

zfp https://github.com/LLNL/zfp

Table 5. Software Ecosystem & Delivery (four total).

Product Website

CharlieCloud | https://github.com/hpc/charliecloud
E4S https://e4s.io

Flux https://github.com/flux-framework
Spack https://github.com/spack/spack

8. RAJA: RAJA is a set of C++ libraries provid-
ing abstractions for performance portability. It com-
prises four different libraries: RAJA (kernel execution
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abstractions), Umpire (memory management inter-
face), CHAI (“smart array” library for automatic data
copies between memory spaces), and Camp (C++
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metaprogramming facilities focused on HPC compiler
compatibility and portability). It also provides multiple
backends to run efficiently on a variety of heteroge-
neous node architectures.

9. SICM: The goal of SICM (Simplified Interface
to Complex Memory) was to provide an interface
for discovering, managing, and sharing data within
complex memory hierarchies. It comprises three
interrelated components: a low-level API, a high-level
API, and a high-level graph interface.

10. Argo: Argo provides system software for resource,
memory, and power management. It consists of four
components: Node Resource Manager (high-level
control of node resources), UMap (user-space memory
mapped page fault handler for nonvolatile memory),
AML (memory library for explicitly managing deep
memory architectures), and PowerStack (hierarchical
interfaces for power management at the level of batch
job schedulers, job-level runtime systems, and node-
level managers).

Other programming models, such as OpenMP and
OpenACC, were also part of the ECP portfolio and are
described in the next section on Development Tools and
Compilers.

Lessons Learned

The efforts of the programming models and runtimes area
were successful, and the programming models are being
used in production by ECP applications. Nonetheless, several
notable lessons were learned.

1. The vast majority of ECP application codes still use
a distributed-memory programming model using MPI
for internode or interprocess communication.

2. Most applications did not have GPU-ready codes at the
start of ECP and needed to come up with a strategy for
their codes to use GPUs and also GPUs from multiple
vendors (AMD, Intel, NVIDIA). This circumstance
led to codes using Kokkos, RAJA, OpenMP, or SYCL
for GPU programming. Many application teams that
previously had codes written in Fortran ported them
to C++ to give them a better choice of performance
portability tools (Kokkos, RAJA, OpenMP, SYCL).

3. Close collaboration with vendors was very useful; for
example in the MPICH subproject, which led to the
successful deployment of robust and performant MPI
implementations on the exascale platforms.

4. Performance portability across diverse node architec-
tures is important, but there is no convergence yet to
any single approach. ECP application codes used a
variety of approaches for performance portability, as
discussed in (Dubey et al. 2021).

Development Tools and Compilers
The Development Tools (DT) activity of ECP aimed to

curate a comprehensive suite of software artifacts designed
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to enhance developer productivity and optimize performance
for exascale computing systems, particularly targeting the
architectures of Frontier and Aurora. Central to these efforts
was the enhancement of the LLVM compiler ecosystem,
which forms the backbone of the programming environ-
ment, aiming to improve optimizations, offloading to het-
erogeneous accelerators, performance profiling, and software
correctness. In fact, ECP spearheaded the introduction of
the Flang/LLVM for Fortran into the LLVM ecosystem. In
addition to core enhancements to the LLVM ecosystem, ECP
focused on improving the OpenMP and OpenACC program-
ming models in Clang/LLVM for C/C++ and Flang/LLVM
for Fortran, facilitating efficient programming on heteroge-
neous architectures. In terms of performance tools, ECP sup-
ported the TAU performance measurement system, the PAPI
hardware counter toolset, and the HPCTookit performance
measurement framework. The ECP DT also contributed a
long list of benchmarks, V&V suites, and autotuning tools
to the broader effort.

Ultimately, these initiatives underscore a strategic
approach to tackling the programming, performance, and
portability challenges of exascale computing, emphasizing
open standards, open software, and robust toolchains for a
wide range of architectures and programming models.

Artifacts

ECP DT implemented a number of key software artifacts
aimed at enhancing developer productivity and performance
efficiency on exascale computing platforms, particularly
those architectures anticipated for Frontier and Aurora. Here,
we list the prominent artifacts.

1. LLVM Ecosystem Enhancements: Improve the core
LLVM compiler ecosystem, which is fundamental
to the programming environment at exascale. These
improvements are intended to enhance optimizations,
performance profiling, and correctness aspects of
software development.

2. OpenMP (offload) in Clang/LLVM (Clacc) and
Flang/LLVM (Flacc): Design and implementation
of the OpenMP (heterogeneous) programming model
for C/C++ and Fortran in the Clang/LLVM and
Flang/LLVM compiler infrastructures, respectively,
aiming to provide developers with tools for efficient
programming on heterogeneous architectures.

3. OpenACC in Clang/LLVM (Clacc) and Flang/L-
LVM (Flacc): Design and implementation of the Ope-
nACC heterogeneous programming model for C/C++
and Fortran in the Clang/LLVM and Flang/LLVM
compiler infrastructures, respectively, aiming to pro-
vide developers with tools for efficient programming
on heterogeneous architectures.

4. Performance Portability and Optimization: Strate-
gies for leveraging performance modeling and opti-
mization to enable code transformation and improve
performance portability across different architectures
are highlighted. This includes refining autotuning
for OpenMP and OpenACC programming models to
directly address the challenges posed by heteroge-
neous architectures.



5. TAU Performance Measurement and Analysis
Tools: Improve the TAU performance measurement
and analysis tools for target exascale architectures. The
aim is to apply these tools to applications to enhance
performance understanding and optimization.

6. HPCToolkit performance analysis tool: Develops
performance analysis tools for optimizing software
on extreme-scale parallel systems, focusing on
measurement, analysis, and efficiency improvement
for exascale computing.

7. Exa-PAPI performance analysis toolkit: Enhances
the Performance Application Programming Interface
(PAPI) for exascale computing environments, focusing
on new performance counter monitoring capabilities
and power management support for advanced hard-
ware and software technologies.

8. SYCL Programming Model: To ensure that imple-
mentations of the relatively new SYCL programming
model were correct and performant, ECP developed
a benchmark suite (HecBench) and evaluated SYCL
implementation readiness across relevant architec-
tures.

These artifacts represent a comprehensive suite of tools
and enhancements designed to address the programming,
performance, and portability challenges anticipated with the
advent of exascale computing. The focus on open standards,
such as LLVM, OpenMP, OpenACC, and SYCL, alongside
efforts in autotuning and performance analysis, underscores
a strategic approach to ensuring that the exascale computing
ecosystem is robust, efficient, and accessible to developers
targeting a variety of architectures and programming models.

Key Challenges

ECP DT overcame several key technical challenges
when targeting exascale platforms and applications. These
challenges typically revolve around a common set of
themes for subprojects aiming to support exascale computing
environments. Based on the context of development tools for
exascale computing, these challenges included the following.

1. Heterogeneity: The heterogeneity in GPU architec-
tures and requisite software posed by the Frontier
and Aurora systems was a significant challenge. The
architectures were new (to the vendor) and different
from other vendors, such as NVIDIA. Many of the
hardware capabilities had to be discovered by ECP DT,
and then the compilers and tools had to be rewritten to
map to that capability.

2. Scalability: The massive hierarchical parallelism
available in exascale systems and the scalability of
associated software systems and applications was a
major challenge, far beyond our earlier systems, such
as Summit.

3. Debugging and Profiling at Scale: Likewise, profil-
ing and debugging at scale takes on an entirely new
challenge when targeting tens of thousands of GPUs.
DT enhanced several scalable tools for debugging and
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performance profiling that can handle the complexity
and size of exascale applications; however, even then,
it often required post-processing terabytes of data to
understand the performance analysis.

4. Programming Model Support: The number of
programming models grew during ECP. For example,
the Aurora system added SYCL, which was not
a major requirement earlier in the project. Also,
performance-portability layers, such as Kokkos, grew
in popularity. Extending and optimizing compilers,
runtime systems, and libraries to support these
emerging programming models while maintaining
established programming models became difficult to
accomplish with limited resources.

5. Software Dependencies and Interoperability:
Although tools, such as CMake and Spack, helped
to manage the complexity of software dependencies,
interoperability between different tools and libraries
remained a significant challenge. In particular, device
drivers and runtime systems can interfere or conflict
with each other during runtime. These dynamic
situations can be very difficult to debug because tools
have limited visibility into core runtime systems, and
they are oftentimes proprietary.

These challenges reflect the complexity of developing
and deploying software tools that are critical for the
success of exascale computing initiatives. The teams
working within the Development Tools section created
solutions that addressed many of these issues, enabling the
broader scientific community to leverage exascale computing
resources effectively.

Collaboration and Deployment

The deployment and sharing of software artifacts within the
Development Tools section were strategically executed to
ensure widespread adoption and integration into the broader
HPC and exascale computing community. A cornerstone
of this approach was the collaboration with the LLVM
community, a key partnership aimed at enhancing the
compiler infrastructure critical for exascale computing.
By contributing improvements directly to the upstream
LLVM main repository, the subproject teams ensured
that enhancements made for exascale computing could
benefit a wide range of users beyond the subproject’s
immediate scope. This collaborative effort underscored a
commitment to open-source development and the sharing of
advancements with a global developer community.

In addition to collaboration within the LLVM ecosystem,
the Extreme-Scale Scientific Software Stack (E4S) played a
pivotal role in disseminating these tools, providing a unified
platform for easy access to a suite of HPC software. The use
of container technologies and the Spack package manager
further streamlined the deployment process, facilitating easy
installation and management of software dependencies.

Community engagement was further enhanced through
workshops, tutorials, and extensive documentation, fostering
a collaborative ecosystem for fast knowledge exchange. For
example, over the past five years, ECP DT was a significant
contributor to the LLVM Annual Development meetings,
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where hundreds of researchers and engineers assemble
to share progress on the LLVM ecosystem. Continuous
integration and testing ensured the tools remained reliable
and up-to-date, addressing the evolving needs of the exascale
community. This multifaceted strategy, combining direct
contributions to LLVM, leveraging E4S, and engaging
with the community, significantly amplified the impact
and accessibility of the development tools for exascale
computing for the long term.

Math Libraries

The Mathematical Libraries effort ensured the healthy func-
tionality of the numerical software on which the ECP
applications depend. These libraries span the range from
lightweight collections of subroutines with simple APIs
to more end-to-end integrated environments. They provide
access to a large collection of algorithms ranging from
linear/nonlinear solvers, integrators, mathematical optimiza-
tion, and FFTs to advanced algorithms in multiphysics sim-
ulations and outer-loop analysis. The math libraries portfolio
contained 16 products, with their functionalities summarized
below.

1. ArborX: ArborX provides performance portable
algorithms for geometric search.

2. DTK: The Data Transfer Kit transfers computed
solutions between grids with differing layouts on
parallel accelerated architectures.

3. ForTrilinos: ForTrilinos provides a seamless pathway
to generate Fortran library modules from existing C
and C++ libraries via a Fortran-targeted extension
to the SWIG (Simplified Wrapper and Interface
Generator) tool.

4. heFFTe: Highly Efficient FFTs for Exascale library
provides fast and robust 2-D and 3-D FFTs that
target large-scale heterogeneous systems with multi-
core processors and hardware accelerators.

5. hypre: hypre provides scalable linear solvers featuring
parallel multigrid methods for both structured and
unstructured grid problems.

6. Kokkos-Kernels: Kokkos-Kernels implements local
computational kernels for linear algebra and graph
operations, using the Kokkos shared-memory parallel
programming model. It is part of the Kokkos
ecosystem offering performance portability.

7. libEnsemble: libEnsemble is a Python library to
coordinate the concurrent evaluation of dynamic
ensembles of calculations. It uses massively parallel
resources to accelerate the solution of design, decision,
and inference problems and to expand the class of
problems that can benefit from increased concurrency
levels.

8. MAGMA: Matrix Algebra on GPU and Multi-
core Architectures is a collection of next-generation
linear algebra libraries for heterogeneous computing,
supporting interfaces for current linear algebra
packages and standards (e.g., LAPACK and BLAS).
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9. PETSc/TAO: The Portable Extensible Toolkit for
Scientific Computations/Toolkit for Advanced Opti-
mization provides efficient mathematical libraries for
sparse linear and nonlinear systems of equations, time
integration, parallel discretization, and numerical opti-
mization.

10. SLATE: Software for Linear Algebra Targeting
Exascale is a modern replacement of the ScaLAPACK
library to provide scalable dense linear algebra
capabilities.

11. STRUMPACK: STRUctured Matrix PACKage pro-
vides linear algebra routines and linear system solvers
for dense rank-structured linear systems, as well as
sparse direct solvers and preconditioners via low-rank
embedding.

12. SUNDIALS: SUNDIALS is a SUite of Nonlinear and
DlIfferential/ALgebraic equation Solvers.

13. SuperLU: Supernodal LU is a general-purpose library
for the direct solution of sparse, nonsymmetric
systems of linear equations.

14. Tasmanian: The Toolkit for Adaptive Stochastic Mod-
eling and Non-Intrusive ApproximatioN constructs
efficient surrogate models for high-dimensional prob-
lems and performs parameter calibration and opti-
mization geared towards applications in uncertainty
quantification (UQ).

15. Trilinos: Trilinos is a collection of reusable scien-
tific software libraries, known in particular for lin-
ear solvers, nonlinear solvers, transient solvers, opti-
mization solvers, and uncertainty quantification (UQ)
solvers.

16. xSDK: Extreme-scale Scientific Software Develop-
ment Kit.

Collaboration and Deployment

The aforementioned libraries represent a diverse and
complementary collection of mathematical software. A
multiphysics simulation code often needs to use multiple
libraries at the same time. Therefore, it is essential for
these libraries to be compiled at the same time and
callable between each other. xSDK (Bartlett et al. 2017)
becomes the critical bridge to facilitate communication
and collaboration among the developers across multiple
DOE Labs and universities. XSDK’s community efforts have
implemented a set of standards for software quality and
interoperability deployed a federated Continuous Integration
(CD infrastructure that allows for rigorous software testing
on various hardware architectures, and take the challenge
of defining software packages that contain compatible
versions of the component libraries. xXSDK pioneered a
set of key elements that address the shortcomings from
the past, including community policies, interoperability,
common installation via Spack package manager, continuous
integration testing, and performance autotuner.

The xSDK subproject held biweekly virtual meetings that
included most of the developers of the 15 products. Multiple



teams often held face-to-face meetings at various scientific
conferences. The subproject teams made use of collaborative
platforms to keep track of progress, brainstorm algorithm
ideas, and coauthor papers.

Development Strategy

Prior to ECP, many of the above math libraries existed
and provided core math capabilities to DOE’s scientific
codes. However, a lot of the algorithms and implementations
were not nearly as performant as required by the exascale
machines. The new developments in ECP were primarily
architecture-driven or application-driven.

In recent years, a new hardware trend has been to
employ low-precision, special-function units tailored to the
demands of AI workloads. Lower-precision floating-point
arithmetic can be done several times faster than higher-
precision counterparts. Given this architecture feature, the
ECP math community created a new multi-precision effort
in 2020 to design and develop new numerical algorithms that
can exploit the speed provided by lower-precision hardware
while maintaining a sufficient level of accuracy that is
required by numerical modeling and simulations. This effort
resulted in new mixed-precision direct solvers in MAGMA,
SLATE, and SuperLU, mixed precision iterative solvers in
Ginkgo and Kokkos-Kernels, mixed precision integrators in
SUNDIALS, and mixed precision FFTs in heFFTe.

Over the course of interactions with the ECP application
teams, the need for batched sparse linear algebra functions
emerged in order to make better use of the thousand-way
parallelism offered by GPUs when many small algebraic
systems are to be solved. These batched systems arise
from combustion modeling, bio-chemical modeling, fusion
plasma modeling, and nuclear physics simulations, to name
a few. The naive strategy of solving the batched system one
by one severely underutilizes the GPU resources, and the
overhead of launching many individual kernels with small
operations dominates the total runtime.

The ECP math library community seized this opportunity
and started developing both batched sparse iterative solvers
and batched direct solvers. The batched iterative methods
implemented in Ginkgo, Kokkos-Kernels, and PETSc have
been successfully deployed in hydrodynamics simulations
and plasma simulations, among others. The batched direct
solvers are also developed in PETSc and SLATE for
dense storage, in MAGMA for banded storage, and
in STRUMPACK and SuperLU_DIST for general sparse
storage. On the other hand, GPU vendors’ math libraries
have very limited functionality for batched sparse linear
algebra. We know of only Nvidia’s cuSolverSP supporting
batched QR factorization without pivoting.

Technical Challenges and Solutions

The math library teams had to overcome several key
challenges in order to meet the exascale requirements.
First, traditional sparse-matrix-based techniques for linear,
nonlinear, and ODE solvers, as well as optimization
algorithms, are memory-bandwidth limited, with low
arithmetic intensity. Second, many algorithms require
synchronizations across all compute units, such as the
inner product, which hinders the scaling of the solvers.
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Third, we need to support multiple types of GPUs from
different vendors and several programming models. The
teams developed a number of robust and sustainable solution
strategies to address these challenges, as summarized below.

Reducing communication. These include the
communication-avoiding dense LU and QR factorizations
in SLATE, the communication-avoiding 3D sparse LU, and
sparse triangular solutions in SuperLU_DIST.

Reducing synchronization. These include several
pipelined Krylov methods in PETSc/TAO and Trilinos and
low-synchronization orthogonalization in Trilinos/PEEKS.
These algorithms delay the use of the results of inner
products and norms and allow overlapping of the reductions
and other computations. The accelerator strategies include
using fused computational kernels in PETSc and cluster-
based preconditioners to reduce the number of kernel
launches.

Increasing arithmetic intensity. These include the use of
high-order methods in PETSc/TAO.

Compression techniques. heFFTe uses data compression,
such as ZFP, to reduce communication. STRUMPACK uses
various off-diagonal low-rank compression algorithms to
reduce LU factorization complexity both in flops and in
memory.

GPU programming abstraction. Kokkos-Kernels
exploits the Kokkos potable layer to implement linear
algebra and graph algorithms without using vendor-
specific GPU programming languages. ArborX also
relies on Kokkos to implement high-performance tree-
search methods on different GPUs. Ginkgo employs the
backend model to embrace portability, where multiple
backends are coded for specific GPUs, but the high-level
algorithms use portable APIs to access the kernel operations.
PETSc/TAO uses a hybrid method—separating the front-end
programming model used by the application and the backend
implementations.

Lessons Learned and Future Challenges

A large part of the ECP math success story can likely be
attributed to the close integration between DOE applied
math/CS experts and scientific applications teams, with
emphasis on community ecosystem perspectives.

Working closely with industry partners became essential
for the math teams as they developed new capabilities for the
math libraries. When we initiated the batched sparse linear
algebra work, we invited the technical representatives from
the three GPU vendors—AMD, NVIDIA, and Intel—to join
our biweekly discussions to set the community standards for
the APIs of batched banded solvers, batched sparse iterative
solvers, and batched sparse direct solvers. The vendors’ input
on their GPU features and their existing libraries made the
sparse API designs portable and sustainable. We expect that
the vendors will adopt these standard APIs for their own
implementations, similar to the BLAS standard.

Since the inception of ECP, each math team was asked
to develop shared milestones with potential consumers (AD
subproject teams) of our products. This is an unusual
business model compared to a normal research project.
Initially, many PIs of math teams felt uneasy with this
approach. But, it became clear over time that this approach
ensured that every team collaborated closely with the
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application teams, developed what was truly needed, and
delivered the functionalities on time. Some of the new
developments not in the original ECP scope were also
initiated by application needs, such as the batched sparse
linear algebra and the GPU-resident sparse direct solver in
Ginkgo.

Despite the great advances in ECP’s math libraries, many
more challenges remain on the horizon. Future HPC node
architectures will likely be even more heterogeneous, with
different kinds of accelerators on a single node. Most of
today’s math libraries are not designed for this execution
model. We will see more scientific AI/ML workloads on
HPC systems, whose computing requirements are different
than modeling and simulation codes. Lower precision
arithmetic is particularly beneficial, which calls for new error
analyses for many algorithms. Better algorithms are needed
for building trustworthy language models and surrogate
models.

To sustain robust and high-performance math libraries
beyond ECP, it is essential to invest in developing the
workforce pipeline. Despite the emphasis on employing
high-level languages with strong abstraction, the future
generations of applied mathematicians still need training to
be able to understand compilers and operating systems, and
even perform architecture-level code optimization.

Data and Visualization

The goal of the Data and Visualization (DAV) area was
to develop and improve data management, data services,
and visualization software that supports scientific discovery
and understanding at the exascale. This was to be achieved
in spite of changes in hardware architecture and the size,
scale, and complexity of simulation data produced by
exascale platforms. A fundamental challenge for the Data
and Visualization area is that exascale system concurrency
grew by many orders of magnitude, yet system memory and
I/0 bandwidth, and persistent capacity continued to grow by
only a few orders of magnitude. To address this gap, ECP
included some of the top data and visualization teams and
their software products to meet this challenge. This area has
three subareas: 1) data management and storage, 2) data
services - which includes checkpoint restart and scientific
data compression, and 3) visualization.

All Data and Visualization product teams worked on
making their software exascale-ready: 1) by porting to the
chosen exascale architectures, whether GPU accelerators or
new I/O subsystems such as DAOS, an open source object
store, and 2) by testing functionality and scalability by
running first on early access and then full-scale systems. The
data and visualization area includes the following software
products:

1. HDFS: HDFS is a widely used, open source, data
management and storage file format and library.
HDF5 is portable and is extensible. HDFS is highly
customizable through its Virtual Object Layer (VOL)
and Virtual File Driver (VFD) interfaces. As part of
the exascale project, HDFS researchers and developers
designed and implemented asynchronous and caching
VOL interfaces as well as direct /O VFD interfaces
for GPU accelerators.
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2.

10.

. VeloC: The VeloC product provides

ADIOS: The Adaptable I/O Systems (ADIOS)
addresses I/0 and data management challenges posed
by large-scale computational science applications
running on DOE computational resources. Research
and development focused on improving modularity,
flexibility, and extensibility and extending, tuning,
and hardening core services, such as I/O and staging
that support Exascale applications, architectures, and
technologies.

UnifyFS: The UnifyFS subproject provides a user-
level file system that is implemented across node-local
storage. UnifyFS can store bursts of simulation output,
such as checkpoints to the high-performance storage
hierarchy starting with node-local fast storage such as
NVRAM, and provides I/O performance that can be
much faster than the parallel file system at large scales.

Darshan: The Darshan I/O characterization toolset is
an instrumentation tool deployed at facilities to capture
information on the I/O behavior of applications
running at scale on production systems. Darshan data
accelerated root cause analysis of I/O performance
problems for applications and assisted in correctness
debugging. As part of the exascale project, work
focused on extending Darshan to new I/O systems and
ensuring readiness on upcoming platforms.

Parallel netCDF (PnetCDF): PnetCDF is the
parallel I/O library extension of the popular netCDF
file format. PnetCDF achieves high performance
through non-blocking I/O which aggregates multiple
read/write requests into a single operation.

a high-
performance, scalable checkpoint restart library.
VeloC provides a client library for applications to
capture their state. This library abstracts the storage
hierarchy and supports asynchronous checkpointing.

. SZ: SZ is a user-defined, error-bounded lossy

compression library for scientific data.

ZFP: 7ZFP is a floating point array primitive that
reduces data movement costs by using -efficient
data representations and compressing data with user-
defined error bounds. ZFP supports constant-time
read/write random access to individual array elements
from its compressed representation. ZFP compressed
arrays offer applications the ability to store floating-
point data in a compressed form that otherwise would
not fit in memory.

. VTK-m: The VTK-m product designed and developed

a new set of visualization algorithms that support
shared-memory parallelism on many-core CPUs and
GPUs.

ASCENT: The ASCENT product is a lightweight
in situ infrastructure for visualization and analysis
while the scientific application is running. ASCENT
supports data reduction early in the processing
pipeline immediately after the data is generated.



11. ALPINE in situ algorithms: The ALPINE product
offers new in situ algorithms for use in ASCENT. In
situ algorithms were developed, including topological
analysis, Lagrangian vector flow analysis, adaptive
sampling, and statistical and optimal viewpoint
selection.

12. ParaView, Catalyst, and Visit: ParaView, ParaView’s
in situ library Catalyst, and Visit are production,
large-scale visualization products that are available
at supercomputing centers worldwide. The ALPINE
team updated these products to run at exascale and
integrated them with ASCENT and ALPINE in situ
algorithms.

Technical Challenges and Solutions

The DAV product teams had to overcome several challenges
to support the exascale ecosystem. The most significant
challenge for the DAV product teams is the growing gap
between our ability to quickly generate scientific results
on processors and the speed at which we can save these
results. A theme of challenges in the DAV area is the need
for fundamental change in DAV workflows for scientific
applications. These challenges are:

Visualization and analysis workflow challenges. In the
past, when processor and I/O speeds were more balanced,
application teams saved many simulation results for post
hoc visualization and analysis. In the exascale era, I/O
speeds are typically many orders of magnitude slower than
processor speeds. As a result, proportionally, simulation I/O
budgets are shrinking at a time when unprecedented time
and space simulation details are being calculated. Given
this challenge, one solution is to move the visualization
and analysis so that it runs as part of the simulation
code itself, in situ. Visualization and analysis is typically
a significant data reduction process, transforming massive
simulation data results into images or summarized data. The
key challenge now is this transformational process needs to
be done automatically. Post hoc visualization and analysis
are typically done interactively, guided by a scientist with the
goal of understanding their simulation results. In contrast, in
situ visualization and analysis run as part of a batch process
over a long period of time. In situ algorithms, therefore,
are focused on automatically identifying and acting upon
features found in the simulation.

Data handling workflow challenges. Typically, scientists
have avoided the use of data compression schemes due
to concerns about unquantified data loss. To address this
concern, two ECP products focused on providing floating
point compression with accuracy guarantees. The SZ and
ZFP products use a given accuracy bound to compress
scientific data as much as possible while still maintaining
the given accuracy. Given the significant I/O bottleneck
challenge, some scientists have begun to routinely compress
their data as part of their output process. This data-driven
approach is complementary to the compute-driven study of
the creation of multi-precision solvers by the ECP math
library teams.

Abstracting the complexity of the data storage
hierarchy. To deal with the significant gaps between
processor speeds, memory, and storage, additional layers
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of the data hierarchy have been added. For example, burst
buffers, an intermediate storage layer, are designed to quickly
receive and temporarily store simulation checkpoints.
A supercomputer center may have archival, center-wide
storage, burst buffers, and supercomputing platform storage.
DAV data management and storage subprojects worked over
the course of ECP to simplify and optimize the use of these
diverse layers.

Addressing architecture heterogeneity. GPU accelera-
tors are the engine providing massive numbers of floating
operations per second. All DAV products were ported to
these architectures. For example, the visualization DAV
product, VTK-m, needed to run on these accelerators in
order to run in situ. The VTK-m product made use of ECP
Programming Models and Runtime portability products,
including Kokkos and RAJA to run across the heterogeneous
GPU exascale architectures.

Collaboration and Deployment

The Exascale Computing Project used a collaborative
development software approach. Gathering all DAV products
in one portfolio had several positive benefits.

Complex interactions and dependencies between DAV
products could be managed for users. The DAV SDK
subproject, part of the E4S effort, managed and released
these products. DAV products typically depend on many
libraries. Managing these dependencies between the inde-
pendent products allowed users to more easily use DAV
products in combination.

A default data management and storage interface for
ECP was selected. HDF5 was selected as the default
ECP data management and storage solution. Practically, this
meant that if ECP applications were interested in a data
management and storage solution, they were guided to try
HDF5 first. As an experiment in performance portability,
each data management and storage product was asked to
write a VOL backend for HDF5 using their own product.
This allowed for performance comparisons between VOL
implementations as well as offering users the ability to
switch to another backend for portability.

Integration of DAV products into other DAV products. As
a collection of DAV products working with the same frame-
work, it made sense for DAV products to be available to users
from other DAV products. For example, data management
and storage subprojects such as ADIOS and HDFS5 included
methods to use the SZ and ZFP compression libraries.
Integration of DAV products into ECP applications. To
integrate with as many ECP applications as possible, DAV
teams focused on integrating their products with AMREX,
an adaptive mesh refinement co-design framework. AMREX
provided the underlying framework for many ECP applica-
tions, which then, in turn, had access to many DAV products.

Lesson Learned

Despite the significant gap between compute speed
and the rate at which data could be accessed or
stored, the DAV portfolio was able to successfully meet
these challenges through necessary workflow changes,
performance portability, and cross-portfolio capability
integration. Lessons learned include:
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* DAV solutions that were considered radical at the
beginning of the project were embraced by the end.
A good example of this was the use of floating-point
compression libraries. The compression teams worked
with ECP Applications to understand their needs and
develop libraries that provided guaranteed accuracy
and are now in use today.

* Partnerships with industry partners were a key to
success. Kitware, HDFGroup, ParaTools, and the
exascale supercomputing vendors were invaluable
partners in helping us build the exascale software
ecosystem. Standards such as the Visualization Toolkit
and HDF5 allowed us to build on well-tested and
understood industry standards.

* Close collaborations between DAV and scientific
application developers were also key to success.
Early application adopters of DAV products provided
invaluable feedback in the design of data products
in data management and storage, visualization,
checkpointing, and compression.

Software Ecosystem and Delivery

The Software Ecosystem and Delivery technical area
in the Exascale Computing Project was responsible for
coordinating the vertical integration of the software products
into the thematic software development kits (SDKs) and
the SDKs into the Extreme-Scale Scientific Software Stack
(E4S) and for the horizontal delivery of the software stack
to the applications and facilities for deployment. This area
also provided the critical resources and staffing to enable
the software technologies to perform continuous integration
testing and product releases and engaged with software
and system vendors and DOE facilities staff to ensure the
coordinated planning and support of software products.
Details on the SDKs and E4S are in a later section. In this
section, we consider the underlying capabilities provided by
the Packaging Technologies subproject and the ExaWorks
subproject on scientific workflows.

Components

Building and integrating software for supercomputers is
notoriously difficult, and an integration effort for HPC
software at this scale is unprecedented. Moreover, the
software deployment landscape is changing as containers
and supercomputing-capable software package managers,
such as Spack, emerge. Spack enables the automation of
the builds of ECP software and allows the software to
be distributed in new ways, including as binary packages.
Containers enable entire application deployments to be
packaged into reproducible images, and can accelerate
development and continuous integration (CI) workflows.
The Packaging Technologies subproject provided Spack
packaging assistance for software developers and ECP
facilities and developed new capabilities for Spack to
enable automated deployments of software at ECP facilities,
in containerized environments, and as part of continuous
integration. Concurrently, the Supercontainers subproject
investigated and developed technologies and best practices
that enable containers to be used effectively at ECP facilities.
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The goal of the Supercontainers effort was to ensure that
HPC container runtimes are scalable, interoperable, and
integrated into Exascale supercomputing across DOE.

Exascale computers offer transformative capabilities to
combine data-driven and learning-based approaches with
traditional simulation applications to accelerate scientific
discovery and insight. These software combinations and
integrations, however, are difficult to achieve due to
challenges in coordinating and deploying heterogeneous
software components on diverse and massive platforms.
The ExaWorks subproject addressed these challenges by
co-designing an open Software Development Kit (SDK)
consisting of workflow management systems (WMSs)
that can be composed and interoperate through common
interfaces. The subproject bootstrapped the SDK with an
initial set of tools, designed common interfaces, made
tools easier to apply to complex science challenges, and
applied the SDK to ECP applications. The subproject was
community-centered, working with stakeholders, such as
users, developers, and facility representatives, to sustainably
address workflow requirements at exascale.

Development Strategy

Spack became the de facto delivery method for software
products building from source in the ECP. Spack packaging
assistance for developers and DOE computing facilities
was provided, and new capabilities for Spack that enable
automated deployments of software at the facilities were
developed. Concurrently, technologies were developed and
best practices were documented that enable containers to be
used effectively at Facilities.

As scientific workflows continue to become more com-
plex, the ExaWorks subproject addressed this complexity by
co-designing an open Software Development Kit consisting
of workflow management systems that can be composed
and interoperate through common interfaces. The subproject
provided a well-engineered and scalable SDK that can be
leveraged by new and existing workflows. The SDK is
available via E4S and was applied to ECP applications to
address broad workflow needs

Technical Challenges and Solutions

Historically, building software to run as fast as possible on
HPC machines has been a manual process. Users download
source code for packages they wish to install, and they build
and tune it manually for high-performance machines. Spack
has automated much of this process, but it still requires
that users build software. Spack needed modifications to
enable it to understand complex microarchitecture details,
ABI constraints, and runtime details of exascale machines.
This subproject enabled binary packaging and developed
new technologies that enable the same binary packages to
be used within containers or in bare metal deployments on
exascale hardware.

The Supercontainer effort faced similar challenges
to deploying containers on HPC machines. Container
technology most notably enables users to define their
own software environments, using all the facilities of the
containerized host OS. Users can essentially bring their
own software stack to HPC systems, and they can snapshot



an entire application deployment, including dependencies,
within a container. Containers also offer the potential
for portability between users and machines. The goal of
moving an HPC application container from a laptop to a
supercomputer with little or no modification is in reach, but
there were a number of challenges to overcome before this
was possible on exascale machines. Solutions from industry,
such as Docker, assume that containers can be built and run
with elevated privileges, that containers are isolated from
the host network, file system, and GPU hardware, and that
binaries within a container are unoptimized and can run on
any chip generation from a particular architecture. These go
against the multi-user, multi-tenant user environment of most
HPC centers and optimized containers may not be portable
across systems.

Emerging exascale workflows pose significant challenges
to the creation of portable, repeatable, scalable, and
performant workflows. These challenges are both technical
and non-technical. On the technical side, WMSs are
incapable of supporting heterogeneous co-scheduled and
high-throughput workflows, and enabling communication
between fine-grained tasks in dynamic workflows. On
the nontechnical side, the myriad WMSs that exist, the
absence of reusable WMS components, and the lack of user
guidance when selecting a WMS have led to a disjoint
workflows community that tends toward building ad hoc
or bespoke solutions rather than adopting and extending
existing solutions. Important challenges are outlined below:
Workflows Community. The workflows, applications, and
facility communities are disjoint. Efforts are needed to
bring these groups together to define, develop, and integrate
common workflow components.

Scheduling. Exascale workflows must manage the efficient
execution of diverse tasks (e.g., in runtime, resource require-
ments, single/multi-node) with complex interdependencies
on heterogeneous resources.

Scale and Performance. Emerging workflows feature huge
ensembles of short-running jobs, which can create millions
or even billions of tasks that need to be rapidly scheduled
and executed.

Coordination and Communication. Workflows depend on
coordination between the workflow and the tasks within it,
a need that requires efficient exchange of data following
various communication patterns.

Portability. WMSs are tested on a handful of systems
and the frequency by which system hardware and software
change makes it impossible to guarantee that a workflow will
work on a system in the future.

Key Capabilities and Deployment

The Spack subproject supported ST teams by developing
portable build recipes and additional metadata for the ECP
package ecosystem. The end goal was to provide a packaging
solution that can deploy on bare metal, in a container, or
be rebuilt for a new machine on demand. Spack bridged the
portability divide with portable package recipes; specialized
packages can be built per site if needed, or lowest-common-
denominator packages can be built for those cases that
do not need highly optimized performance. Packages are
relocatable and can be used outside their original build
environment. Moreover, Spack provides environments that
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enable a number of software packages to be deployed
together either on an HPC system or in a container.

The Supercontainer subproject documented current prac-
tice and leveraged existing container runtimes, but also
developed new enabling technologies where necessary to
allow containers to run on HPC machines. Several HPC
container runtimes (e.g., Shifter, Charliecloud, Singularity)
already existed, and this diversity enabled wide exploration
of the HPC container design space. The Supercontainers
subproject worked with the developers of these subprojects
to address HPC-specific needs, including container and job
launch, resource manager integration, distribution of images
at scale, use of system hardware (storage systems, net-
work and MPI libraries, GPUs, and other accelerators), and
usability concerns around interfacing between the host and
container OS (e.g., bind-mounting required for hardware
support).

The subproject documented best practices to help
educate new users and developers to the advantages of
containers, and to help ensure efficient container utilization
on supercomputers. These living documents are updated
periodically in response to lessons learned and feedback.
In addition, the subproject identified gaps and implemented
changes in the three existing runtimes as needed. The
subproject also interfaced with the E4S and SDK teams,
as well as AD teams interested in containerizing their
applications. The subproject worked to enable these teams to
deploy reproducible, minimally-sized container images that
support multiple AD software ecosystems.

The ExaWorks subproject laid the foundation for an
inherently new approach to workflows: it established an SDK
by assembling components from existing WMSs and defined
new component interfaces. The ExaWorks SDK provides
a robust, well-tested, well-documented, and scalable set of
tools and components that can be combined to enable diverse
teams to produce scalable and portable workflows for a wide
range of exascale applications. Importantly, the subproject
did not create a new workflow system nor did it aim to
replace the many workflow solutions already deployed and
used by scientists, but rather it provided a well-engineered
and scalable SDK that can be leveraged by new and existing
workflows.

The goals of this subproject were to instantiate the
ExaWorks SDK, seed the SDK with robust workflow
component technologies, explore pairwise integrations
between components and define common component
interfaces. The subproject also aimed to impact ECP
applications and bring together the workflows community,
including developers, ECP applications, and DOE compute
facility representatives to collectively address workflows
challenges.

Lessons Learned and Future Challenges

Software deployments will continue to become more
complex, especially when we require optimized builds for
the unique and complicated exascale architectures. Keeping
dependencies updated and the software tested on these
systems using continuous integration will tax the resources at
the Facilities. Software testing that includes interoperability
and scalability tests will require further resources, both in
terms of people to write the tests and the hours to regularly
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run them. These put greater emphasis on using and updating
Spack as a solution strategy for large collections of software
and for using CI infrastructure and resources.

Containers will become more popular and usable as a
way to package the entire environment necessary to run
an application on the exascale machines, thereby managing
some of the complexity of an application deployment. We
expect that performance of an application within a container
will be nearly as fast as running the application on bare
metal. Application build time will be reduced by using the
associated build caches.

Workflows will continue to become more complex to
complete their science missions, requiring orchestration
of many applications and scripts, executed at various
scales across many different resource types, and often
reliant on machine learning algorithms for guidance. We
expect that hardening workflow management systems and
building a community centered around robust and scalable
components will be foundational for addressing these
complexities. Moreover, we expect that container-based
scientific workflows will begin to take off as we transition
from demonstrations of applications at scale to performing
science with them.

Co-Design

Six ECP co-design centers developed libraries, frameworks,
and best practices focused on higher-level abstractions
common to multiple ECP (and non-ECP) applications, such
as particles, meshes, data-centric, graph, and machine-
learning motifs. The goals and mid-ECP status of each of
these centers were discussed in detail in a previous special
issue of the International Journal of High-Performance
Computing Applications (Germann 2021). Here, we briefly
summarize some of the highlights and lessons learned from
the ECP co-design portfolio.

Tools and Libraries

The six co-design centers and some of their key products are
briefly summarized here; other articles in this issue provide
more details.

The AMReX center was responsible for constructing and
deploying a framework of the same name to support the
development of block-structured adaptive mesh refinement
algorithms for solving systems of partial differential
equations on exascale architectures. Designed as an exascale
successor to BoxLib, several ECP applications were
dependent upon AMReX from the beginning of ECP,
while others adopted it along the way. Further details
about AMReX and the recently developed Python binding,
pyAMReX, are provided in another article in this issue.

The Center for Efficient Exascale Discretizations (CEED)
developed next-generation discretization software and
algorithms to enable finite element applications to run
efficiently on future hardware. The high-order API library
libCEED provided portable and efficient operator evaluation
and was used as a backend for the MFEM finite element
library, described below. At an even lower level, OCCA
provides portability through a lightweight library for just-in-
time runtime with heterogeneous platforms. OCCA was used
in libCEED, directly in MFEM, and in the newly developed
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NekRS code, a C++ version of the legacy Nek5000 code built
upon the highly optimized OCCA (and libParanumal) GPU
kernels.

The Center for Particle Applications CoPA developed
the Cabana library for particle-based simulations, an
extension of the Kokkos performance portability layer
providing common particle operations such as neighbor list
generation, particle redistribution, halo exchange, particle-
grid interpolation, and more. The dense and sparse linear
solver operations required by many quantum chemistry
and molecular dynamics algorithms were provided through
the combination of the high-level Parallel, Rapid O(N),
and Graph-Based Recursive Electronic Structure Solve
(PROGRESS) library and lower-level Basic Matrix Library
(BML). Further details about CoPA are provided in Reeve
et al. (2024).

The Center for On-line Data Analysis and Reduction
CODAR addresses the growing need for data reduction
and/or analysis operations to run concurrently with data-
generating applications rather than in the traditional post-
processing mode. The primary technologies that CODAR
developed, supported, and utilized for their co-design
analyses include:

1. Cheetah is a Python-based experiment harness and
campaign management system for running co-design
experiments to study the effects of online data anal-
ysis. Built on top of the ADIOS ecosystem, Cheetah
provides a way to run large campaigns of experiments
to understand the advantages and tradeoffs of different
compression and reduction algorithms run using dif-
ferent orchestration mechanisms: offline, online (with
separate executables), or in situ (with a single exe-
cutable), and with different mappings to available
hardware.

2. Savannah is a runtime framework for Cheetah that
translates experiment metadata into scheduler calls
for the underlying system and manages the allocated
resources for running experiments. Savanna contains
definitions for different supercomputers; based on this
information about the target machine, Savanna uses
the appropriate scheduler interface (e.g., aprun, jsrun,
and slurm) and the corresponding scheduler options to
launch experiments.

3. Z-Checker is a library to characterize the data and
check the compression results of lossy compressors.
The Z-Checker tool not only evaluates the compres-
sion speed and compression ratio, but also (depending
on the application) other measures such as entropy,
error distribution, power spectrum, and autocorrela-
tion, either in an online or offline mode.

4. Chimbuko captures, analyzes, and visualizes perfor-
mance metrics for complex scientific workflows and
relates these metrics to the context of their execu-
tion (provenance) on extreme-scale machines. Because
trace data can quickly escalate in volume for appli-
cations running on multi-node machines, the core
of Chimbuko is an in-situ data reduction component
that captures trace data from a running application
instance (e.g. MPI rank) and applies machine learning



to filter out anomalous function executions. By focus-
ing primarily on performance anomalies, a significant
reduction in data volume is achieved while maintain-
ing detailed information regarding those events that
impact the application performance.

The ExaGraph Co-Design Center was established
to design and develop methods and techniques for
efficient implementation of key combinatorial (graph)
algorithms, which are some of the most challenging
algorithmic kernels to parallelize and scale due to their
sparse and irregular memory access patterns. For some
problems, such as graph matching, edge covering, graph
coloring, and graph partitioning, a full (exact) optimization
problem is intractable, but efficient approximation or
heuristic algorithms have been developed that have greater
concurrency and can be implemented efficiently. Several
of these algorithms have been deployed in the Zoltan2
toolkit (a successor to the widely used Zoltan toolkit)
of parallel algorithms for partitioning, coloring, ordering,
and task placement on modern computing architectures.
Other graph algorithms involve community detection, widely
used in diverse domains including bioinformatics and social
network science, and influence maximization, important in
either containing epidemic spread or promoting the spread
of marketing campaigns. Lastly, other graph algorithms
that commonly arise in computational biology and graph
learning rely on basic linear algebraic operations on sparse
matrices and vectors; ExaGraph has developed improved
algorithms and codes based on them, including PASTIS,
a distributed many-to-many protein sequence aligner that
relies on sparse matrices and scales to thousands of nodes
while being comparable with other sequence aligners in
terms of accuracy.

Finally, the ECP Co-design Center for Exascale Machine
Learning Technologies (ExaLearn) targeted machine learn-
ing methods that are common across a number of ECP and
other scientific machine learning (SciML) use cases. These
fell into four classes of learning problems: surrogate models,
inverse solvers, control policies, and design strategies. In
addition, a number of proxy applications were developed to
represent the unique workload of these new types of data
science applications, which differ from traditional scientific
computing / computational science applications.

Development Strategy

Each of the ECP co-design centers worked closely with their
application “customers” to identify needs and priorities and,
in turn, with developers of lower-level libraries and tools,
such as Kokkos, MAGMA, and ADIOS. In both cases, this
was facilitated by having team members shared across teams
so that the end-user perspective was always “in the room,”
allowing for a continuous assessment and reprioritization
of efforts and co-design assessment of tradeoffs between
alternative strategies. For frameworks with established
user communities and application customers, such as
AMReX, this allowed new functionality to be identified
and prioritized. For other newly developed libraries, such
as Cabana, the requirements and an API were designed in
partnership with the future users before any code was written.
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Technical Challenges and Solutions

At the onset of ECP, the community envisioned two
exascale “swimlanes”: a many-core successor to Intel’s
Knights Landing, and a GPU-accelerated successor to
previous NVIDIA-powered machines, programmed using
either CUDA or OpenACC. As ECP progressed, and
contracts were awarded for Frontier, Aurora, and El Capitan,
code development plans based on these two swimlanes had
to adapt. Fortunately, the common abstractions provided
by the co-design centers and software technology teams
largely allowed application codes to rely on these lower-level
libraries and frameworks for portability. But this required
a significant redirection of effort, and acceleration of plans
to port CPU-native algorithms to GPUs (while reducing or
dropping many-core CPU efforts), by the co-design and ST
teams.

Key Capabilities and Deployment

New functionality has been developed for existing frame-
works, such as the addition of particles and embedded
boundaries in AMReX. For all frameworks and libraries, new
implementations have been developed that are more suitable
for the modern and emerging era of hierarchical parallelism,
in some cases through entirely new implementations devel-
oped from scratch (e.g., AMReX, NekRS), Finally, some
new libraries, and frameworks have been designed and devel-
oped, most notably CoPA’s Cabana. Several capabilities were
even more collaborative and tailored to specific application
needs, including several examples from CODAR, CoPA
(ExaMiniMD to SNAP performance gains), and ExalLearn.

Lessons Learned and Future Challenges

Larger ECP teams brought related but distinct development
efforts into the same subproject, allowing for useful cross-
fertilization of ideas. Examples include Nek and MFEM
within CEED, and several mostly single-lab efforts brought
into larger multi-lab collaborations such as CODAR,
ExaGraph, and ExaLearn. As mentioned above, the inclusion
of both higher-level application and lower-level library
developers in the co-design team enabled a continuous
reassessment of priorities and strategies.

A key challenge is retaining this collaboration and
momentum in the future. For instance, in maintaining
productive cross-lab collaborations in the face of a natural
tendency to return to tribal competition between institutions
for smaller teams, and sustaining newer technologies such as
Cabana which only have a narrow (but deep) user base drawn
from the small pool of ECP applications at the moment, yet
have the promise of a broader user community if they can
survive the valley of death.

NNSA Libraries and Tools

Efforts funded by NNSA were a part of ECP from the
beginning. The software products for the NNSA Software
Technologies portfolio were largely focused on unique
aspects of the NNSA mission and supporting the National
Security Application efforts in ECP. However, each of the
software products also maintained their code as open source
and also worked to support the wider ECP community.
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At the beginning of ECP, the NNSA software products
were distributed across the topic areas in Software Tech-
nologies: Programming Models & Runtimes, Development
Tools, Math Libraries, and Data and Visualization. However,
in 2019, a management decision was made to create a
new area for NNSA software products and manage them
separately from the software products that were funded by
the DOE Office of Science. The decision was made largely
to ease management challenges that arose because the NNSA
products were funded by a different source (NNSA) and
because the NNSA subprojects focused on the needs of the
NNSA National Security Applications instead of the ECP
applications. Even though they were managed separately, the
software products in this portfolio had a broad impact across
all of ECP and the HPC community.

Tools and Libraries in NNSA Software
Technologies

Each of the three NNSA laboratories managed a single
subproject that contained multiple independent team efforts.

Los Alamos National Laboratory The subproject from Los
Alamos National Laboratory pursued efforts in four team
efforts: Legion, LLVM, BEE/Charliecloud, and Cinema.

The Legion data-centric programming system provides
unique capabilities and fits within LANL’s strategy to
develop tools and technologies that enable a separation
of concerns of computational physicists and computer
scientists. The Legion team focused on the development
of significant new capabilities within the Legion runtime
that are specifically required to support LANL’s ATDM
applications and on co-design and integration of advanced
programming model research and development within
FleCSlI, a Flexible Computational Science Infrastructure.

LANL’'s LLVM-focused team effort included Kitsune,
which provides a compiler-focused infrastructure for
improving various aspects of the exascale programming
environment. The Kitsune efforts primarily focused on
advanced compiler and tool infrastructure to support the
use of a parallel-aware intermediate representation (IR) in
the LLVM compiler infrastructure effort. In addition, the
team was actively involved in the Flang Fortran front-end
that became an official subproject within the overall LLVM
infrastructure. These efforts included interactions across
ECP as well as with the broader LLVM community and
industry.

The BEE/Charliecloud effort created software tools to
increase the portability and reproducibility of scientific
applications on high-performance and cloud computing
platforms. Charliecloud is an unprivileged Linux container
runtime. BEE (Build and Execution Environment) is a
toolkit providing users with the ability to execute application
workflows across a diverse set of hardware and runtime
environments. Using BEE’s tools, users can build and launch
applications on HPC clusters and public and private clouds,
in containers or in containers inside of virtual machines,
using a variety of container runtimes such as Charliecloud
and Docker.

The Cinema effort developed scalable solutions for data
analysis. Cinema is a novel database approach to saving
data extracts in situ, which are then available for post
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hoc interactive exploration. These data extracts can include
metadata, parameters, data visualizations, small meshes,
and output plots. Cinema workflows enable flexible data
analysis using a fraction of the file storage. Cinema example
workflows can be downloaded, built, and run quickly
enough to be useful in a variety of applications such as
continuous integration (CI), prototyping functionality, or
testing analyses.

Lawrence Livermore National Laboratory The subproject
from Lawrence Livermore National Laboratory included five
team efforts: AID, Flux, Spack and Caliper, MFEM, and
RAJA/CHAI/Umpire.

The AID (Advanced Infrastructure for Debugging) effort
provided advanced debugging, code-correctness, and testing
toolset to facilitate reproducing, diagnosing, and fixing bugs
within applications. Four tools were part of this effort: STAT,
a highly scalable lightweight debugging tool; Archer, a low-
overhead OpenMP data race detector; ReMPI and NINJA,
a scalable record-and-replay and smart noise injector for
MPI; and FLiT and FPChecker, a floating-point correctness
checking tool suite.

The Flux effort focused on the Flux next-generation work-
load management framework. Flux maximizes scientific
throughput by scheduling the scientific work requested by
HPC users, also known as jobs or workloads. Using hierar-
chical scheduling and graph-based resource modeling, Flux
manages a massive number of processors, memory, GPUs,
and other computing system resources, a key requirement for
exascale computing and beyond.

An effort focused on improving tools for HPC developers
included Spack and Caliper. Spack is an HPC package
manager that automates the process of downloading, build-
ing, and installing different versions of HPC applications,
libraries, and their dependencies. Spack enables complex
applications to be assembled from components, lowers bar-
riers to reuse, and allows builds to be reproduced easily.
Caliper is a program instrumentation and performance mea-
surement framework. It is designed as a performance analy-
sis toolbox in a library, allowing one to bake performance
analysis capabilities directly into applications and activate
them at runtime.

The MFEM effort focused on providing high-performance
mathematical algorithms and finite element discretizations
to next-generation high-order applications. Among the
activities in the MFEM effort was the development of unique
unstructured adaptive mesh refinement (AMR) algorithms
that focus on generality, parallel scalability, and ease
of integration in unstructured mesh applications. Another
aspect of the work was porting MFEM to exascale platforms
that include GPUs by using mathematical algorithms and
software implementations that exploit increasing on-node
concurrency.

An effort that focused on programming abstractions
included the RAJA, CHAI, and Umpire software libraries
that enable application and library developers to meet
advanced architecture portability challenges. The goals were
to enable the writing of performance-portable computational
kernels and coordinate complex heterogeneous memory
resources among components in a large integrated appli-
cation. These libraries enhance developer productivity by



insulating them from much of the complexity associated
with parallel programming model usage and system-specific
memory concerns.

Sandia National Laboratories The Sandia National Lab-
oratories subproject contained four team efforts: Kokkos,
Kokkos Kernels, VTK-m, and OS/ONR.

The Kokkos effort focused on the Kokkos programming
model and C++ library that enables performance portable
on-compute-node parallelism for HPC C++ applications.
The Kokkos library implementation consists of a portable
application programmer interface (API) and architecture-
specific back-ends, including OpenMP, Intel Xeon Phi, and
CUDA on NVIDIA GPUs. These back-ends are developed
and optimized as new application-requested capabilities
are added to Kokkos, back-end programming mechanisms
evolve, and architectures change.

The effort for Kokkos Kernels developed software
that implements on-node shared memory computational
kernels for linear algebra and graph operations, using
the Kokkos shared-memory parallel programming model.
Kokkos Kernels supports several Kokkos backends for
architectures such as Intel CPUs, KNLs, and NVIDIA
GPUs. The algorithms and the implementations of the
performance-critical kernels in Kokkos Kernels are chosen
carefully to match the features of the architectures. This
allows applications to utilize high-performance kernels and
transfers the burden to Kokkos Kernels developers to
maintain them in future architectures.

The VTK-m effort developed a toolkit of scientific visu-
alization algorithms for emerging processor architectures.
VTK-m supports the fine-grained concurrency for data anal-
ysis and visualization algorithms required to drive extreme-
scale computing by providing abstract models for data and
execution that can be applied to a variety of algorithms across
many different processor architectures. The effort built up the
VTK-m codebase with the necessary visualization algorithm
implementations to run across the varied exascale-era plat-
forms.

The OS and On-Node Runtime (OS/ONR) effort focused
on the design, implementation, and evaluation of operating
system and runtime system (OS/R) interfaces mechanisms,
and policies supporting the efficient execution of application
codes on next-generation platforms. The effort priorities
included lightweight tasking techniques that integrate
network communication, interfaces between the runtime
and OS for the management of critical resources portable
interfaces for managing power and energy, and resource
isolation strategies at the operating system level that maintain
scalability and performance.

Development Strategy

The primary objective of the NNSA software technology
portfolio was to support the development of new NNSA
applications that were started just prior to the founding
of the ECP under the Advanced Technology Development
and Mitigation (ATDM) program element within the NNSA
Advanced Simulation and Computing (ASC) Program.
These NNSA software products were developed alongside
a broader portfolio of ASC products, and followed the
procedures for defining the work scope for the broader
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portfolio. Annually, a high level scope of work was planned
out for these products in the ASC Implementation Plan.
Detailed work scope for these products was planned using
approved processes within the home institution/laboratory.

The software development teams worked with the NNSA
National Security Application teams to co-design much
of the functionality that was developed in ECP. The
applications targeted running on LLNL’s El Capitan exascale
system, the architecture of which represents a significant
departure from what the application teams used in the
past. The software product teams provided tools and
capabilities to the application developers at all stages
of development. For example, early in the development
cycle, the application teams worked to integrate program
abstractions such as RAJA and Kokkos to shield the
applications from changes in the underlying architecture.
Additionally, tools such as debuggers and performance tools
were critical for understanding problems in early prototypes.
Later, the application teams took advantage of other software
capabilities such as those for building and testing, code
optimization, I/O, and visualization and analysis. Overall,
the NNSA applications were successful because of the broad
range of software support developed as part of ECP.

Collaboration with the Broader Community

Many of the software products in the NNSA Software
Technologies portfolio received complementary funding
from the Office of Science. This additional funding allowed
the software teams to broaden their scope beyond supporting
the NNSA National Security Applications, which had a
remarkable impact on the HPC community. For the wider
ECP community, there was substantial benefit gained by the
adoption of tools developed by NNSA. Key examples of
this are the Spack and Kokkos tools, both of which were
adopted by a large number of ECP software products and
applications. The NNSA tools provided critical capabilities
that supported the software products and applications in
meeting their ECP metrics. From the NNSA perspective,
the benefit was seen in broad, increased participation in
development of the software products, relieving NNSA of
the burden of being the sole supporter for development and
maintenance of these software products.

Lessons Learned

Overall, two key lessons came from the participation of
NNSA software product teams in ECP. First, having a
focused mission goal of supporting targeted applications
on a particular architecture was highly productive and
resulted in great outcomes for the application teams,
where the applications met their ECP objectives and their
overall NNSA mission goals. Additionally, because the
new applications were developed in collaboration with
the software product teams and the application teams
used the abstractions and tools provided in the NNSA
software product portfolio, the new applications will be
portable to future architectures that are likely to have
different characteristics than current platforms. Second, the
collaboration between the NNSA and Office of Science
teams provided bidirectional benefits. Prior to ECP, the
NNSA and Office of Science teams had much less interaction
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and many times similar capabilities were developed on each
side, resulting in a duplication of effort. The increased
collaboration led to combined efforts to address challenges
and resulted in better and more resilient software all around.

Spack

Software build and installation has been a challenge for
the HPC community for many years (Dubois et al. (2003);
Gamblin et al. (2015)), and ECP posed perhaps the
largest software integration challenges in the history of
DOE. As described earlier, one of ECP’s core mission
requirements was to create a robust, reliable, and portable
software ecosystem. With nearly 100 different rapidly
evolving software packages, each with many dependencies,
the ECP stack was around 600 packages in total. All of
these packages needed to be built together consistently
in many different environments. Integrating them by hand
was intractable, especially since they were under constant
development. Each time any package changed, its dependent
packages needed to be rebuilt and potentially re-integrated
to account for changes. Manual software integration might
have been a much more difficult problem for ECP, had
the Spack (Gamblin et al. (2015)) project not been gaining
adoption at the beginning of the project.

Spack’s Key Capabilities

Spack is a build tool and package manager designed
to meet the needs of the HPC community. It enables
flexible, portable, optimized builds of large software stacks.
Spack’s flexibility allowed developers working across ECP,
on different machines, with different versions of the same
software to continuously integrate and test their work.
Without this type of automation, managing and ensuring the
robustness of ECP’s software products would have required
much more work. While there were other build automation
tools such as EasyBuild (Hoste et al. (2012)), available in the
HPC community, these tools did not provide the flexibility
needed for all the environments ECP was required to support.

For most communities, it is sufficient for developers to
provide portable, unoptimized binaries of their software. In
the HPC community, developers build for many different
architectures and software environments, and it is of
paramount importance that software be optimized for the
host machine. Most applications and software packages
(even, in some cases, proprietary ones) are distributed as
source so that they can be compiled and integrated by the
user or by HPC center staff.

Spack has five key capabilities that enabled it to be
successful during ECP:

1. Spec DSL. Spack implements a domain-specific
language (DSL), for specifications, or specs of build
configurations. Specs enable users to describe specific
versions, features, compilers, and dependencies, either
to conditionally enable some aspect of a build or to
query for builds matching particular criteria.

2. Combinatorial Package recipes. While other tools
have a single recipe per configuration of a piece
of software, Spack has a single recipe per software
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package, Recipes are declarative and portable so that
they can build configurations that have never been
built before. Compared to other systems, this was an
especially important feature for ECP, where projects
were porting to new systems, new CPUs, and new
GPUs frequently. The ability to easily specify a new
build with the spec syntax, and to have a package
understand it enabled developers to port their software
rapidly. Other systems only allow users to reproduce
pre-specified configurations.

. Concretization. Any parameter of a build may be

dependent on some other configuration parameter.
For example, certain build options, or variants, only
exist for certain versions of software. Similarly, only
certain versions of some packages may be compatible.
Spack’s spec syntax allows package authors to specify
these types of requirements and define a space of
valid builds. Selecting the best build configuration that
satisfies all requirements is still a daunting challenge.
In fact, this problem is NP-hard. The Spack team
developed a very general dependency solver called
the concretizer. Its job is to convert an abstract, or
underspecified spec, to a concrete spec, where all
options have a selected value. The concretizer started
with a simple, greedy algorithm, but as packages grew
in complexity during ECP, it had to be fully rewritten
to use a fast, complete solver using Answer Set
Programming (ASP) (Gamblin et al. (2022); Gebser
et al. (2011)), a logic programming paradigm that
excels at solving combinatorial problems.

. Binary packaging. As the ECP ecosystem grew, it

became intractable to simply recompile every package
for each change. Building software can be extremely
slow, especially with portability and GPU frameworks
making extensive use of C++ templates. Spack, in
collaboration with users at Fermilab and CERN,
built up features for binary packaging. Ultimately,
this would allow teams to build workflows around
Spack that could install 10-100x faster than traditional
source builds, while still achieving high levels of
optimization. Spack’s detailed metadata, particularly
around specific microarchitecture information (Culpo
et al. (2020)), enabled the creation of optimized
binaries, and the redesigned concretizer (Gamblin
et al. (2022)) ensured that optimized binaries were
selected and used in builds.

. Continuous Integration. In addition to the above key

features, the Spack team built an extensive continuous
integration (CI) system to ensure that even as the
community grew and contributions became more
rapid, changes were tested before being integrated
into the main Spack branch. With help from Kitware,
Amazon Web Services, and the University of Oregon,
the Spack team built a cloud build system with
Kubernetes and GitLab that ensured that pull requests
to key packages in the Spack repositories were built
and tested before being merged into the mainline. The
system has made Spack builds much more reliable
over time. The CI system would not be possible



without binary packaging, as the costs of rebuilding all
packages on every commit would be too steep. Even
with extensive caching, the build system conducts
40,000 to 100,000 builds per week, depending on
Spack project activity.

Impact on Stewardship and Advancement

Spack started out in 2013 as a small project at Lawrence
Livermore National Laboratory. It was originally intended
to simplify the build of HPC performance tools, automate
site deployments in LLNL’s Livermore Computing Division,
and automate builds for ASC simulation code teams. It
was released as open source in 2014, and the project was
then published in the main track at the Supercomputing
2015 conference (Gamblin et al. (2015)). After the initial
publication, Spack started to gain traction in the broader
HPC community. By the start of the ECP, it had amassed
around 100 contributors and just over 400 package recipes.
By 2017, software projects within ECP needed to build on
laptops, commodity clusters, hardware testbeds at exascale
facilities, and pre-exascale systems starting to roll out at
the DOE laboratories. Every new environment required
extensive effort from ECP staff, and between 2017 and 2018,
Spack was adopted as the integration framework for E4S.
The first version of E4S, built on Spack, was released in
November of 2018.

During ECP, Spack became an exemplar for large
community open-source projects in DOE. The project
was built with community in mind, including not only
the community of wusers but also the community of
external project contributors. In 2016, the majority of ECP
software projects were not using continuous integration
or automated testing, and many were not hosted on open
community sites like GitHub. Still, more were not hosting
public documentation. Spack was not the first project
to use any of these tools, but it leveraged them to
build confidence among potential users and contributors.
Automation, documentation, and openness enabled the
Spack project to scale dramatically over the course of ECP.
Between 2016 and the end of ECP in 2023, Spack grew
from just over 400 packages (less than the entirety of the
ECP stack) to over 7,500 package recipes. It also grew from
around 100 contributors to over 1,300 contributors in the
same time period. Widespread usage led to Spack becoming
a nearly de-facto standard for HPC software packaging,
which further increased its contributor count and helped the
sustainability of the project. At the end of ECP, the Spack
project was receiving between 300 and 600 contributions
(mostly package updates) per month on GitHub.

While ECP’s software stack (E4S) is, on its surface, only
around 100 packages, those packages rely on around 500
additional transitive dependencies in the Spack ecosystem.
Had the Spack project limited itself to only E4S packages,
it would not have been able to leverage these network
effects, and it would have been more difficult to maintain
the ECP software stack. Spack enabled all HPC software
to be managed as a community ecosystem, something that
had been extremely difficult in the days before ECP when
there was not a sufficiently expressive packaging system
to manage a multi-platform, multi-architecture, multi-GPU,
multi-version software stack. Spack will live on as the
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central package manager for the HPC ecosystem, bolstered
significantly by the rapid advances made during ECP.

Lessons Learned

We learned many lessons from building out the Spack
community during ECP, but the main ones were:

1. Be technically ambitious. Many packaging efforts
before Spack sought to down-scope the problem of
managing combinatorial software builds. They failed
to get significant adoption in HPC because of this
oversimplification. In HPC, developers require options
and flexibility for porting and tuning. “Make it as
simple as possible, but not simpler” is, sadly, for
exascale computing, still extremely complex.

2. Build communities around packages. The Spack
project was ultimately created for its users, to enable
them to build their own packages and projects on top
of the core tool. Building a platform like this that
increased activity ultimately enabled us to get external
users invested in the project, and many ultimately
became contributors. ECP itself is part of a broader
HPC and open-source community, and it cannot be
sustained without keeping all of its dependencies up
to date.

3. Invest in automation. Spack started with automated
testing to ensure that external contributions to the core
tool were correct, and ultimately the project had to
expand its build farm to keep up with the rate of
contribution. Without this, the maintainers of Spack
would simply have become overwhelmed with the
number of contributions. Automation is key to scaling
a small development effort up into a large community
project.

Future Challenges

Many technical and sustainability challenges remain for
Spack after ECP. On the technical side, Spack will need to
model software at an increasingly deep level. In particular,
the team will need to model very low-level libraries such
as C, C++, and Fortran runtime libraries in order to handle
compatibility constraints between compilers. While the new
solver developed during ECP can help with this, there are
scalability challenges with each new piece of information
introduced to the combinatorial solver algorithm. Modeling
software correctly and in a way that will not cause a
combinatorial explosion in the solver is a large challenge.

In addition to technical challenges, Spack has sustain-
ability challenges ahead. The team will need to continue to
ensure that a regular flow of contributors helps to maintain
the Spack package ecosystem. Currently, the number of
contributors continues to increase over time, but encouraging
new contributors to join and onboarding them is a constant
effort. Spack is a founding project in the newly established
High Performance Software Foundation (HPSF)T within the
Linux Foundation, and we hope that this will bring more
industry supporters to the project. Ultimately, continued

Thttps://hpsf.io
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adoption and contribution is the only recipe for long-term
sustainability for Spack.

E4S and the ECP SDKs

ECP applications were built on software components from
a variety of categories, including programming models
and runtimes, mathematical libraries, data and visualization
packages, and development tools. Along with software
ecosystems and scientific workflows, these categories
each had a Software Development Kit (SDK) subproject
associated with it. The software technologies from all
of these categories comprise the Extreme-scale Scientific
Software Stack (E4S). E4S, which was started as part of ECP,
represents a portfolio-driven effort to collect, test, and deliver
the latest in reusable open-source HPC software products, as
driven by the common needs of applications. E4S provides
HPC users with improved access to these products with
preinstalled versions, a Spack build cache, and Spack recipes
that can be customized to specific needs. Since the majority
of users will likely only require a subset of ECP software,
E4S offers the option to pick what they need and turn off
anything else. It also provides a tool (e4s_chain_spack. sh)
to easily chain two Spack instances - one installed in a central
directory that is typically not writable by users, and one in
a user’s home directory. This is typically the case with the
containerized deployment of E4S. A user can then customize
and install new packages in their home directory while
using packages installed in the central directory. E4S also
coordinates with HPC facilities to help deploy the software
on various machines.'

The individual software products in each SDK are
specifically tailored to be interoperable where useful, and
to be installable in a common ecosystem. Each SDK relies
on its developer community to identify its own specific
needs, and the SDK teams find and test ways to use
related software together and deliver through EA4S. For
example, the data and visualization SDK established CI
testing to ensure its member packages work with common
versions of dependent software, and the math libraries SDK,
or xSDK, invested heavily in achieving and maintaining
interoperability between its member packages.

The E4S and SDK subprojects made it simpler for ECP
applications to access required software dependencies on
ECP target platforms and drastically lowered the cost of
exploring the use of additional ECP ST software. In addition,
the SDK effort decreased the ECP software support burden
at the major computing facilities by ensuring the general
compatibility of ST packages within a single software
environment, provided support for the installation of ST
packages on facility machines, communicated common
requirements for ST software, and facilitated the set up of
ClI testing at the Facilities.

EA4S has the following key features.

* The E4S suite is a large and growing effort to
build and test a comprehensive scientific software
ecosystem. In November 2018, E4S V0.1 contained
25 ECP products. Two years later, E4S V1.2, the
fifth E4S release, contained 67 ECP ST products and
numerous additional products needed for a complete
software environment. Most recently, E4S V24.02 had
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grown to 122 products. Eventually, E4S will contain
all the open-source products needed for a holistic
environment.

¢ E4S is not an ECP-specific software suite. The
products in E4S represent a holistic collection of capa-
bilities that contain the ever-growing SDK collections
sponsored by the ECP and all additional underlying
software required to use ECP ST capabilities.

* E4S is partitionable. E4S products are built and
tested together by using a tree-based hierarchical build
process. Because the entire E4S tree is built and tested,
users can build any subtree of interest without building
the whole stack (Figure).

* E4S uses Spack. The Spackmeta-build tool invokes
the native build process of each product, enabling
the quick integration of new products, including
non-ECP products. E4S packages are available as
pre-built Spack binaries in the E4S Build Cache
(Figure). Binaries for the major operating systems and
architectures are added to the build cache as updates
become available in Spack.

* E4S is available via containers and cloud envi-
ronments. In addition to a build-from-source capa-
bility using Spack, E4S maintains several container
environments (e.g., Docker, Singularity, Shifter, Char-
lieCloud) that provide the lowest barrier to use.
Container distributions dramatically reduce installa-
tion costs and provide a ready-made environment for
tutorials that leverage E4S capabilities. For example,
EA4S containers now support custom images for ECP
applications, such as WDMapp and Pantheon. E4S is
also available via AWS and Google Cloud platforms.
(Figure)

* E4S distribution. E4S products are available at the
EA4S website.**

* E4S developer community resources. Developers
interested in participating in E4S can visit the E4S-
Project GitHub community.

SDKs have the following attributes.

1. Domain scope: Each SDK comprises packages
whose capabilities are within a natural functionality
domain. Packages within an SDK provide similar
capabilities that can enable leveraging of common
requirements, design, testing, and similar activities.
Packages could have a tight complementarity so that
ready composability is valuable to the user.

2. Interaction models: This is how packages within an
SDK interact with each other. Packages may be com-
patible, complementary, and/or interoperable. Interop-
erability includes common data infrastructure, or the
seamless integration of other data infrastructures, and

I https://dashboard.e4s.io
**https://e4ds.io
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access to capabilities from one package for use in
another.

. Community policies: These include expectations for
how package teams will conduct activities, the services
they provide, the software standards they follow, and
other practices that can be commonly expected from a
package in the SDK.

. Meta-build system: This includes robust tools and
processes to build from source, install, and test the
SDK with compatible versions of each package. This
system sits on top of the existing build, install, and test
capabilities for each package.

. Coordinated plans: Development plans for each
package will include efforts to improve SDK
capabilities and lead to better integration and
interoperability.

. Community outreach: Efforts to reach out to the user
and client communities will include an explicit focus
on SDK as a product suite.

Challenges

1. Ecosystem — development, interoperability, testing

Many scientific applications rely on a collection
of software capabilities that vary from application
to application. It is important for these software
products to function as an ecosystem. Achieving
this interoperability requires software to be tested
together and be built in common ways. ECP offers two
solutions: the Extreme-scale Science Software Stack
(E4S) and the software development kits (SDKs).

Deciding exactly how to deploy the SDKs at the
Facilities is itself a challenge. ECP applications use
different combinations of ST software in different
configurations. For example, applications require
mathematical library capabilities from the xSDK built
on top of both MPICH and OpenMPI and will
want different configurations of those mathematical
libraries.

The SDK effort facilitated the use of common
infrastructure, such as CI testing at the major
computing Facilities and the Spack package manager.
SDK release and delivery goals will benefit from a
common package manager and testing infrastructure,
including the E4S initiative to provide prebuilt binaries
for a variety of architectures.

Recognizing the release readiness and broader
maturity differences between ECP ST products, the
release strategy has been to include only those
products ready for a joint release in the E4S releases
but also to continue to work with other products in
preparing for subsequent release opportunities.

. Community

ST software packages have been developed in a variety
of very different cultures and are at significantly
different levels of software engineering maturity and
sophistication. The experience of some of the SDK
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staff during the formation of the xSDK showed that
in this situation, it is challenging to establish common
terminology and effective communication, and these
are prerequisites to community policies and a robust
software release.

One opportunity for a large software ecosystem effort
such as the ECP ST is to foster increased collaboration,
integration, and interoperability among its funded
efforts. Part of the ECP ST design is the creation
of SDKs. SDKs are collections of related software
products, called packages, in which coordination
across package teams will improve usability and
practices and foster community growth among teams
that develop similar and complementary capabilities.

Establishing software communities Self-organizing
software communities, including developers and users
of related technologies, who deeply understand their
own requirements and priorities, are well-positioned
to determine effective strategies for collaboration and
coordination[15].

Leveraging involvement in ECP software ecosystem
activities as well as experience in defining and
deploying best practices in software engineering for
computational science, members of the IDEAS-ECP
team are devising resources[71] to help teams prepare
for and participate in ECP software ecosystems and
also to increase trust in computational results.

e Software Development Kits (SDKs) establish
collaborative structures for product communities.
The SDK approach grew out of the original
IDEAS xSDK][4;66;73;74] to provide cross-team
collaboration among math library teams by design.
The activities conducted within the SDKs have been
effective at accelerating design space exploration
and making compatible collections of libraries and
tools that benefit users, facilities, and the product
development teams themselves. SDKs also establish
community software policies[48;72] to advance the
quality, usability, and interoperability of related
software technologies, while supporting the autonomy
of diverse teams that naturally have different drivers
and constraints.

. Software Quality

In October 2020, Version 1 of the E4S Community
Policies was announced. The E4S Community Policies
serve as membership criteria for E4S member
packages. The E4S Community Policies have their
genesis in the xSDK Community Policies and have
a similar purpose—to help address sustainability
and interoperability challenges within the complex
software ecosystem of which ECP ST is a part.

The process of establishing Version 1 of the E4S
Community Policies was a multi-year effort led by
the ECP SDK team, including representation from
Programming Models and Runtimes, Development
Tools, Math Libraries, Data and Vis, and Software
Ecosystem and Delivery. This team reviewed the
existing xSDK Community Policies and selected those
policies that were most generally applicable to all
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of ECP ST, and not specific to math libraries. From
there, the chosen policies were refined, and gaps were
analyzed.

In addition to the original policies, a second list
of Future Revision policies was also created. These
policies are not currently E4S membership criteria but
will be very seriously considered in future versions. In
most cases, these policies require further refinement
or planning prior to adoption. The topics that these
policies address provide information about likely
subject areas for E4S policies going forward and
are critical to ongoing communication with the E4S
community.

In December 2021, during the Software Technologies
annual review, a lightweight measurement of product
compatibility with the E4S Community Policies took
place. The results will help guide efforts to increase
the number of products that are compatible with the
community policies.

Both E4S and SDKs provide important solutions to
government agencies—including the National Oceanic and
Atmospheric Administration and NASA—and industry
users. By increasing the interoperability between ECP’s
software technologies and coordinating their delivery, E4S
and SDKs have helped increase the availability, quality, and
long-term sustainability of HPC software.

Extreme-scale Scientific Software Stack (E4S)[23;33]
is a curated stack that incorporates the various topical
SDKs (including programming models and runtimes, math
libraries, data and visualization libraries, and development
tools) and relies on the Spack software management
ecosystem[67]. E4S facilitates the combined use of
independent software packages by application teams,
while also improving transparency and reproducibility of
computational results.

The SDK solution strategy involves pursuing interoper-
ability and sustainability goals by grouping ST software
subprojects into logical collections whose members will
benefit from a common set of community policies as well as
increased communication between members to standardize
approaches where sensible and establish better software
practices.

SDKs provide an aggregation of software products that
have complementary or similar attributes. The ECP ST
uses SDKs to better ensure product interoperability and
compatibility. SDKs are also essential aggregation points
for coordinated planning and testing. The new layer of
aggregation that SDKs represent is important for improving
all aspects of product development and delivery. The
communities that will emerge from SDK efforts will lead to
better collaboration and higher-quality products. Established
community policies will provide a means to grow SDKs
beyond the ECP to include any relevant external effort.
The meta-build configurations based on Spack will play
an important role in managing the complexity of building
the ECP ST software stack by providing a new layer in
which versioning, consistency, testing, and build options
management can be addressed at a mid-scope below the
global build of ECP ST products.
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Summary and Conclusions

The Exascale Computing Project (ECP) made significant
strides in developing and optimizing a comprehensive suite
of software libraries and tools tailored for exascale systems.
The collaborative efforts of ECP’s Software Technology and
Co-Design teams have led to the creation of robust, scalable,
and portable solutions that leverage the unique capabilities of
exascale architectures. By addressing challenges related to
concurrent execution, memory management, and heteroge-
neous computing resources, the ECP has not only advanced
high-performance computing but also set a precedent for
future developments in this field.

Throughout the project, ECP’s structured approach, which
emphasized clear goals, timelines, and regular assessments,
ensured the alignment of software development with the
evolving needs of exascale systems. The project’s success is
evidenced by the integration of ECP-developed products into
the Department of Energy’s computing facilities, supporting
a wide range of scientific applications and demonstrating
significant improvements in performance and scalability.

Several lessons emerged from ECP’s efforts, highlighting
the value of collaboration across various fields, the impor-
tance of balancing innovation with practical implementation,
and the need for continuous engagement with end-users and
vendors. The project underscored the necessity of a collab-
orative and adaptive approach to handle the complexities of
next-generation HPC systems.

Looking ahead, the focus will be on ensuring that these
software libraries and tools continue to scale effectively
with the rapid advancements in hardware technology.
The integration of artificial intelligence and machine
learning, coupled with ongoing research and development,
will be essential in enhancing the software ecosystem’s
interoperability and usability. The insights and advancements
documented in this overview, along with detailed discussions
in subsequent articles, will serve as a valuable resource for
guiding future efforts in exascale computing and beyond.

The ECP has laid a foundation for the future of HPC,
demonstrating the important role of scalable, efficient,
and adaptable software solutions for exascale systems and
all systems—from laptops to supercomputers—that contain
GPUs and, in the future, similar accelerated computing
devices. The continued stewardship and advancement of
these technologies will serve as the foundation of many
scientific and technological advancements in the years to
come.
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