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One of 17 U.S. Department of Energy (DOE) national laboratories; producing 
technological solutions to America’s energy challenges.

National Energy Technology Laboratory (NETL)

▪ NETL has three research 
laboratories

▪ One of three applied 
research national labs

▪ Government owned 

& operated

▪ Leader in cutting-edge 

research in CO2 conversion 

to higher-value products

▪ Only National Lab dedicated 

to carbon management 

research

Driving innovation and delivering solutions 
for an environmentally sustainable and
prosperous energy future:

MISSION

VISION

▪ Ensuring affordable, abundant and 
reliable energy that drives a robust 
economy and national security, while

▪ Developing technologies to manage 
carbon across the full life cycle, and

▪ Enabling environmental sustainability 
for all Americans.

To be the nation’s premier energy 
technology laboratory, delivering 
integrated solutions to enable 
transformation to a sustainable 
energy future.
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Atomistic Force-Fields Indispensable Tool for Materials Design  

ML atomistic 
potentials accelerate 

DFT without 
comprising accuracy 

Limitations of traditional forcefields:

o Time-intensive (low training transparency)

o Limited accuracy and transferability

o Unavailable for many materials 

Traditional Approach 

AI/ML

 Big data

❖ Melting

❖ Oxidation of binary 

alloy system
Noble prize 2024 in physics:

Hopfield and Hinton



7

MLP Workflow: Training and Validation

❑ Crystalline systems

❑ Amorphous systems 

❑ monometalics and 

intermetallics

❑ slab models

❑ alloy systems

❑ nanoparticles

❑ ….

❑ ….

❑ ….

DFT Training Database

Lattice Config.

Defects

Mechanical

Train MLP

MLP

Validate

with DFT

MLP 

Failed

DFT

Adaptive 
Training 



Temperature Dependent Mg Surface Segregation AlMg Alloys: 
Isotherm Comparison

∆𝐸𝜔 𝑋𝑠𝑢𝑟𝑓 = ቐ
 0 𝑋𝑠𝑢𝑟𝑓 ≤ 𝑋0

ቁ 𝜔ሺ𝑋𝑠𝑢𝑟𝑓−𝑋0  𝑋𝑠𝑢𝑟𝑓 > 𝑋0

Wagih-Schuh Isotherm (Modified for Surfaces)

𝑋𝑡𝑜𝑡 = 1 − 𝑓𝑠𝑢𝑟𝑓  𝑋𝑏𝑢𝑙𝑘 + 𝑓𝑠𝑢𝑟𝑓ሺ𝐴)−1
𝐴 = 1 +

1 − 𝑋𝑏𝑢𝑙𝑘

𝑋𝑏𝑢𝑙𝑘
∙ exp

∆ ത𝐸𝑠𝑒𝑔 + ∆𝐸𝜔

𝑘𝑇

−1

MLP results match most precisely with Wagih-Schuh Isotherm 

C. Andolina, J. Wright, N. Das, and W. A. Saidi, Phys. Rev. Mater. 2021, 5, 083804.
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MLP Workflow: Training and Validation

DFT Training Database

Lattice Config.

Defects

Mechanical

Train MLP

MLP

Validate

with DFT

MLP 

Failed

DFT

Adaptive 
Training 

Utilize low-accuracy 
computational framework to 

devleop MLP

Thousands of 
configurations …. 

Recipe to generate 
concise training database
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Material Properties (via DFT)

Lattice Constants Point Defects Mechanical

Dataset 

For

Training
MLP

Train MLP
Properties

(via MLP)
DFT

AIMD

Hψk-space

sampling

Density

DFT

Precision  

High

Low

Computational Experiments on Al, Cu and Mg 

Systematically develop MLPs using different k-grid 
densities: 11,000 configurations / metal /k-grid 

 
 

D. Bayerl, C. Andolina, S. Dwarknath and W. A. Saidi, Digital Discovery, 1, 61-69 (2022)

Properties (DFT)   

Low    Precision   High

Properties (MLP)

Low    Precision   High

Accelerated

Convergence

Slow convergence
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Recipe for concise dataset….

21

5 lattices per 

element

(fcc, bcc, hcp, sc, 

dc,  rhomba, ortho, 

… etc.)

Initial 
structures

Distort along different 
axial combinations

Point defects of 
ground state lattice

One single vacancy structure

Up to 6 interstitial structures 

(bcc, fcc, dc)

Up to 13 interstitial structures 

(hcp)

***No Pristine Lattices used in training ***

Generate 20 
configurations for 
each structure at 

melting and ¼ melting 
temperature (NVT)

Training 12 distortions for each lattice Validate material 
properties with 
DFT reference 

values

Per atom volume, 

cohesive energy, 

point defect energies, 

and elastic constants

Converged?

YES

Three randomly 

seeded MLPs

Adaptive

Training

NO

DONE

LAMMPS NVT ensemble to 

identify and train selected 

structures out of force 

tolerance criteria range

0.07-2 eV/Å

Each dataset has less 
than 6000 frames. On 
average ~20 atoms per 

configuration.  
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Single Element MLPs

23C. M. Andolina and  W. A. Saidi, Digit. Disc. 2, 1070, 2023 

Good predictive accuracy of benchmark material properties using small datasets 
for 23 elements



Understanding Material Melting
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Mo
BCC

Liquid

❖ Two-Phase Coexistence (TPC) approach is the 

“gold-standard” ….. but requires system sizes 

in excess of 10,000 atoms!

Applied MLP to compute Tm of 20 elements
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Estimate Tm from Cohesive Energy

The “Universal” equation can be 

improved by sorting elements by 

periodic group

Tm = (340 K/eV * Ecoh ) + 430 K (Alkali Metals)

Tm = ( 181 K/eV * Ecoh ) + 162 K (Alkaline Earths)  

Tm =  401 K/eV * Ecoh (Transition Metals)  

Tm =  ( 407 K/eV * Ecoh ) – 204 K (p-block) 

Tm = 1012 K/eV * Ecoh (Noble Gases)  

Using group-
specific trends 

Tm = 0.032 * Ecoh / kB

𝒓𝟐 = 𝟎. 𝟗𝟗
Av. err ~15%

𝒓𝟐 = 𝟎. 𝟗𝟔
Av. err ~21%
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𝒓𝟐 = 𝟎. 𝟗𝟖

Comparing TPC-MLP to Experiment and DFT-Predicted

DFT/MLP underestimates 

experimental Tm

Improved agreement MLP 

and DFT-predicted.  

𝒓𝟐 = 𝟎. 𝟗𝟐
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MgO Solid-Liquid Phase Transitions at Mantle 
Conditions 

29

We can describe solid-liquid 

phase changes for large 

supercells over long time 

scales and extreme 

pressures ~300 GPa with 
DFT accuracy

P. Wisesa, C. M. Andolina, and W. A. Saidi, J. Phys. Chem. Lett. 14, 468, 2023
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Mo

Nb

Ta

W

Preliminary Results: MoNbTaW HEA

bcc

liquid

MD MLP-TPC 

MoNbTaW Composition
Ecoh 
(eV)

Tm-PRED 
(K)

Tm TPC-MLP 
(K)

Mo256.Nb256.Ta256.W256-r1 -10.211 4100 4216±28
Mo256.Nb256.Ta256.W256-r2 -10.210 4099 4221±21
Mo256.Nb256.Ta256.W256-r3 -10.208 4099 4217±22
Mo256.Nb256.Ta256.W256-r4 -10.210 4100 4220±21

Mo128.Nb384.Ta128.W384 -10.153 4077 4267±22
Mo128.Nb128.Ta384.W384 -9.837 3950 4251±20
Mo128.Nb384.Ta384.W128 -10.229 4107 4241±22
Mo384.Nb128.Ta128.W384 -9.477 3805 4117±23
Mo384.Nb128.Ta384.W128 -10.154 4077 4320±19
Mo384.Nb384.Ta128.W128 -9.622 3864 4215±28

• Similar Tm over narrow compositional changes.
• Predicted Tm from Ecoh agrees well with MLP-TPC Tm
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Preliminary Results: MoNbTaW HEA

bcc

liquid

MD MLP-TPC 

MLP describes Tm behavior well at elevated pressure
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The trend for Cu-Ni Alloy Segregation

Garza, Lee, Nguyen, Garmon, Perez, Li , Yang, Henkelman, and Saidi, JCTC 2022, 18, 4447

CuNi dynamics from ns → s
Cu segregates to the surface 
under reducing conditions

What happens under 
oxidizing conditions? 

Competition between 
surface reconstructions 

and segregation 
tendencies
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DFT segregation preferences on Cu (100) reconstructions: 

Surface | Bulk →

MRR is preferred over c(2x2) for small 
Ni doping and c(2x2) becomes 

preferred as Ni increases.

MLP to address the 
complexity of the 

system

Wisesa, Li, Curnan, Han, Yang, and Saidi, arxiv.org 2308.11867

Subsurface Cu Surface Cu

Ni
O

Oxidation 



34

Segregation at finite time – MC/MD Simulation

MRR with random 5% Ni

Ni segregate to the surface and induce Ni-O nucleation

Surface Cu

Ni

O

~2 ns at 
300K

Ni segregation 
and surface 
rearrangement 
to form Ni-O 
bonds 

Simulations made 
possible by MLP
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Stability of full Ni monolayer … MC/MD simulation 

35
Wisesa, Li, Curnan, Han, Yang, and Saidi, arxiv.org 2308.11867

c(2x2) surface is 

more stable due 

to the NiO 

arrangement. 

MRR

c(2x2) ~2 ns at 
300K

Surface Cu

Ni
O

Simulations 
made possible 
by MLP
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Experimental Verification

0.0 s

25.4 s

91.4 s

155.8 s

261.4 s

2 nm
Cu-5at.%Ni (100)

300 ˚C, 7 × 10-3 Pa O2

c(2×2)

MRR
Ni segregation

MRR NiO

Ni segregation

MRR

NiO

NiO
NiOCu2O Cu2O

a

b

c

d

e

ETEM 5% Ni (300 °C, 7x𝟏𝟎−𝟑 Pa O2)

• (b) shows the formation of c(2x2)

• (c) Ni segregates to the c(2x2), as highlighted 
by strain due to the difference between the 
lattice constant of Cu and Ni.

• At the same time MRR is forming from a 
region free of Ni.

• The c(2x2) with Ni eventually forms NiO, 
while the MRR forms Cu2O.

DFT and MLP results are verified by 
experimental observation.

Collaboration with Li and Yang
BNL
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Advanced 
Materials 

Design

Accelerating Material Design for Energy Applications

Modeling and 
Simulation

Machine Learning and 
Artificial Intelligence

Stakeholder
Outreach

Experimental Validation

Collaboration with 
External Partners

➢ Accelerate development and 
deployment of new materials for 
energy applications

➢ Predict long-term materials 
performance in fossil energy 
power plants of any cycle 

➢ Advance technologies including 
High entropy alloys; structural 
alloys; hydrogen embrittlement; 
oxidation; catalysts; sorbents

Manufacturing and 
Characterization

Integrating experimental, simulation and data-driven methods for material development
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• Leveraging property prediction in 
material design loop

• Improving efficiency of 
experimentation through prediction 
of long-term properties

• Optimization of material 
performance

Creep Rupture Time Prediction 

Integration into materials design & testing

40

Validation & 
testing

Experimental 
data curation

Model training 
& deployment

Property 
optimization & 

prediction

Design of 
experiments
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CatBoost Regression of log Creep Rupture Time
Creep rupture time prediction with physical features

41

Train R2: 0.9185 +/- 0.0051
Hold-out test R2 : 0.9282

Rank order value of 
outermost subshell 
energy level

Calculated average 
ionic radius
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Aiding generalizability, interpretation

Addition of physical features

42

…

• Derived from Rule of Mixtures 
using at.% composition

• Adding physically relevant 
features related to mechanical 
behavior of alloys
• Atomistic & physical 

properties

• Calculating 76 average and 
standard deviation values

…
Trehern, W., Ortiz-Ayala, R., Atli, K.C., Arroyave, R. and Karaman, I., 2022. 

Data-driven shape memory alloy discovery using artificial intelligence 

materials selection (AIMS) framework. Acta Materialia, 228, p.117751. 
https://doi.org/10.1016/j.actamat.2022.117751

Physical Properties

Coefficient of linear thermal 
expansion (/K)

Electrical conductivity (106/cm Ω)

Thermal conductivity (W/cmK)

Density (g/cc @ 300K)

Bulk modulus (Gpa)

Rigidity Modulus (Gpa)

Youngs Modulus (Gpa)

Enthalpy of atomization (kJ/mole @ 
25°C)

Enthalpy of fusion (kJ/mole)

Enthalpy of Vaporization (kJ/mole)

Brinell hardness (MN m^-2)

Atomistic Properties

Number of electron vacancies

Number of valence electrons

Number of electrons in outermost subshell

Electron capacity of outermost subshell

Electron Vacancies in the outermost 
subshell

Rank order value of outermost subshell 
energy level

Number of electrons in 2nd outermost 
subshell

Electron capacity of 2nd outermost 
subshell

Electrochemical Equivalent (g/amp-hr)

Electron work function (V)

Pauling electronegativity
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• MLPs provide a good balance of 

accuracy and computational cost,  

and allows bridging the modeling gap 

with experiment 

• Various examples including melting 

and early stages of oxidation of a 

binary alloy

• Creep rapture time prediction using 

experimental data and simple features

Summary

46

Database and MLPs are available 
https://github.com/saidigroup 

https://github.com/saidigroup


Disclaimer 

47

This project was funded by the United States Department of Energy, National Energy 

Technology Laboratory, in part, through a site support contract. Neither the United States 

Government nor any agency thereof, nor any of their employees, nor the support 

contractor, nor any of their employees, makes any warranty, express or implied, or assumes 

any legal liability or responsibility for the accuracy, completeness, or usefulness of any 

information, apparatus, product, or process disclosed, or represents that its use would not 

infringe privately owned rights.  Reference herein to any specific commercial product, 

process, or service by trade name, trademark, manufacturer, or otherwise does not 

necessarily constitute or imply its endorsement, recommendation, or favoring by the United 

States Government or any agency thereof. The views and opinions of authors expressed 
herein do not necessarily state or reflect those of the United States Government or any 

agency thereof.



VISIT US AT:  www.NETL.DOE.gov

@NationalEnergyTechnologyLaboratory

@NETL_DOE

@NETL_DOE

CONTACT:

NETL
RESOURCES

Wissam A. Saidi

Wissam.Saidi@netl.doe.gov
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