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Abstract

The 2005 Intergovernmental Panel on Climate Change (IPCC) Special Report on CCS raised the profile of CO, capture
and storage (CCS) as an important technology for reducing greenhouse gas (GHG) emissions. CCS is now recognized
as a key component of most climate change mitigation scenarios. Since publication of that report the international
research, development, and deployment (RD&D) community has advanced key technical aspects, clarified regulatory
requirements, explored value chain and infrastructure solutions, and developed incentive paradigms to enable and
promote large-scale deployment of CCS. These efforts have included research to better characterize geologic storage
resources, to improve injection performance and storage efficiency, to assess and manage subsurface environmental
risks, and to advance monitoring technologies to assure system conformance. These efforts have helped to build
confidence in the viability of geologic carbon storage (GCS), but stakeholder concerns about long-term risks and
liability associated with GCS remain a hurdle to broad acceptance and large-scale deployment of CCS.

Since 2010, the U.S. DOE’s National Risk Assessment Partnership (NRAP) — a research collaboration between five
contributing national laboratories — has worked to establish and demonstrate methods and tools to quantify and manage
the subsurface environmental risks associated with GCS, amidst uncertainty. This work supports the Office of Fossil
Energy and Carbon Management Carbon Transport and Storage Program’s goal of advancing safe and secure
commercial-scale GCS deployment. To address the technical challenge of simulating the physical response of the
GCS site to large-scale CO;injection, NRAP has adopted an approach that relies on coupling computationally efficient
reduced-order and/or data-driven proxy models of important system components (i.e., storage reservoir, sealing
caprock, leakage pathways, intermediate formations, overlying groundwater aquifers, and the atmosphere) in
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an integrated assessment framework. That integrated model of the physical system is complemented with fit-for
purpose functionality to support site characterization and risk-related decisions. The recently released NRAP Phase 11
toolset includes the Open-Source Integrated Assessment Model (NRAP-Open-IAM) for evaluation of trends in
leakage risk and potential impact, tools to support monitoring design optimization (Designs for Risk Evaluation and
Management — DREAM v3.0 and Passive Seismic Monitoring Tool - PSMT), and tools for state of stress evaluation
(State-of-Stress Analysis Tool - SOSAT) and forecasting induced seismicity risk. The NRAP team has also released
a pair of reports describing conceptual workflows to incorporate physics-based, quantitative risk assessment into many
of the design, planning, operation, and closure decisions for GCS projects. An online catalogue highlights published
studies where these tools and methods are demonstrated. In this presentation, the utility of these products to assess
risks and address key stakeholder questions will be highlighted through examples, and related insights about the safety
and security of geologic carbon storage in qualified storage sites will be discussed.

The prospect of rapid, large-scale deployment of GCS technology to aggressively reduce anthropogenic CO,
emissions requires careful consideration of interference between multiple commercial-scale storage projects within a
basin. Going forward, NRAP is expanding and adapting site-scale risk quantification tools and methods to enable
assessment of risks and inform management decisions for basin-scale deployment. Increasingly, this work will
leverage next-generation approaches for surrogate modelling, fast prediction, and advanced visualization enabled by
machine learning and artificial intelligence to promote virtual learning, scenario evaluation, and augment risk-based
decision making.

Keywords: quantitatitve risk assessment, geologic carbon storage, carbon capture and storage, uncertainty, monitoring, integrated assessment
modeling, leakage, induced seismicity

Nomenclature

AoR  Area of Review

CCS  Carbon capture and storage

DOE  Department of Energy

GCS  Geologic carbon storage

LANL Los Alamos National Laboratory

LBNL Lawrence Berkeley National Laboratory
LLNL Lawrence Livermore National Laboratory
NETL National Energy Technology Laboratory
NRAP National Risk Assessment Partnership
PISC  Post-Injection Site Care

PNNL Pacific Northwest National Laboratory

1. Introduction

Carbon capture and storage (CCS) is recognized as an important technology in many climate change mitigation
scenarios [1]-[4]. To enable large-scale implementation, the international CCS community has been advancing and
demonstrating key technical aspects of this technology across the value chain [5]-[7]. These include developing
efficient and cost-effective CO, capture technology [8]-[11], identifying requirements and addressing logistical
challenges for transportation infrastructure [12]-[15], and building the science base, regulatory frameworks, incentive
structures, and resource capacity to safely and permanently store meaningful quantities of CO, [3], [7], [16], [17].
Additionally, there remains a critical need to build confidence among the public and other stakeholders that geologic
CO; storage (GCS) is a safe and reliable technology [7]. To meet this need, the CCS community needs to effectively
translate the substantial existing scientific and engineering knowledge from research, field demonstration, and
analogous industrial experience into tools and protocols to promote risk communication between stakeholders and
support risk-related decision making.
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It is generally accepted that the risks for a GCS project can be expected to increase through the period of active
injection, peak near the end of injection, and diminish thereafter [18]. Temporal and spatial evolution and magnitude
of those risks will be governed by the laws of physics but will vary as a function of site-specific geologic
characteristics, site development history disposition, and operator decisions. To effectively assess and manage
subsurface risks, therefore, requires development of physics-based, site-specific quantitative risk assessment methods
and tools that can effectively communicate about risks and inform decision making amidst uncertainty [19]. This need
has motivated a substantial body of research [20], [21].
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Figure 1. Representation of the evolution of the state of knowledge and ability to quantify time-varying subsurface environmental risks at a
geologic carbon storage site (top from [18] ; bottom modified from [22], [23])

In 2010, the U.S. Department of Energy (DOE) Office of Fossil Energy (now the Office of Fossil Energy and
Carbon Management) established the National Risk Assessment Partnership (NRAP) - a research collaboration among
five national laboratories (Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory
(LLNL), Los Alamos National Laboratory (LANL), the National Energy Technology Laboratory (NETL), and Pacific
Northwest National Laboratory (PNNL)), tasked with developing approaches to quantify and manage the subsurface
environmental risks associated with GCS to aid in deployment of large-scale GCS. A first phase of NRAP (2010-
2016) focused on establishing the science base and developing first-of-kind methods and prototype tools to
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quantitatively assess subsurface environmental risks at GCS sites, i.e., risks associated with potential unintended fluid
migration and induced seismicity. Accomplishments from NRAP’s Phase-I efforts [24] included:

e developing a computational integrated assessment framework to quantify potential leakage risks and groundwater
impacts at GCS sites and generating the first quantitative risk profiles encompassing an entire GCS system [25];

e innovating reduced-order modeling approaches to rapidly quantify subsurface GCS site performance amidst
uncertainty [26]-[33];

o identifying relevant probabilistic seismic risk analysis approaches [34] and creating the first comprehensive risk
model for induced seismicity at GCS sites (Foxall et al., 2013);

e developing insights into reservoir-risk relationships [22], [35], [36] and well integrity for GCS sites [29], [37];

e ecstablishing methods to determine statistically significant groundwater quality changes indicating impact [38],
[39]; and

e providing preliminary insights into the utility of select monitoring approaches [40] and exploring the potential for
optimization of monitoring design [41].

Phase-II work has been focused on refining risk assessment tools and methods to enable dynamic risk evaluation and
uncertainty reduction, and support risk management decisions. This article is intended to provide a summary of the
approach and accomplishments of NRAP Phase II research.

2. Methods

NRAP’s approach to quantifying GCS subsurface environmental risks relies on stochastic modeling for forecasting
of full system behavior of a GCS site while taking into account site-specific uncertainty and variability. This system,
as illustrated in Figure 2, includes not only the primary storage reservoir, but also potential migration pathways (wells,
boreholes, faults, fractures), and receptors of concern (groundwater aquifers and the atmosphere). This research uses
various fit-for-purpose computational approaches to enable rapid and credible characterization of important system
attributes and behavior over time. These approaches describe performance in the context of uncertainty and can be
used to constrain critical uncertainties, to improve understanding of likely site behavior, and support decision-making.
These methods include:

o Full physics numerical simulation (e.g., [22], [42], [43]), reduced-order modeling; [44], [45]; and reduced-
physics and analytical approaches [37], [46], [47] that describe the physical behavior and quantify effect of
uncertainties in parameters on system behavior;

o Integrated assessment modeling that couples computationally efficient models of GCS system components to
allow forecasting and uncertainty quantification of site-scale subsurface system behavior [48]-[52];

e Modeling of monitoring, including demonstration of approaches for full-physics and data-driven inversion of
geophysical data to evaluate detectability of potential leakage from containment [53]-[59];

e Bayesian approaches to constrain uncertainty as new observational information becomes available [28], [57],
[60], [61];

e Optimization approaches for design of effective monitoring [41], [53], [62];

e Approaches to identify useful site performance and risk metrics and trends, and build functionality for
stakeholder decision support [22], [36], [63]-[68]; and

e Focused laboratory, simulation, and field experiments to constrain key uncertainties in GCS site performance and
assessed leakage risks [69]-[75].

Methods and findings from these studies help to inform the development of open-source and publicly available
computational tools and recommended practices for quantitative risk management and decision support.

A key technical challenge of GCS risk assessment is to simulate the physical response of a GCS site to full-scale
injection and storage over time. Stochastic modeling of this complex system (Figure 2) with a single, internally coupled
high-fidelity model is computationally intensive. To overcome this computational challenge, NRAP has adopted an
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integrated assessment modeling approach that relies on coupling of reduced-complexity and/or data-driven proxy
models for important system components. The result is a coupled system model that enables the quantitative
forecasting of risks as they evolve over time. By coupling computationally efficient reduced-order models with the
integrated assessment framework, the stochastic forecasting of whole-system behavior is fast, making the integrated
assessment model a useful tool for probabilistic risk quantification and decision support.

Receptors of Concern

* Groundwater aquifers
* Atmosphere

Potential
Migration Pathways
« Wells and boreholes

* Fractures and faults
* Intermediate reservoirs

Storage System

* Storage reservoir
* Cap rock

Fig. 2. Simplified schematic of geologic carbon storage site components considered in an integrated systems model for leakage risk assessment.

Concern about the potential to induce seismic activity at CO; storage sites in response to CO; injection represents
a significant potential hurdle to successful large-scale deployment of GCS. Defensible, science-based tools to assess
this risk and evaluate mitigation alternatives are needed to inform decision making for site selection, injection design,
operations, and site closure. By developing methodologies and tools for probabilistic seismic hazard and risk
assessment at CO, storage sites, researchers can explore the relationship between storage and induced seismicity and
develop an understanding of the system uncertainties, the likelihood and impact of potential induced earthquakes, and
identify injection practices and operational envelopes to effectively manage those risks. These tools also enable the
evaluation of the effectiveness of select induced seismicity mitigation alternatives. Finally, development of
hydrogeologic fault leakage models that are validated against field data can help to constrain uncertainties about the
importance of faults as potential pathways for unwanted fluid migration.

NRAP’s work related to GCS site monitoring is focused on design of adaptive, risk-based site monitoring to ensure
containment, detect unwanted fluid migration, and ensure groundwater resource protection over the life of a project.
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To accomplish this, NRAP has developed and demonstrated new methods for assessing the likelihood of various
geophysical monitoring technologies to detect potential leakage through wells and faults. This approach calculates the
monitoring signal for a large ensembles of numerical simulations of hypothetical leakage scenarios spanning varying
geologic properties and leakage characteristics, and then assesses the likelihood of detection above noise for leaks of
different size, composition, and depth [56], [57]. Novel research has also considered how machine learning and
reduced-complexity approaches can be used for fast forecasting of geophysical signals and diagnosis of leakage. Other
work has focused on designing risk-based and optimal site-scale monitoring networks that incorporate forward models
of subsurface behavior (with uncertainty) and modeling of monitoring to maximize the probability of leak detection
or to minimize time to detection and monitoring cost [41], [61], [76]. Finally, methods have been developed and
demonstrated to use monitoring information to assess conformance of GCS operations with expected behavior and
update forecasts forecasts of site performance [28], [65], [77], [78]. Future work will seek to refine these elements and
incorporate them with the integrated risk assessment framework to support robust, risk-based monitoring design.

3. Results

The outcomes of NRAP research include a set of computational tools and workflows for risk management and
decision support. These tools and workflows are being demonstrated with real and hypothetical case studies of
increasing complexity to ensure their utility stakeholder for stakeholders.

3.1. NRAP Computational Tools for GCS Risk Assessment

The NRAP tools are intended to provide functionality for quantitative risk assessment and risk management
decision support, amidst uncertainty in site performance. NRAP Phase II tools fall into three topic areas: (1) ensuring
containment effectiveness/quantifying leakage risk, (2) managing induced seismicity, and (3) strategic monitoring
design for uncertainty reduction. Table 1 is an index of the NRAP computational tools currently under development
and refinement; a brief description of each of each tool is provided below. These tools are made freely available to
the CCS research, development, and deployment community, and are largely open source. They are intended to be
complementary to other commercial, regulatory, and research tools available to support site selection, permitting, and
operational decisions [79].

Table 1. NRAP Phase II Tools and their functionality.

NRAP Phase 1I Tool Brief Description Release Status Reference
NRAP Open-Source An open-source platform to simulate long-term, full- v2.6.0 [49]
Integrated Assessment Model — system behavior (reservoir to aquifer/atmosphere) of GCS 8/2022
(NRAP-Open-1IAM) sites and support decision-making amidst uncertainties.
Designs for Risk Evaluation Monitoring design optimization to minimize time to first v3.0 [76], [80]
and Monitoring (DREAM) detection and cost Expected 9/2022
State of Stress Analysis Tool Estimate of the stress tensor to evaluate the geomechanical ~ v2.0 [81]
(SOSAT) risks of unintentional fracturing and fault reactivation,

with Bayesian updating
Passive Seismic Monitoring Tool for optimal design of microseismic monitoring PSMT v.1.0 [82]
Tool (PSMT) network using surface or borehole geophones 11/2016
Operational Forecasting of Rapid seismic hazard assessment that uses field data Expected
Induced Seismicity (ORION (microseismic, well pressure, flow rate) calibrate field or 12/2022

Toolkit)

basin models and identify conditions requiring operator
intervention.

The flagship tool of the NRAP toolset is the NRAP open-source integrated assessment model (NRAP-Open-IAM)
— an open-source software that enables quantification of containment effectiveness and leakage risk at storage sites in
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the context of system uncertainties and variability [49]. NRAP-Open-IAM represents the next-generation in a line of
systems-based computational models developed for quantitative GCS risk assessment [25], [50], [51]. The model
comprises a set of reduced-order and analytical models of various components of the GCS system: storage reservoir,
sealing caprock, potential leakage pathways including wells [31], [37], [44], [83], faults and fractures [84]-[87],
receptors of concern including impact to groundwater resources [27], [29], [45], [88] and leakage to intermediate
geologic intervals [89] and the atmosphere [46], a framework to support stochastic simulation, scenario evaluation,
and uncertainty quantification. The of NRAP-Open-IAM includes functionality to generate quantitative, probabilistic,
and time-dependent profiles of the evolution of risk at GCS sites and evaluate the influence of uncertain parameters
on uncertainty in forecasted risk [25], [64], [68].

The Short-term Seismic Forecasting (STSF) tool uses site-specific catalogs of measured seismicity to forecast future
event frequency over the short term. STSF tool uses a model developed for the decay of aftershocks of large seismic
events to determine the event rate in future time bins [82]. The model is adapted with a term to modify the background
seismicity rate above a pre-determined magnitude threshold as a function of injection-related parameters (e.g.,
injection rate or bottom-hole pressure). This injection-related seismicity forecasting capability can be a valuable tool
to complement stoplight approaches for induced seismicity risk planning and permitting.

The injection of CO; and associated increase in pore pressure will alter the state of stress over the course of a GCS
project. These changes could potentially affect fault stability or lead to unintended hydraulic fracturing — influencing
risks related to induced seismicity and potential unwanted fluid migration, respectively. To avoid and manage these
risks it is important to understand in-situ stresses. However, stress measurements are often sparse resulting in
considerable uncertainty in the state of stress at GCS sites. The NRAP State of Stress Analysis Tool (SOSAT)
embodies a Bayesian approach to calculating a distribution of in situ stress at specific locations at a GCS site based on
commonly used measurements or relationships. SOSAT then uses calculated stress state probability distributions to
estimate the probability of activating a critically oriented fault over a specified range of pore pressures [60], [81]. The
SOSAT tool provides value during GCS site screening and characterization phases to target collection of specific
additional data to constrain uncertainties in geomechanical risk and to help operators to make informed decisions
during the operational phase [90]. The capability represented in SOSAT, therefore, helps build stakeholder confidence
that geomechanical risks are understood and manageable.

Designs for Risk Evaluation and Management (DREAM) is a tool for leakage monitoring design and optimization
at GCS sites. NRAP’s DREAM tool was developed to assist in design of effective and efficient GCS leakage
monitoring networks [41], [76], [91]. DREAM searches the solution space for ensembles of leakage simulations to
find the optimal placement of monitoring devices to minimize the time to leak detection. To accomplish this, DREAM
uses a computationally efficient simulated annealing approach that interactively mutates potential monitoring schemes.
The tool can accept simulation output from full-physics numerical simulators, from reduced-order models, or from
integrated assessment models. It can account for spatial and temporal monitoring constraints, monitoring technology
detection capability, and budget constraints (cost or monitoring equipment availability). Recent demonstration of
coupled application of DREAM and NRAP-Open-IAM highlights the value of effective monitoring design to build
confidence in GCS containment effectiveness and to support justification for early site closure [92].

The ORION toolkit [93] will provide functionality to describe the relationship between fluid injection and seismic
response in real-time and space at the site and basin-scale. ORION will provide estimates of the seismic hazard
expressed by the seismic frequency, probability of exceedance, and the related ground motions. ORION will
incorporate a set of specific forecasting models (eg., Epidemic Type Aftershock Sequence, Rate-and-State
formulations, seismogenic index models) that apply before, during, and/or after injection begins, and provide
capability for real-time estimation of an ongoing hazard (or a chosen proxy for hazard). Validity and applicability of
the forecast models will be rigorously tested using CO, injection and analogous field data.
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3.2. Workflows and Recommended Practices for GCS Risk Assessment

Complementary to the development of NRAP risk assessment framework and fit-for-purpose NRAP simulation
tools, NRAP has established recommended practices detailing the conceptual approach for risk-based assessment and
management of potential leakage and induced seismicity risks associated with GCS [94], [95]. These recommended
practices were made available to the international CCS community for review and comment, and they will be revisited
periodically to update and improve their content. Many of the steps in these recommended practices align with
computational workflows and fit-for-purpose applications embodied in NRAP tools. Table 2 provides a summary of
several of the workflows in the recommended practices that relate to GCS site decision support.

Table 2. NRAP Phase Il workflows.

NRAP Toolset NRAP Tools Used  Reference

State of Stress Assessment SOSAT [90]

Risk-Based Area of Review NRAP-Open-IAM  [63], [66], [96]

Evaluating plume conformance [28], [65], [78],
[971

Risk-based monitoring design DREAM [41],[61], [76],
[92]

Probabilistic Accounting of Containment NRAP-Open-IAM  [98]

Assurance

Post-Injection Site Care Period Evaluation NRAP-Open-IAM,  [64], [68], [92]

DREAM

Risk Mitigation Scenario Evaluation NRAP-Open-IAM  [99]

Seismic forecasting during injection operations ~ STSF [82]

Managing injection-related seismicity risk [67]

3.3. Testing and Application of NRAP Tools and Methods

Numerous studies describe applications of the NRAP tools and workflows to real and hypothetical GCS project
scenarios — to test and verify their viability for decision support. NRAP tools are finding new application areas such
as the offshore environment, e.g., where subsea CO, leakage incidents can lead to emissions at the sea surface and
subsequent atmospheric dispersion [100]. A catalog summarizing those studies and linking to related resources is
maintained as a resource for practitioners [101]. As commercial deployment of GCS ramps up over the next several
years there will be increasing opportunity to validate NRAP methods and tools against field data and operator
experience; the NRAP tool use catalog will be revised periodically to account for those applications.

4. Summary

The U.S. DOE’s National Risk Assessment Partnership is advancing applied research to directly support the DOE’s
Office of Fossil Energy and Carbon Management’s goal to enable safe and secure commercial GCS deployment. The
NRAP team has developed, demonstrated the application of, and openly released computational tools that provide an
engine for quantitative risk assessment that can be applied to support stakeholder decision making, amidst uncertainty,
for site selection, injection operation design, and permitting. The NRAP approaches for risk-based decision making
are distilled into recommended practices for assessment and management of leakage and induced seismicity risks.
Going forward, NRAP will continue engage with industry and regulatory stakeholders to test and improve the NRAP
tools and risk management workflows to ensure their utility for real-world applications. Future work will focus on
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linking risk quantification to forecasting of long-term GCS liability to inform investment and insurance decisions, and
on extending the NRAP approach to assess basin-scale risks of many commercial GCS operations.
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