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Abstract: Improved scientific and engineering understanding of the behavior of geologic CO2 storage
together with established regulatory framework and incentive structures raise the prospects for
accelerated, large-scale deployment of this greenhouse gas emissions reduction approach. Incentive
structures call for the establishment of appropriate verification and accounting approaches to support
claims of the integrity of a geologic storage complex and to justify taking credit for long-term storage.
In this study, we present a framework for assessing the probability of containment effectiveness over
the lifetime of a geologic carbon storage site (e.g., after 70 years of injection and postinjection site
performance) using forward stochastic model realizations based on site characterization data and using
a monitoring-informed Bayesian network based on hypothetical detectability from surface seismic
surveys over the site injection and post-injection phases. The National Risk Assessment Partnership’s
open-source Integrated Assessment Model (NRAP-Open-IAM) was utilized to develop an ensemble of
10,000 a priori stochastic forecasts of CO2 containment. Those simulations were used to train the
Bayesian network model to estimate the prior probabilities of the CO2 leakage mass into overlying,
monitorable aquifers considering the uncertainties in the reservoir properties, permeability of potentially
leaky wells and the overlying aquifers. The conditional probabilities in the Bayesian network were either
learned from the NRAP-Open-IAM simulations or derived from the predefined detection thresholds for
the monitoring method. Observations obtained from monitoring, over time during the site operation
phases were then used to generate updated posterior probabilities of containment (and any loss from
containment) in the Bayesian network by propagating the prior probabilities through the conditional

Correspondence to: Zan Wang, ORISE, National Energy Technology Laboratory, United States Department of Energy, Pittsburgh, PA 15236,

USA.

E-mail: zan.wang@hotmail.com

Received September 15, 2020; revised February 16, 2021; accepted February 17, 2021

Published online at Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/ghg.2056

© 2021 Society of Chemical Industry and John Wiley & Sons, Ltd. Greenhouse Gas Sci Technol. 11:360–376 (2021); DOI: 10.1002/ghg.2056 360

https://orcid.org/0000-0001-9122-5333
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fghg.2056&domain=pdf&date_stamp=2021-03-13


Original Research Article: Evaluating probability of containment effectiveness at a GCS site Z Wang et al.

probabilities. We demonstrate how to construct and use the Bayesian network for verifying the
long-term storage complex effectiveness informed by monitoring based on the NRAP-Open-IAM
simulations previously developed for the FutureGen 2.0 site. This approach may have relevance for
stake holders to demonstrate secure geologic storage, provide a defensible, probabilistic approach to
claim credit for geologic storage, and to estimate the likelihood that any fraction of the claimed credit
may need to be refunded to the creditor based on available monitoring information. © 2021 Society of
Chemical Industry and John Wiley & Sons, Ltd.

Additional supporting information may be found online in the Supporting Information section at the end
of the article.
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Introduction

Carbon capture, utilization, and sequestration
(CCUS) is being pursued by the international
research, development, and deployment

community as a means to stabilize and reduce the
atmospheric concentration of carbon dioxide (CO2), to
partially mitigate global warming. Together with CCUS
technology advances and established regulatory
framework, creation of incentive programs will raise
the prospects for accelerated deployment of CCUS.1,2

To promote the practical applicability of storage,
credit-based incentive programs, appropriate
verification, and accounting approaches are needed to
adequately account for the integrity of a geologic
storage complex and to justify taking credit for
long-term storage. In addition, practical storage
requires an integrated scheme for the forecasting of the
storage complex performance over the appropriate
time interval (the injection period plus a predefined
postinjection period), monitoring to verify that
expected storage performance is met, quantification of
any potential migration outside of containment, and a
means of verifying and accurately evaluating long-term
storage effectiveness.3

Stochastically forecasting the time-varying
performance of full-scale injection and storage at a
geologic carbon storage (GCS) site can be quite
computationally expensive. The National Risk
Assessment Partnership (NRAP) developed
reduced-order and/or data-driven proxy models for
important system components,4 including the storage
reservoir, the leakage pathways (e.g., wellbores), the
groundwater aquifers, and the atmosphere, and then
coupled these component models, which allows for fast
forecasting and quantification of risks over time.5

These component models, referred to here as
NRAP-Open-IAM tools, are either analytical models
or trained using detailed multiphase flow and transport
simulations. For example, two approaches are used to
develop the component models for the storage
reservoir. One is a look-up table approach that utilizes
reservoir pressures and saturations from site-specific
reservoir simulations. Another approach is a simplified
physical model based on work of Nordbotten et al.6,7

For the methods and principles that the system model
and each component model are based on, the readers
are referred to Pawar et al. and the NRAP-Open-IAM
user’s manual.8,5 The inputs and outputs of each
component model are described in the
NRAP-Open-IAM user’s manual.8 The
NRAP-Open-IAM tools have been used to perform
probabilistic simulations for analysis of long-term CO2
storage at geologic carbon sequestration sites.9 Some
example applications of the NRAP-Open-IAM tools
can be found on the NRAP-Open-IAM tool website.4
There have been other methods for developing
reduced-order models. For example, Jin and
Durlofsky10 extended an existing reduced-order
modeling framework to simulate and optimize the CO2
storage operations. Tian et al.11 used statistical
approaches to reproduce the cumulative distribution
functions of the CO2 breakthrough time and the total
mass from Monte Carlo simulations.

Monitoring methods are required to be implemented
at sequestration sites for tracking the plume migration
in the deep subsurface and for demonstrating the
long-term secure storage of CO2.12,13 The monitoring
method may include direct point measurements (such
as pressure monitoring and fluid sampling) and
indirect geophysical monitoring (such as seismic
monitoring, gravity monitoring, electrical resistivity

© 2021 Society of Chemical Industry and John Wiley & Sons, Ltd. Greenhouse Gas Sci Technol. 11:360–376 (2021); DOI: 10.1002/ghg.2056 361
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tomography, and magnetotelluric monitoring). Some
monitoring methods are well-based and can provide
local point measurements of the target parameters.
And others, such as the surface seismic surveys, can
provide a broad image of the subsurface property
changes, which is a combined effect of changes in
multiple subsurface properties. The surface seismic
surveys have been widely used at carbon sequestration
sites for tracking the CO2 plume migration and
estimating the total injected CO2 amount for
concordance evaluation.14–16 Large uncertainties are
associated with interpretation of the surface seismic
data and the inverted CO2 plume properties (such as
the extent, the volume and the mass of the CO2 plume).

There is a necessity for workflow/methodology to
incorporate monitoring data into the assessment of the
secure geologic storage. Assessing the potential CO2
leakage risks into overlying aquifer layers above the
caprock, given observations from monitoring method
is important for verifying the long-term storage
complex effectiveness. In this study, we employed
Bayesian networks to update the initial evaluation of
the probability of containment based on monitoring
observations and mitigation activities conducted
during site operation.

A Bayesian network is a statistical model that
represents probability distributions of system variables
(represented as network nodes) and their conditional
relationships (represented as directional arrows) in a
concise and graphical way.17 For each node in the
Bayesian network, the conditional probabilities of the
possible states of the node, given all the combinations
of the states of its parent nodes must be defined.
Bayesian networks have been applied to various
decision making problems.18–21 Bobbio et al.22

compared the fault tree analysis with Bayesian
networks in the area of dependability analysis.
Gerstenberger et al.23 applied Bayesian networks to risk
assessment in CCUS. Bayesian networks were applied
to inferring CO2 leakage from near-surface soil CO2
flux measurements and near-surface tracer
monitoring24 and combining interpretation of different
monitoring information to enhance detectability of
leakage at GCS sites.25 The Bayesian approaches have
also been used to infer CO2 leakage from pressure
measurements.26 Namhata et al.27 applied Bayesian
inference to updating of fractured seal characterization
using observations of pressure change in above zone
monitoring interval. Jenkins28 reviewed statistical
methods for testing leakage and no leakage models

using monitoring data in the context of CCUS and
emphasized the importance of Bayesian methods in
addressing stakeholders’ questions and dealing with
multiple models.

The Bayesian network (BN) method is based on
Bayes’ rule of conditional probability (Eqn 1),29 which
allows all the probabilities in the network to be updated
as new observations are obtained (entered as new
findings in the network). The conditional relationships
are shown as directed arrows on the BN graph.

Prob {Bi|A} = Prob {A ∩ Bi}
Prob {A}

= Prob {A|Bi} ∗Prob {Bi}∑n
j=1 Prob

{
A|B j

} ∗Prob
{

B j
} (1)

where Prob{Bi|A} is the posterior probability of Bi,
Prob{A|Bi} is the likelihood of A occurs when Bi is
known to occur, Prob{Bi} is the prior probability of Bi,
Prob{A ∩ Bi} is the probability of both A and Bi occur,
and Prob{A} is the marginal probability of A (i.e., total
probability of A). A and B represent nodes on the BN
graph.

The objective of this study is to develop a framework
for assessing the probability of containment
effectiveness over the lifetime of a geologic carbon
storage site lifetime (e.g., after 70 years of total site
performance) using forward stochastic model
realizations based on site characterization data and
using Bayesian networks given monitoring
observations (e.g., surface seismic surveys) at time t (t
< 70 years). The National Risk Assessment
Partnership’s open-source Integrated Assessment
Model (NRAP-Open-IAM) was utilized to develop
initial forecast of CO2 geologic containment
effectiveness before injection operations begin and to
train the Bayesian network model to estimate the prior
probabilities of the CO2 leakage mass into overlying
aquifers as a function of important uncertainties (in
reservoir properties, permeability of potentially leaky
wells, and permeability of the overlying aquifers).
Conditional probabilities used in the Bayesian network
are either learned from the NRAP-Open-IAM
simulations or derived from the predefined detection
thresholds for the monitoring method. We describe
how the Bayesian network was constructed to verify
long-term effectiveness of the storage complex given
leakage monitoring information—using
NRAP-Open-IAM simulations previously developed

362 © 2021 Society of Chemical Industry and John Wiley & Sons, Ltd. Greenhouse Gas Sci Technol. 11:360–376 (2021); DOI: 10.1002/ghg.2056
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Figure 1. (a) Schematic diagram of the system model; and (b) Stratigraphy and hydrostratigraphy at the FutureGen 2.0
site, depths are given in meters. The storage reservoir and the four aquifer layers in the composite CO2 storage system
model are denoted on the figure. The green and the orange rectangles illustrate the defined larger containment envelope
and the smaller containment envelope, respectively. Please note that Aquitard 5 shown in Fig. 1a includes everything
from the Joachem–Glenwood Dolomite (Jaochem–Glenwood Dol in Fig. 1b) to the surface.

for hypothetical CO2 storage case at the FutureGen 2.0
site.

In the second section, we summarize the leakage
simulations used for quantifying the long-term storage
complex effectiveness, and describe the methods used
for initial evaluation of site performance (without
considering monitoring), and for updated evaluations
that consider monitoring information and mitigation
activities. Results of the evaluations are presented in
the third section and discussed in the fourth and fifth
sections.

Methods and supporting
simulations
Leakage simulations
For this work we generate 10 000 realizations of
potential leakage from the geologic carbon storage
complex based on modeled storage performance at the
formerly proposed FutureGen 2.0 site.30 These
simulations were developed using the
NRAP-Open-IAM8 by linking a lookup table

representation of the storage site’s primary storage
reservoir component and an analytical model of a
multisegmented well to simulate potential brine and
CO2 leakage through the CO2 injection well and one
stratigraphic well. Based on proposed geography of the
FutureGen 2.0 site,9 the distance between the injection
well and stratigraphic well is assumed to be
approximately 2 km. The composite CO2 storage
system model consists of the storage reservoir, four
aquifer layers and five aquitards with interbedded
porous and permeable intervals. The layers are
numbered from the bottom to the top with aquitard 1
being the primary sealing caprock above the storage
reservoir and aquitard five being the aquitard directly
above the lowermost groundwater aquifer (Fig. 1a).
The four aquifer layers (i.e., aquifer 1–4) in the system
model are at the depths of 1044, 936, 742, and 592 m,
corresponding to the Ironton–Galesville (the porous
and permeable interval directly above the primary
seal—sometimes referred to as the above-zone
monitoring interval, or AZMI), Potosi, New
Richmond, and St Peter formations (the lowermost

© 2021 Society of Chemical Industry and John Wiley & Sons, Ltd. Greenhouse Gas Sci Technol. 11:360–376 (2021); DOI: 10.1002/ghg.2056 363
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Figure 2. Flowchart showing the simulation and evaluation steps.

groundwater aquifer) at the FutureGen 2.0 site,
respectively. Figure 1a shows a simplified
representation of the stratigraphy at the FutureGen 2.0
site; the storage reservoir and the four aquifer layers in
the system model are denoted in Fig. 1b. The 10 000
leakage realizations were generated based on an earlier
study by Bacon and colleagues9 with parameter ranges
selected based on information specific to the
FutureGen 2.0 site. The same parameter ranges are
used in the present study.

The lookup table reservoir component in
NRAP-Open-IAM was derived from full-physics
reservoir simulations and uses interpolation in time
and space to calculate pressure and CO2 saturation at
the interface between the storage reservoir and the
primary sealing caprock (aquitard 1). One thousand
multiphase flow reservoir simulations were previously
conducted by Bacon and colleagues9 using the STOMP
simulator,31 considering the uncertainty in the
permeability for each of the 31 computational reservoir
model layers. Each simulation run considers a 20-year
injection at a rate of 1.1 million metric tons (MMT)
CO2 per year, and a 50-year postinjection period; the
cumulative mass of CO2 injected is 22 MMT. The
multisegmented well component is used to calculate
CO2 and brine mass flux to the four overlying aquifer
layers. The range of well permeabilities assumed
(Table 2, from9) were relatively high, as compared to
values by Carey.32

Fifty STOMP reservoir simulations were randomly
sampled and each selected simulation was used as the
basis to run 200 NRAP-Open-IAM simulations,
resulting in 10 000 (= 50 × 200) realizations. Leakage
through wells and into the four overlying aquifer layers
considered uncertainty in well permeability and the
permeability of the four aquifer layers, with uncertain
parameter values generated by Latin hypercube
sampling. Each system model realization had 15-time
steps, calculated at five-year intervals throughout the
70 years of simulated performance. Figure 2 shows the
simulation steps and the outputs used for evaluation of
the containment effectiveness for CO2 storage at the
site, as well as the methodology employed for
evaluating the probability of containment.

Initial evaluation
During site characterization, initial evaluation of the
probability of containment at a site was calculated
using NRAP-Open-IAM simulation results. To
quantify the storage complex effectiveness, the spatial
envelope of the storage complex was first defined. In
this study, we considered two scenarios for the storage
complex envelope (see Fig. 1b). The larger containment
envelope was defined as the reservoir interval and the
three overlying aquifer layers (i.e., the
Ironton–Galesville, the Potosi, and the New Richmond
formations) above the reservoir at the FutureGen 2.0
site. The smaller containment envelope was defined as

364 © 2021 Society of Chemical Industry and John Wiley & Sons, Ltd. Greenhouse Gas Sci Technol. 11:360–376 (2021); DOI: 10.1002/ghg.2056
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Table 1. A description of assumptions in
evaluating the long-term storage complex
effectiveness.

Assumption Description

Larger containment envelope Storage reservoir and aquifers
1, 2, and 3

Smaller containment envelope Storage reservoir and aquifer 1

99.9% storage criterion Maximum allowed leakage mass
out of the containment
envelope is 22 000 metric
tons

99.99% storage criterion Maximum allowed leakage mass
out of the containment
envelope is 2 200 metric tons

99.999% storage criterion Maximum allowed leakage mass
out of the containment
envelope is 220 metric tons

the reservoir interval and aquifer 1 (i.e., the
Ironton–Galesville formation), which corresponds to
the containment envelope definition assumed for the
Future Gen 2.0 Class VI injection well permit
application.33 The defined envelope of the storage
complex does not affect the physical behavior of the
system but including additional overlying aquifers
(aquifers 2 and 3) represents a more permissive
containment envelope scenario. Because aquifer 4 (i.e.,
the St Peter formation) is the lowermost groundwater
aquifer at the site, that interval is considered outside
even the larger containment envelope., and calculated
fluid migration outside of this larger containment
envelope also represents leakage to the groundwater
aquifer.

After the containment envelope is defined, the
targeted CO2 storage permanence criterion for
claiming storage credit was selected. Here, we
compared the evaluation results using three different
storage permanence thresholds—99.9% storage,
99.99% storage, and 99.999% storage. Because the total
mass of CO2 injected at the FutureGen 2.0 site for the
hypothetical scenario considered is 22 MMT, the
maximum allowed leakage mass out of the
containment envelope is 22 000 metric tons for the
99.9% storage criterion or 2200 tons for the 99.99%
storage criterion or 220 tons for the 99.999% storage
criterion. Table 1 summarizes the scenarios used in
evaluating the long-term storage complex effectiveness.

Based on the 10 000 realizations of forward leakage
simulations of the FutureGen 2 site developed using
the NRAP-Open-IAM described above, the probability
of containment is calculated. Cumulative density
function (CDF) of the total CO2 mass leakage out of
the defined containment envelope after 70 years were
generated (probability that the cumulative leakage
mass is lower than the maximum allowed leakage mass
for the specified storage criterion). Descriptive
statistics (mean, median, and percentiles) of the
leakage mass from each well into the four aquifers as a
function of site operation time were also calculated.

Updated evaluation by monitoring
As monitoring data are gathered and interpreted
during site operation, the initial estimation of ultimate
probability of containment can be updated based on
the monitoring observations. Separate Bayesian
networks (BNs) were constructed for the defined larger
containment envelope and the smaller containment
envelope at the FutureGen 2.0 site to incorporate
monitoring information in the workflow for evaluating
and updating estimates for the probability of
containment. These BNs were developed using the
software package Netica.34

The BN model constructed for the larger containment
envelope has eight nodes (see Fig. 4). The five nodes on
the left (from the bottom to the top) represent the mass
of CO2 leaked into each of the four aquifers over time t
(t < 70 years) and the total mass CO2 leaked out of the
defined containment envelope after 70 years. The prior
probabilities and the conditional probability tables for
these five nodes are trained using the estimated CO2
mass leakage into the four aquifers based on the 10,000
NRAP-Open-IAM realizations at time steps before 70
years (i.e., in 5 year intervals from year 0 to year 65).
The CO2 mass leakage values are discretized into five
functional classes (Table 2) to reduce the
computational burden of conditional probability table
development. The three nodes on the right of the graph
denote surface seismic monitoring implemented at the
site, mitigation activity that might be conducted and
cumulative CO2 mass leakage out of the defined
containment envelope after 70 years of total site
performance for scenarios with mitigation.

We considered a single monitoring method - surface
seismic monitoring, though the approach can
accommodate scenarios with multiple monitoring
techniques and options for joint interpretation of

© 2021 Society of Chemical Industry and John Wiley & Sons, Ltd. Greenhouse Gas Sci Technol. 11:360–376 (2021); DOI: 10.1002/ghg.2056 365
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Table 2. Classes (i.e., states) of the leakage mass
nodes in the Bayesian network and the
corresponding intervals of the leakage mass
values in metric tons.

Classes of leakage mass
nodes

Intervals of leakage mass
values (metric tons)

Negligible [0, 10]

Low (10, 100]

Medium (100, 1 000]

High (1 000, 10 000]

Very high (10 000, 100 000)

Table 3. Two hypothetical scenarios for assumed
minimum detectable CO2 leakage masses (i.e.,
detection thresholds) for each monitored depth
interval.

Detection thresholds (CO2

mass in metric tons)

Aquifer (depth)

Low-threshold
monitoring
option(tons)

High-threshold
monitoring
option(tons)

1: Ironton–Galesville (1 044 m) 10 000 10 000

2: Potosi (936 m) 1 000 10 000

3: New Richmond (742 m) 100 1 000

4: St Peter (592 m) 10 100

those. The minimum CO2 leakage mass that can be
detected (i.e., the detection thresholds) by the surface
seismic monitoring at the depths of each of the four
aquifers were defined to derive the conditional
probabilities for the monitoring node. Based on
previous modeling work assessing the leak-detection
capabilities of surface seismic monitoring using leakage
simulations at the FutureGen 2.0 site,35 it is estimated
that 10 000 tons of CO2 at the depth level of aquifer 1
(i.e., the Ironton–Galesville sandstone) can be detected
by surface seismic monitoring using a high-density
acquisition geometry if the signal-to-noise ratio of the
seismic data is sufficiently high. For CO2 plume at the
depth levels of aquifers 2, 3, and 4, we assume the
minimum detectable CO2 leakage masses are 1000,
100, and 10 tons for the low-threshold monitoring
option and 10 000, 1000, and 100 tons for the
high-threshold monitoring option (Table 3).

In this study, mitigation is represented simply as an
assumed instantaneous reduction in the effective
permeability of the leaky wells to effectively zero. The
conditional probability of the mitigation node is
derived based on the assumption that if the monitoring
observations suggest no CO2 plume, mitigation will
not be conducted; if the monitoring observations
suggest there is CO2 plume in any of the four aquifers,
mitigation will be conducted in 90% of cases. This
mitigation rate allows for cases such as CO2 migration
into deeper aquifers where decision makers may decide
that mitigation is not warranted. The last node: CO2
leakage mass out of the defined containment envelope
after 70 years following mitigation is equal to the fifth
node on the left of the graph (i.e., the simulated CO2
leakage mass out of the defined containment envelope
after 70 years using NRAP-Open-IAM without
considering mitigation) in cases where no mitigation is
conducted, but equal to the fourth node on the left (i.e.,
the simulated CO2 leakage mass out of the defined
containment envelope at time t using
NRAP-Open-IAM) if mitigation has been conducted.
The underlying assumption is that the mitigation
activity will take the form of an engineering
intervention to stop further CO2 leakage out of the
containment envelope, but the amount of CO2 that has
leaked out of the containment envelope up until the
time of mitigation will remain the same after
mitigation.

The BN model constructed for the smaller
containment envelope is similar to that for the larger
containment envelope, but has three nodes, instead of
five nodes on the left of the graph. The leakage mass
into aquifers 2, 3, and 4 is aggregated to represent the
leakage mass out of the containment envelope.

The probabilities of the states in each node are
calculated by propagating the prior probabilities
downward through the conditional probability tables.
Figure 4 shows the constructed Bayesian networks for
the defined larger containment envelope and the
smaller containment envelope for the initial model
setup, based on the 10 000 NRAP-Open-IAM
realizations. The probability of containment after
considering monitoring and mitigation can be
calculated from the distribution of the cumulative CO2
leakage mass out of the defined containment envelope
after 70 years following mitigation. For the 99.9%
storage criterion, the maximum allowed leakage mass
out of the containment envelope is 22 000 tons, which
includes the negligible, the low, the medium and the

366 © 2021 Society of Chemical Industry and John Wiley & Sons, Ltd. Greenhouse Gas Sci Technol. 11:360–376 (2021); DOI: 10.1002/ghg.2056
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high states in the leakage nodes on the Bayesian
Networks. The probability of containment is calculated
as:

prob
(
containment|99.9% storage

) = prob
(
negligible

)

+ prob (low) + prob (medium) + prob
(
high

)

For the 99.99% and the 99.999% storage criteria, the
maximum allowed leakage masses are 2200 and 220
tons, respectively. The probability of containment for
each storage criterion is calculated as:

prob
(
containment|99.99% storage

)

= prob
(
negligible

) + prob (low) + prob (medium)

prob
(
containment|99.999% storage

)

= prob
(
negligible

) + prob (low)

When monitoring observations are obtained during
site operation, the new monitoring information can be
entered in the Bayesian networks and the probabilities
of the states of each node are updated based on the
Bayes’ rule. The updated probability of containment
based on the monitoring observations can be calculated
from the top node on the right of the BN graph.

We evaluated the probability of containment for
different scenarios using 99.9, 99.99, and 99.999% as
the respective containment effectiveness criteria and
for each of the two defined monitoring scenarios to
demonstrate the functionality of the constructed
Bayesian networks. The initial model setup reflects
results generated from the NRAP-Open-IAM
realizations and the assumed detection thresholds for
surface seismic monitoring based on scientific studies
using the site characterization data. When repeated
seismic monitoring observations are obtained during
site operation, the evaluated probability of containment
was updated in the Bayesian network by entering
leakage detection findings for the relevant nodes. For
example, if the monitoring observations suggest no
CO2 plume in any of the aquifers, the probability of the
“not detected” state in the monitoring node will be
changed to 100% (Fig. A3 in the Supporting
Information Appendix) and if the monitoring
observations suggest there is CO2 plume in one or
more of the monitored intervals, the probability of the
“detected” state in the corresponding monitoring node
will be changed to 100% (Fig. A4).

We demonstrate the updated probability of
containment for scenarios in which (a) no CO2 leakage

plumes are found by surface seismic monitoring; (b)
CO2 leakage plumes are detected by surface seismic
monitoring but no mitigation strategies are applied;
and (c) CO2 leakage plumes are detected by surface
seismic monitoring and mitigation strategies are
applied at the time of the plume detection.

In the base case, the monitoring nodes in the
Bayesian network represent whether or not the CO2
plume is detected by surface seismic monitoring. If
additional information about the CO2 plume, such as
the interval into which CO2 is leaked and the CO2
mass of the plume, is obtained by inversion of the
monitoring data, this additional information can be
entered in the Bayesian network to further constrain
the estimated distribution of CO2 mass leakage out of
the containment envelope and update the computed
probability of containment after 70 years. We
demonstrate how the additional information can be
used in the Bayesian network for a single example
scenario for the larger containment envelope,
supposing the inversion results from the low-threshold
monitoring option suggest there is CO2 in aquifer 2
with an amount larger than 10 kt (i.e., the ‘very high’
class in the leakage mass node), and the amount of
CO2 in other aquifers is below the detection thresholds
of the low-threshold monitoring option.

Results
Initial evaluation
The initial evaluation using the 10,000
NRAP-Open-IAM realizations shows that the
probability of containment after 70 years for the larger
containment envelope and the smaller containment
envelope is 1.0 and 0.975 for the 99.9% storage
criterion, 0.94 and 0.053 for the 99.99% storage
criterion, and drops to 0.2 and 0 if the 99.999% storage
criterion is chosen (Table 4), based on the empirical
CDF of the simulated leakage mass out of the
containment envelope after 70 years (Fig. 3). The
results indicate that the defined storage envelope and
the selected storage criterion can greatly influence the
evaluation results of the storage complex effectiveness.
Figure A1 of the Appendix shows the calculated
descriptive statistics (mean, median, 75th, and 99th
percentiles) from the 10 000 NRAP-Open-IAM
realizations of the leakage mass from each leaky well
into the four aquifers as a function of time since the
injection starts. Simulated leakage from the injection
well starts earlier and is greater in magnitude than that

© 2021 Society of Chemical Industry and John Wiley & Sons, Ltd. Greenhouse Gas Sci Technol. 11:360–376 (2021); DOI: 10.1002/ghg.2056 367
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Table 4. Initial site containment performance
evaluation results based on results from 10 000
NRAP-Open-IAM system model realizations.

Probability of containment

Storage criterion

Larger
containment

envelope

Smaller
containment

envelope

99.9% (allowed leakage =
22 000 tons CO2 of 22
MMT total injected)

1 0.975

99.99% (allowed leakage
= 2 200 tons CO2 of 22
MMT total injected)

0.94 0.053

99.999% (allowed leakage
= 220 tons CO2 of 22
MMT total injected)

0.2 0

from the stratigraphic well. The largest amount of
leakage reports to aquifer 2 (i.e., Potosi), followed by
aquifer 4 (i.e., St Peter), aquifer 3 (i.e., New Richmond),
and aquifer 1 (i.e., Ironton–Galesville). The 99th
percentile values represent the simulated leakage
magnitudes for unlikely leakage scenarios of greatest
potential impact based on the characterized effective
permeability for intact, leaky wells.

Updated evaluation by monitoring
Baseline scenario
The BN graphs of the defined containment envelope
with the two monitoring options for the initial model
setup are shown in Fig. 4 and Fig. A2 of the appendix,
respectively. The baseline scenario does not consider
monitoring and mitigation, which is calculated from
the top left node on the BN graphs. The green bars in
Fig. 5 shows the computed probability of containment
at the defined larger containment envelope and the
smaller containment envelope using 99.9%, 99.99%,
and 99.999% storage criterion for the baseline scenario.
For the 99.9% storage criterion, the probability of
containment is 1 and 0.67 for the larger containment
envelope and the smaller containment envelope,
respectively. While for other higher storage criteria
considered (i.e., 99.99% and 99.999%), the probability
of containment for the smaller containment envelope
quickly drops to a very low value and is much lower
than that of the larger containment envelope. The
chosen storage containment effectiveness criterion has

Figure 3. Empirical cumulative density function (CDF) of the
simulated mass leakage out of (a) the defined larger
containment envelope, which includes the storage reservoir
and aquifers 1, 2, and 3; and (b) the defined smaller
containment envelope, which includes the storage reservoir
and aquifer 1, after 70 years based on 10 000
NRAP-Open-IAM realizations. The red dashed lines show
how the probability of containment corresponding to each
storage criterion is obtained from the empirical CDF for the
defined containment envelope.

a large effect on the evaluated probability of meeting
containment objectives. For example, at the 99.9%
storage criterion, the probability of containment for the
larger containment envelope at the FutureGen 2.0 site
is 1, while at 99.999% storage criterion, the probability
of containment drops to 0.14. The estimated
probability of containment using the Bayesian
networks for the baseline scenario is lower than that in
the initial evaluation using only NRAP-Open-IAM
simulations due to the discretization of the leakage
mass values in the Bayesian networks. Note that the

368 © 2021 Society of Chemical Industry and John Wiley & Sons, Ltd. Greenhouse Gas Sci Technol. 11:360–376 (2021); DOI: 10.1002/ghg.2056
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Figure 4. Bayesian network graphs of (a) the larger containment envelope and (b) the smaller containment envelope for
the low-threshold monitoring option in the initial model setup. The larger containment envelope includes the storage
reservoir and aquifers 1, 2, and 3; the smaller containment envelope includes the storage reservoir and aquifer 1.

© 2021 Society of Chemical Industry and John Wiley & Sons, Ltd. Greenhouse Gas Sci Technol. 11:360–376 (2021); DOI: 10.1002/ghg.2056 369
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Figure 5. Probability of containment for the larger containment envelope and the smaller containment envelope
using the low-threshold monitoring option and the high-threshold monitoring option for the baseline scenario, in
which no monitoring and mitigation is considered; the ‘not detected’ scenario, where monitoring observations
suggest no CO2 plume; the ‘detected: not mitigate’ scenario, where monitoring observations suggest there is CO2

plume but no mitigation is conducted; and the ‘detected: mitigate’ scenario, where monitoring observations suggest
there is CO2 plume and mitigation is conducted at the time of detection: (a) evaluated at the 99.9% storage criterion;
(b) evaluated at the 99.99% storage criterion, and (c) evaluated at the 99.999% storage criterion.

assumed effective permeabilities of the two leaky wells
were fairly high (ranging from 10−14 m2 to 10−12 m2)
compared to other studies, so the estimated leakage
risks are relatively high. The predicted most likely
leakage class after 70 years is medium (i.e., between 100
and 1000 tons) and high (i.e., between 1000 and 10 000
tons) for the larger containment envelope and the
smaller containment envelope, respectively.

Scenarios of plume detection and mitigation
The updated probability of containment for various
scenarios with monitoring observations entered is
compared with the baseline scenario in Fig. 5. For all
the scenarios evaluated, the probability of containment
is close to 1 if the larger containment envelope and the
99.9% storage criterion are chosen (Fig. 5). For the
defined smaller containment envelope, the probability
of containment decreases greatly if the monitoring
observations suggest there is CO2 plume in aquifers out
of the containment envelope, and the operator choose
to not mitigate, especially for the high-threshold

monitoring option. The probability of containment for
the low-threshold monitoring option is higher than
that for the high-threshold monitoring option, which is
due to the lower detection thresholds (i.e., higher
detection capabilities) assumed for the low-threshold
monitoring option. This indicates that reducing the
detection thresholds of the deployed surface seismic
monitoring will increase the probability of the
containment effectiveness at the site. The probability of
containment for the ‘not detected’ scenario is always
higher than that in the baseline scenario, suggesting
that monitoring can improve our confidence in the
estimated containment. If the monitoring observations
suggest no CO2 plume in the aquifers, it is more likely
that CO2 is contained in the storage complex and the
probability of containment is higher than that of the
‘detected: not mitigate’ scenario, but may be lower than
that of the ‘detected: mitigate’ scenario in some cases.
The probability of containment for the smaller
containment envelope is extremely low at the 99.99%
and the 99.999% storage criterion for the scenarios
considered. For the larger containment envelope, if the

370 © 2021 Society of Chemical Industry and John Wiley & Sons, Ltd. Greenhouse Gas Sci Technol. 11:360–376 (2021); DOI: 10.1002/ghg.2056
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monitoring observations suggest there is CO2 plume,
but no mitigation is conducted, the posterior
probability of containment after 70 years decreases at
both the 99.99% and the 99.999% storage criterion. The
decrease is larger for the high-threshold monitoring
option than that for the low-threshold monitoring
option due to the lower resolution (i.e., larger detection
thresholds) of the high-threshold monitoring option,
compared to that of the low-threshold monitoring
option. If the high-threshold monitoring option detects
the CO2 plume, it is more likely that the amount of
leakage mass has been larger. In cases where a decrease
in the probability of containment below an a priori
assumption is suggested by monitoring observations,
some fraction of the credits that have been previously
claimed for effective containment may need to be
refunded (termed “recaptured” of credits in some
instances). For example, at the 99.9% storage criterion,
the probability of containment for the smaller
containment envelope using the low-threshold
monitoring option decreases from 0.67 in the baseline
scenario to 0.08 when the high-threshold monitoring
option detects the CO2 plume and no mitigation is
conducted. If the monitoring observations suggest
there is CO2 plume and mitigation strategies are
applied at the time of detection to stop further leakage
from the storage envelope, the probability of
containment increases slightly compared to the
baseline for the larger containment envelope at the
99.99% storage criterion, while decreases at the
99.999% storage criterion using the high-threshold
monitoring option with lower resolution in detecting
the CO2 plume. In general, the probability of
containment is much higher with mitigation,
compared to monitoring without mitigation. The
Bayesian network graphs for the monitoring and
mitigation scenarios considered are included in the
Supporting Information Appendix (Figs A3 and A4).

Effect of additional information from
monitoring
In the previous section, the information used from
surface seismic monitoring is whether there is CO2
plume in the modeled system or not. In this example
scenario, we assume that the low-threshold monitoring
option is not only able to detect there is CO2 plume in
the modeled system, but also infer with confidence that
the CO2 plume is in aquifer 2 with the mass of larger
than 10 kt. We further assume that the CO2 mass in

other aquifers is below the detection thresholds of the
low-threshold monitoring option. The Bayesian
network graph of the larger containment envelope for
this example scenario is shown in Fig. 6. On the
Bayesian network graph, in addition to changing the
probability of the ‘detected’ state in the monitoring
node to 100%, the probability of the ‘very high’ class in
the node for leakage mass into aquifer 2 is also changed
to 100% and the probabilities for classes higher than
the detection thresholds of the low-threshold
monitoring option in the nodes for leakage mass into
aquifers 3 and 4 are changed to 0. Comparing the node
“mass_aquifer4_t70” on the BN graph for the ‘detected
only’ scenario (Fig. A4a) with that for the ‘detected and
located’ scenario (Fig. 6) shows that the added depth
interval and mass information about the CO2 plume
inferred from the monitoring method has significant
effects on the distribution of the predicted CO2 mass
out of the containment envelope after 70 years, with the
increased probabilities for relatively small mass values
and decreased probabilities for relatively large mass
values. Figure 7 compares the probability of
containment after 70 years for the larger containment
envelope using the low-threshold monitoring option at
the 99.9%, 99.99%, and 99.999% storage criterion for
the example scenario with depth interval and mass
information inferred from the monitoring data vs. only
knowing there is CO2 plume in the modeled system
from the monitoring method. The estimated
probabilities of containment after 70 years at the 99.9%,
99.99%, and 99.999% storage criterion with the added
information from monitoring are higher than those
with only the information about detectability from the
monitoring method (same as the red bars of the ‘large
envelope, low threshold monitoring’ group in Fig. 5).

Discussion
The findings entered in the Bayesian network about the
depth and the CO2 mass observations require inversion
from surface seismic data. At the current state of
technology, relatively large uncertainty in the
geophysical inversion results can exist, especially for
quantitative inversion of the CO2 plume.14,36,37 Joint
inversion or joint interpretation of data from multiple
monitoring methods, including both the indirect
geophysical monitoring data and the direct downhole
measurements might improve the accuracy of the
estimated depth interval and the CO2 mass. Also, brine
migration, which might be observable using some

© 2021 Society of Chemical Industry and John Wiley & Sons, Ltd. Greenhouse Gas Sci Technol. 11:360–376 (2021); DOI: 10.1002/ghg.2056 371
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Figure 6. Bayesian network graph for the larger containment envelope with the low-threshold monitoring option
for an example scenario showing the effect of additional information from the monitoring method.

372 © 2021 Society of Chemical Industry and John Wiley & Sons, Ltd. Greenhouse Gas Sci Technol. 11:360–376 (2021); DOI: 10.1002/ghg.2056
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Figure 7. Comparison of the probability of containment
after 70 years for the larger containment envelope using
the low-threshold monitoring option between the
example scenario with depth interval and mass
information inferred from the monitoring data (denoted
by ‘detected and located’) and the scenario only
knowing there is CO2 plume in the modeled system from
the monitoring method (denoted by ‘detected only’,
same as the red bars of the “large envelope, low
threshold monitoring” group in Fig. 5).

geophysical techniques before CO2 begins (e.g.,
electromagnetic conductivity) could be a useful means
of early fluid migration and inference of future CO2
migration. Recently, machine learning methods have
been applied in various aspects related to seismic
imaging and inversion.38–42 For example, Zhou et al.41

used convolutional neural networks to learn the
relationship between simulated seismic data and the
CO2 mass based on flow simulations for a model
storage site. If the monitoring method can more
effectively provide information about the CO2 plume
(such as the detectability, the depth interval or the CO2
mass) and also the probabilities associated with the
observations (i.e., likelihood findings), these
observations and the corresponding probabilities can
be entered in the Bayesian network together to make
probabilistic inferences and to further update the
estimated probability of containment.

This study uses surface seismic monitoring as an
example monitoring technique to demonstrate the
usability of the Bayesian network. Nodes for other
monitoring methods, such as the gravity monitoring,
electrical resistivity tomography, or direct downhole
pressure and TDS measurements, can be added to the
Bayesian network when the detection thresholds and
observations from these monitoring methods are

available at the geologic carbon storage site. The
Bayesian network method may have value for
considering different monitoring alternatives, such as
multiple monitoring techniques with joint
interpretation/joint inversion, different array densities,
for early leakage diagnosis and mitigation, and for
supporting decisions about which monitoring
technique to use at a site.

The performance of the Bayesian network largely
depends on the training dataset, which requires
thousands of realizations from physics-based
simulations of geologic storage site performance. The
NRAP-Open-IAM code enabled the calculation of
several thousand realizations for the CO2 storage
system within a few hours on a desktop computer. The
evaluation results presented in this study are based on
10 000 NRAP-Open-IAM realizations, but larger sets of
realizations would be computationally accessible using
this approach and would likely increase the stability
and the prediction accuracy of the Bayesian network.

The current release of the NRAP-Open-IAM tool
considers only wells as potential leakage pathways;
functionality to support simulating leakage through
faults or fractures otherwise low-permeability aquitard
intervals is forthcoming. As mentioned in the leakage
simulations section, the range of well permeabilities
assumed for the leaky wells were relatively high,
resulting in the relatively large mass leakage out of the
containment envelope. Refinement of a priori well
permeability estimates will improve forecasting and
decision making around containment and leakage risk.
Since our principal objective in this paper is to
demonstrate the workflow for evaluating the
probability of containment effectiveness using
NRAP-Open-IAM and Bayesian networks, the
multi-phase flow reservoir simulations over 70 years of
total site performance were employed to train the
reduced-order models in NRAP-Open-IAM. Further
application of this workflow with simulations over
much longer time (e.g., 1000 years) should allow the
evaluation to be conducted with greater insight for real
site application.

Future work could expand on the approach presented
herein to use monitoring inversion results to update
assumed distributions of uncertainty parameters used
in forward simulations.43 Consideration of additional
mitigation alternatives and more detailed consideration
of how monitoring information can be used to inform
mitigation decisions is warranted. Finally, it would be
valuable to test and extend the approach presented

© 2021 Society of Chemical Industry and John Wiley & Sons, Ltd. Greenhouse Gas Sci Technol. 11:360–376 (2021); DOI: 10.1002/ghg.2056 373
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herein for brownfield cases (e.g., CO2 enhanced oil
recovery sites) with many potentially leaky wells.

Summary and conclusions
In this study, we have developed a workflow to evaluate
the probability of containment effectiveness at a
geologic carbon storage site using NRAP-Open-IAM
and Bayesian networks. The initial evaluation is based
on 10 000 NRAP-Open-IAM realizations designed for
the FutureGen 2.0 site, forecasting the leakage risks at
the injection well and at an offset stratigraphic well.
Representations of site monitoring and mitigation
through the site operation phase were then
incorporated into the framework for assessing the
probability of containment using Bayesian networks.
Distinct BNs were constructed to represent different
storage envelops that might be defined by the operator.
Two scenarios for surface seismic monitoring detection
thresholds were considered. We evaluated and
compared the probability of containment for multiple
scenarios at the 99.9%, 99.99%, and 99.999% storage
criterion. Our results indicate that the defined
containment envelope and the selected storage
criterion greatly influence the estimated probability of
containment. For all the scenarios evaluated, the
probability of containment is close to 1 if the larger
containment envelope and the 99.9% storage criterion
are chosen. For the defined smaller containment
envelope, the probability of containment is high at the
99.9% storage criterion but decreases greatly at the
99.99% and 99.999% storage criterion. Monitoring can
improve our confidence in the estimated containment.
In general, the probability of containment is much
higher in scenarios where the decision to mitigate is
enabled, as compared to monitoring without
mitigation. This suggests the importance of
considering mitigation in response to observed
behavior (i.e., CO2 plume detection) in the system to
ensure effective containment (though there are many
factors contributing to operator’s decision making
about mitigation). The estimated probability of
containment can be further updated if monitoring
method can provide information about the depth
interval and the mass of the CO2 plume, in addition to
simply detecting the presence of a plume. This
evaluation workflow provides a simple example of how
GCS practitioners might use physics based, site-specific
forecasting, and monitoring evidence within a

probabilistic framework to support a justification for
claiming credit for long-term CO2 containment.
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