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Disclaimer

This project was funded by the United States Department of Energy, National Energy
Technology Laboratory, in part, through a site support contract. Neither the United States
Government nor any agency thereof, nor any of their employees, nor the support
contractor, nor any of their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by frade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States Government or any
agency thereof.
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Critical Role of Fracture Network Quantification
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» Assessing containment of injected CO, » ldentification of permeable pathways > Optimal designing of treatment strategy

» Mitigating fluid migration risk » Optimize fluid sweeping » Maximizing hydrocarbon recovery
» Optimizing injection strategy » Optimal well placement » Minimizing environmental contamination
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Structured Approach to Fracture Network Quantification

Unsupervised ML algorithms
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Data Assimilation

Preliminary Location Preliminary Location + Double Difference Location
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Hydraulic Diffusivity

» Play a crucial role in understanding and managing high-pressure fluid injection processes

» Measure of how quickly fluids can move through the porous media

» Provides critical information about the flow behavior, pressure distribution,

and fluid migration patterns during injection operations
* Derived from mapping the microseismic triggering front and can be
directly linked to rock permeability
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Event Clustering Using Unsupervised ML algorithms
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Fracture Plane Quantification Using Standard Deviation Ellipsoid
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3D Fracture Plane Distribution
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3D Fracture Attributes (variation in dip)
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3D Fracture Attributes (dip direction)
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Geomechanical correlation with microseismicity
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Microseismic Pseudologs (CCS1)
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Geomechanical correlation with microseismicity
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Take Away Points

e Developed a machine-learning-based solution for fracture network quantification using recorded microseismic
events.

e Successfully applied the tool to the Illinois Basin — Decatur Project (IBDP) dataset to characterize reservoir-
scale subsurface fracture network.

o Identified dominant fracture planes associated with CO, injection-induced microseismic activity that are in
complete unison with the orientation of preexisting stress condition.

e Estimated qualitative permeability changes along fracture planes based on event magnitudes.

e Our technique provides a data-driven alternative to conventional Discrete Fracture Network (DFN) modeling
approaches.

e The technique is highly scalable and transferrable beyond CO, storage, including geothermal energy and
hydraulic fracturing projects.
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Questions??

VISIT US AT: www.NETL.DOE.gov
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CO, storage Geothermal Hydraulic fracturing
() @NETL_DOE =2t :
o @NationalEnergyTechnologyLaboratory
CONTACT:

Guoxiang “Gavin” Liv
Guoxiang.Liv@netl.doe.gov
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