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Disclaimer

This project was funded by the United States Department of Energy, National Energy 

Technology Laboratory, in part, through a site support contract. Neither the United States 

Government nor any agency thereof, nor any of their employees, nor the support 
contractor, nor any of their employees, makes any warranty, express or implied, or assumes 

any legal liability or responsibility for the accuracy, completeness, or usefulness of any 

information, apparatus, product, or process disclosed, or represents that its use would not 

infringe privately owned rights. Reference herein to any specific commercial product, 

process, or service by trade name, trademark, manufacturer, or otherwise does not 

necessarily constitute or imply its endorsement, recommendation, or favoring by the United 

States Government or any agency thereof. The views and opinions of authors expressed 

herein do not necessarily state or reflect those of the United States Government or any 

agency thereof.
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Critical Role of Fracture Network Quantification

Fracture Network Mapping for Energy System Operation/Control

CO2 storage Geothermal Hydraulic fracturing

➢ Assessing containment of injected CO2

➢ Mitigating fluid migration risk

➢ Optimizing injection strategy

➢ Identification of permeable pathways

➢ Optimize fluid sweeping 

➢ Optimal well placement

➢ Optimal designing of treatment strategy

➢ Maximizing hydrocarbon recovery

➢ Minimizing environmental contamination

https://doi.org/10.1016/j.earscirev.2020.103390 https://doi.org/10.1016/j.renene.2020.06.143 https://doi.org/10.1088/1755-1315/570/2/022011

SPE 214996 URTEC-3723466-MShttp://dx.doi.org/10.2139/ssrn.5071255

https://doi.org/10.1016/j.earscirev.2020.103390
https://doi.org/10.1016/j.renene.2020.06.143
https://doi.org/10.1088/1755-1315/570/2/022011
https://dx.doi.org/10.2139/ssrn.5071255
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Road Map

• Goal
➢ Implementing novel methods to image fractures/faults

• Site detail
➢ Illinois Basin-Decatur Project (IBDP)

• Data sets
➢ Microseismic data recorded from downhole array

➢ Bottomhole pressure, CO2 flow rate, well logs

• Methods
➢ Time-windowing

➢ Physics-based ML clustering

➢ Fracture network quantification

➢ Qualitative permeability estimates

• Results
Will et al., 2014
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Structured Approach to Fracture Network Quantification
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Preliminary Location Preliminary Location + Double Difference Location

Original Catalog Joint Catalog 
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Hydraulic Diffusivity

• Play a crucial role in understanding and managing high-pressure fluid injection processes

• Measure of how quickly fluids can move through the porous media

• Provides critical information about the flow behavior, pressure distribution,

      and fluid migration patterns during injection operations

• Derived from mapping the microseismic triggering front and can be 

     directly linked to rock permeability 

𝑟𝑡 𝑡 = 4𝜋𝐷𝑡𝑓𝑡
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Event Clustering Using Unsupervised ML algorithms
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Microseismic Cluster

Least square plane

2-Standard Deviational Ellipsoid

Fracture Plane Quantification Using Standard Deviation Ellipsoid
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3D Fracture Plane Distribution

Window 3 Window 9
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3D Fracture Attributes (variation in dip)

Hierarchical K-Means

Near horizontal/small angle of dip 

agrees with other studies reported 

by using different dataset (Bauer 

et al., 2016, 2022) 



3/5/2025 12

3D Fracture Attributes (dip direction)

K-MeansHierarchical

• Our tool predictions for fracture network are in good unison with previously reported geotechnical findings

Bauer et al., 2016, 2022
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Geomechanical correlation with microseismicity

𝝀𝝆 = 𝑫𝒆𝒏𝒔𝒊𝒕𝒚 𝒔𝒄𝒂𝒍𝒆𝒅 𝒄𝒐𝒎𝒑𝒓𝒆𝒔𝒔𝒊𝒐𝒏
𝝁𝝆 = 𝑺𝒕𝒊𝒇𝒇𝒏𝒆𝒔𝒔
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Microseismic Pseudologs (CCS1)
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Geomechanical correlation with microseismicity
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• Developed a machine-learning-based solution for fracture network quantification using recorded microseismic 

events.

• Successfully applied the tool to the Illinois Basin – Decatur Project (IBDP) dataset to characterize reservoir-

scale subsurface fracture network.

• Identified dominant fracture planes associated with CO2 injection-induced microseismic activity that are in 

complete unison with the orientation of preexisting stress condition.

• Estimated qualitative permeability changes along fracture planes based on event magnitudes.

• Our technique provides a data-driven alternative to conventional Discrete Fracture Network (DFN) modeling 

approaches.

• The technique is highly scalable and transferrable beyond CO2 storage, including geothermal energy and 

hydraulic fracturing projects.

Take Away Points



VISIT US AT:  www.NETL.DOE.gov

@NationalEnergyTechnologyLaboratory

@NETL_DOE

@NETL_DOE

CONTACT:

Questions??

Guoxiang “Gavin” Liu

Guoxiang.Liu@netl.doe.gov
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