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Abstract 

The sizes of the basins of attraction on the potential energy surface are helpful indicators in 
determining the experimental synthesizability of metastable phases. In principle, these 
basins can be controlled with changes in thermodynamic conditions such as composition, 
pressure, and surface energy. Herein, we use random structure sampling to 
computationally study how alloying smoothly perturbs basin of attraction sizes. The TaC1–
xNx pseudobinary is an ideal test system given the structural and polymorphic contrast of 
its parent compounds and their technological relevance as epitaxial substrates for Al1–
xGaxN. While we find limited thermodynamic stability across all computationally observed 
phases, random structure sampling shows a significant composition region where the 
rocksalt basin dominates. As such, we predict the potential for the nonequilibrium 
synthesis of metastable rocksalt TaC1–xNx alloys as substrates for Al1–xGaxN. At higher 
nitrogen concentrations, other low-energy metastable polymorphs emerge that continue to 
retain the hexagonal close packing suitable for III–N growth. Confidence in these trends 
was established through uncertainty quantification of the basin sizes and energy 
distributions; such analysis utilized the Beta and Dirichlet distributions. We also find (a) 
polymorph basin sizes can be rationalized in terms of energetic preferences for different 
coordination environments; and (b) basin sizes universally shrink with increasing nitrogen 
content, making the system more prone to amorphous growth. 
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Introduction 

Many critical synthetic processes are conducted far from thermodynamic equilibrium and 
produce metastable materials. (1,2) Most commonly, these syntheses involve either 
irreversible bond formation or rapid quenching, as seen in physical vapor deposition 
techniques. (3) Computational approaches to understanding metastability often focus on 
the energy with respect to the convex hull. (4) While energetics can provide useful bounds 
on the limits of metastability, differentiating between structures that fall within such 
bounds can be challenging. (1) Indeed, low-energy structures are not necessarily 
realizable, (5) and high-energy structures cannot be automatically discarded. (6) 

From soft matter to astronomy, basins of attraction serve as a natural compromise for 
succinctly describing potential energy surfaces without reducing them solely to the energy 
of their local minima. (7−11) Recent work has highlighted the basin of attraction size as a 
factor in determining polymorph metastability. (1,12−18) The boundaries of each basin are 
defined such that any atomic configuration within the basin will fall into the energetic 
minimum of that basin upon structural relaxation. As such, the relative basin sizes 
represent the probability for a random configuration to relax into a given structure. These 
probabilities can be used to rank the experimental realizability of different metastable 
polymorphs. (1,12,18) The basins of attraction and their corresponding probabilities are 
illustrated for a hypothetical system in Figure 1a,b. 

Figure 1 

 

Figure 1. (a) Basins of attraction within configuration space lead to distinct, dynamically stable phases. The 
relative size of each basin determines (b) the probability for a random state to structurally relax into that 

phase. (c) This work investigates how basins of attraction can be controlled through composition modulation. 

Still, there remains an open scientific question of what determines the size of the basin of 
attraction and how such sizes can be rationally controlled. Success would provide critical 
access to synthetic navigation of metastable polymorphs. Figure 1c sketches the 
hypothesized change in basin sizes with composition. Herein, we use alloying to 
computationally study the effects of chemical composition on basin sizes, and thus 
polymorph selection, in the TaCxN1–x pseudobinary alloy. 
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Calculating basin sizes is nontrivial since they are relative quantities–the proportion of 
configuration space taken up by a single basin is dependent on the other competing 
basins. As such, an unbiased sampling of the potential energy surface is required to 
estimate basin sizes. Our recent work employs random structure generation and repeated 
relaxations (19) to explore the potential energy surface and the basins therein. (12) Of 
particular relevance is the study of ZnZrN2, which compared the efficacy of various 
computational techniques including Special Quasi-random Structures, vibrational free 
energies, and random structure sampling. (16) Ultimately, only random structure sampling 
was able to explain the growth of a metastable phase due to its relatively large basin size. 

While previous studies gave insight into thermodynamic basins and phase selection, they 
focused on individual chemistries, or a couple of distinct compounds. (1) A systematic 
characterization of basin size under gradual condition changes is necessary if we are to 
understand and control basin size. Here, we use alloying as an ideal tool for such a 
systematic study; by finely varying composition, we perturb the potential energy surface 
and finally observe the resulting trends in basin sizes. 

TaCxN1–x is an ideal system to study metastability and polymorphism due to the 
differences in carbon and nitrogen bonding. In particular, the contrast in the observed 
polymorphism of the parent compounds provides an interesting path to explore basin 
sizes; TaN exhibits rich polymorphism, (20−22) while TaC has only been realized in the 
rocksalt structure. (23,24) Technologically, a single-phase TaCxN1–x rocksalt alloy would 
be of use as a substrate for Al1–xGaxN growth. (24) Finally, TaCxN1–x serves as a useful 
case example, providing insight into the broader material classes of carbo-nitride alloys 
and metallic nitrides, both of which are often grown through nonequilibrium methods. 
These classes have a variety of applications including opteoelectronics, ultrawide bandgap 
devices, and electrochemical energy storage. (2,25) As one might expect, understanding 
their synthesis remains an ongoing area of research. 

Results and Discussion 

Parent-Compound Basins 

We will start our discussion with TaC since it is the simplest member of the TaCxN1–x 
system. In Figure 2a, we show the observed energies collected from ∼1000 random 
structure samples. Most of the randomly initialized structures relax into high-energy local 
minima with little structural symmetry. Only 7% of the samples finished with a spacegroup 
larger than 10, and 9% of samples relaxed into minima less than 0.2 eV/atom from the 
ground state. These results are typical in random structure sampling (17) and motivate the 
need for robust uncertainty quantification when drawing conclusions about basin sizes. 
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Figure 2 

 

Figure 2. (a) The relaxation of Ta12C12 random structures yields diverse array of atomic configurations. Within 
200 meV of the ground state, five TaC phases are repeatedly found and identified by space group here. (b) For 
the nitride analog, far fewer structures are found near the ground state. (c) The low-energy structures of TaC 
and TaN are comprised of octahedral, prismatic, and trigonal planar polyhedra. (d) For TaC, the five lowest-

energy structures are built from slabs of octahedral and trigonal prismatic polyhedra. (e) Low-energy TaN 
structures share these prismatic polyhedra slabs building blocks; for some phases, a minority of sites have 

been replaced with trigonal planes. All polyhedra are represented with Ta as the central atom. 

Despite the large number of local minima, random structure sampling finds five low-
energy, high-symmetry structures, with rocksalt being the ground state. Moreover, the 
rocksalt structure is found to have the largest basin, occurring 45 times. For context, the 
next most popular structure, spacegroup 160 (SG 160), only occurs 10 times. The 
combination of rocksalt being the ground state and having the largest basin size is 
consistent with TaC only being experimentally realized in the rocksalt structure. (23,24) The 
absence of polymorphism for compounds with a rocksalt ground state fits within a broader 
trend as well. (26) 

In Figure 2d, we visualize the five lowest energy TaC polymorphs found by random structure 
sampling. Interestingly, all five polymorphs are 6-fold coordinated and made up the same 
two underlying polyhedra: trigonal prisms (turquoise) and octahedra (magneta), as 
illustrated in Figure 2c. Both trigonal prisms and octahedra have equilateral triangles of 
carbon; the shared structural motif presents itself as an ideal interface for stacking the two 
polyhedra. It is therefore not surprising that three of the five low-energy structures exhibit 
alternating layers of trigonal prisms and octahedra. Furthermore, the basin sizes of 
structures other than rocksalt follow the following trend: the structures mixing octahedra 
and trigonal prisms (SG 166, 160, 187-C) occur next most frequently, while the structure 
with only octahedra arranged hexagonally (SG 194-C) occurs infrequently. As such, basin 
size is not only determined by the local polyhedra, but how they are arranged. 
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The random structure sampling outcome for TaN differs significantly from that of TaC. In 
Figure 2b, the ground state and other low-energy structures (SG 189, 187, 25, 194) are 
barely visible in the energy distribution, each occurring only once. In fact, of the ∼2000 
random structure samples, only 0.3% relaxed into a structure within 0.2 eV/atom of the 
ground state. The experimental ground state of TaN is the SG 189 structure (TaN-ϵ), (27,28) 
and SG 187 has been produced under high pressures. (21,29) Even with narrow basins, 
both structure-types were independently found through random structure sampling and 
their energetic ordering is in alignment with experiment. 

In Figure 2e, the four lowest energy polymorphs are shown. Like TaC, these structures are 
all a combination of just two underlying polyhedra, except here we have trigonal planes and 
trigonal prisms (panel c). TaN-ϵ structure is found to be the ground state and adopts a 
mixture of trigonal prisms and trigonal planes such that the average coordination of Ta and 
N is 5-fold. However, the SG 187 structure serves as a helpful counterexample, showing 
that 6-fold coordination only results in a relatively small energetic penalty (0.033 eV/atom). 
Looking across these two parent compounds, we see building blocks that are both distinct 
and shared. Trigonal prisms are shared across parent compounds, indicating a possibility 
for energetic favoring in the alloys. 

Typically, random structure sampling shows the observed ground state has the largest 
basin of attraction, as with TaC. Indeed, the inverse correlation between energy and basin 
size has been noted. (19,30−32) However, TaN serves as a useful counterexample where its 
ground state has an exceptionally narrow basin. If the lack of large basins were due to the 
structure generation method, then we would have observed similarly small basins in TaC, 
as well as other systems where the structure generation code was used (e.g., PbTe, SnO2). 
(12,26) However, since we see low-energy structures corresponding to large basins in 
those systems but not in TaN, we conclude that the TaN basin sizes are indicative of its 
underlying potential energy surface. Furthermore, the TaN result is in agreement with a 
broader trend of metallic nitrides having narrow ground state basins. (16,18) 

The large number of observed low-symmetry structures can be interpreted as TaN having 
high a propensity to form a glass. (33,34) Moreover, a common indicator of glass forming 
ability is in the narrow energetic range of configurational states, (35) which is the case for 
low-symmetry structures exhibited by TaN, but not TaC. The existence of both the low-
energy minimum and a large set of energetically similar low-symmetry states helps to 
explain why TaN is commonly found in the literature as either an amorphous material 
(36,37) or one of three ordered compounds. (20,21) In contrast, the ordered rocksalt 
structure is the only TaC phase we find in the literature. (23,24) 

Alloy Energetics and Structures 
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Having established the basin sizes and structures found for TaC and TaN, we now have the 
requisite context to study their alloys. In Figure 3a, we show the empirical probability for a 
random structure to relax into a given energy range, all as a function of composition. Each 
distribution is built from a significant number of 24-atom cell relaxations, ranging from 
∼1000 to 2000. The number of random structures is determined by the need to produce 
sufficiently small uncertainties in the basin sizes. All energies are expressed relative to the 
convex hull, which in this case is simply a linear combination of the parent ground state 
energies. 

Figure 3 

 

Figure 3. (a) Alloys between TaC and TaN show smooth transitions in the empirical energy distributions. By 
adding in nitrogen, the probability density at low energies continues to decrease resulting in a corrugated 

potential energy surface. Despite the addition of nitrogen, the rocksalt structure-type is found at nearly every 
composition; the minimum energy rocksalt decorations are highlighted with triangles. The observed ground 

state energies are marked with dashed lines. (b) The Dirichlet distribution allows for an estimate of the 
underlying probability distribution over energies given a finite number of samples. The uncertainties are 

shown to be sufficiently small. Here, the convex hull bounds the lowest energy considered in calculating the 
Dirichet distribution. (c) The polyhedra content of the lowest energy structures changes with composition. 
Trigonal prisms are incorporated with increasing nitrogen content in the alloys. All of the alloyed structures 

have positive energies of mixing, and are therefore above the convex hull (black line). 

We find a series of interesting trends when gathering statistics on both high and low-energy 
structures through random structure sampling. Like most material attributes, the 
distribution of observed energies varies smoothly with composition. Furthermore, with 
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increasing nitrogen concentration, the distributions become narrower, and the modes shift 
closer to the observed ground states. The proportion of states within 0.2 eV/atom of the 
ground state decreases with increasing nitrogen concentration as well (these trends are 
further illustrated in Figure S2). Both trends indicate an increase in glass forming ability 
with nitrogen content. The trend in glass forming ability could only have been studied by 
expanding our consideration to energy ranges far above the convex hull. 

Much of the change in energetics seen in Figure 3a maps on to structural changes of the 
observed random structure samples. We find that the energy for structure samples is 
linearly correlated with the average coordination number of Ta (Figure S2). Following 
chemical intuition, the lowest energy structures tend to have the highest average 
coordination numbers (i.e., between 5 and 6). With increasing nitrogen content, there is an 
associated drop in the proportion of structures with an average coordination above 5 
(illustrated in Figure S3). Synthesizing these trends, we conclude that the drop in low-
energy structures for nitrogen-rich compositions is explained by the uptick in poorly 
bonded structures. 

One could always ask whether the empirical probability distribution of energies closely 
matches the true underlying distribution. In Figure 3b we use the Dirichlet distribution to 
quantify the uncertainty in the empirical probability distribution given the number of 
observed random structure samples. All three probability distributions exhibit small 
degrees of smearing, associated with low residual uncertainties. We also include the 
possibility that a random structure sample could have an energy lower than any structure 
observed from sampling. The flat lines on the left end of each distribution show that this 
probability is low and unlikely to significantly affect our results. As such we conclude that 
our description of the energy distribution is sufficiently precise for discussing both high-
energy states and trends in the observed ground states. For more details on the Dirichlet 
distribution, please see the Methods. 

While we are largely concerned with basin sizes and the overall distribution of energies, it is 
worth pausing to appreciate the intriguing structural changes that emerge for the observed 
ground states as a function of composition (Figure 3c). Interestingly, all observed alloy 
ground state structures were also observed as low-energy structures for at least one of the 
two parents. From TaC up to TaC3/4N1/4, rocksalt is the ground state structure-type. 
However, past x = 0.25, the ground state structure begins to incorporate trigonal prisms. As 
seen in Figure 3c, the ground state structure shifts to SG 166, 160, and 194, associated 
with an increase in the proportion of trigonal prisms. Finally, only pure TaN exhibits trigonal 
planar environments. Again, this result is chemically intuitive; trigonal prism environments 
are shared by both TaC and TaN, while trigonal planar environments are specific to TaN. 
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When alloying, the ground state structures find a structural compromise by incorporating 
polyhedra that are preferable for both parent compounds. 

Tuning Basin Size with Composition 

Having looked more broadly at the energetics and structure, we can now focus specifically 
on how basin sizes change with composition. In Figure 4a, we plot the probability for a 
random structure to relax into various basins of attraction. Again, these probabilities are 
proportional to basin sizes. All basins are labeled by the “parent spacegroup”, which refers 
to the assigned spacegroup when carbon and nitrogen are considered to be the same 
element. The carbon-rich compositions are dominated by the rocksalt basin, and other 
high-symmetry structure-types tend to fluctuate under 1%. In brown, we show the 
aggregate probability for falling into any basin corresponding to a structure-type with a 
parent spacegroup larger than 10. Even with such an inclusive symmetry cutoff, we see 
that the total probability for finding such structures decreases with nitrogen content. 

Figure 4 

 

Figure 4. (a) The probability for a random structure to fall into a given basin is shown. The uncertainty in these 
probabilities is determined using the Beta distribution. Each error bar represents the standard deviation of 
the corresponding Beta distribution. Most random structure samples relax into high-energy, low-symmetry 
structures. The proportion of samples that relax into a spacegroup greater than 10 peaks at pure TaC and 

decreases with increasing nitrogen concentration. (b) Basins are represented as flat wells, with their widths 
and depths corresponding to their basin sizes and energies, respectively. Of the high-symmetry structures, 
rocksalt is the most prevalent up until TaC1/4N3/4, indicating a possibility for growing rocksalt metastably. 

The uncertainty in the basin probabilities is quantified using a series of Beta distributions. 
For each basin at a given composition, a Beta distribution is established using only two 
inputs: the number of samples that fell into the basin and the number of samples that did 
not. The mode of the Beta distribution (empirical probability) is plotted as a point, while the 
error bars designate one standard deviation from the mode. While standard deviations 
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provide a useful compression of the breadth of the Beta distributions, it is worth 
emphasizing that these distributions are not Gaussian. In Figure 6, we visualize the Beta 
distributions for all rocksalt basins across the composition space. From illustrating these 
distributions, it becomes clear that the dip in basin size at TaC11/12N1/12 is representative 
of statistical uncertainty rather than a chemical trend. Overall, we find the uncertainty to be 
sufficiently small given the number of random structure samples to conclude that the 
rocksalt basin is the largest, and symmetric structures decrease with nitrogen content. 

A pictorial representation of basin size is shown in Figure 4b, where the width of the basin is 
proportional to its probability of occurrence. The basins are arbitrarily drawn with flat 
bottoms since knowledge about the curvature of the basin is unknown. The depth of these 
basin minima are expressed relative to the lowest energy structure discovered in random 
structure sampling for that composition. For TaC and TaC3/4N1/4, we see all the same 
basins occur, but the energetics shift as the other structure-types decrease in energy 
relative to the rocksalt. Moving from TaC3/4N1/4 to TaC1/2N1/2, all basins continue to 
shrink, and the lowest energy structures incorporate trigonal prisms. Interestingly, for 
TaC1/4N3/4 and TaN, all basins are incredibly narrow, signifying that much of the potential 
energy surface is dominated by high-energy structures with low symmetry (as supported by 
Figure 3a). Finally, it is only for pure TaN that SG 189 is observed. The absence of the 189 
SG from other alloy compositions can be rationalized due to its unique trigonal planar 
coordination environments that are unfavorable for carbon. In particular, the SG 189 
requires a 5-fold coordination of anions, and all of the discovered low-energy polymorphs 
of TaC exhibit 6-fold carbon coordination. 

Mixing Thermodynamics 

Basins of attraction give an indication of whether a phase will form from nonequilibrium 
growth, but they do not predict whether the material will undergo phase separation upon 
thermodynamic equilibration. As such, one could ask the following questions: (i) if a 
metastable thin film were annealed, would it undergo phase separation; and (ii) how 
strongly do basin sizes correlate with free energies of mixing? To complete our analysis of 
TaCxN1–x, we evaluate the thermodynamics of the observed polymorphs across 
composition space. The independent cell approximation is utilized for both its 
computational efficiency and ability to estimate configurational entropies at finite 
temperatures. (38−42) For a given composition, all polymorphs showing up in random 
structure sampling more than 1% of the time are considered. Additional polymorph–
composition pairs are added for clarity, including the 189 SG, which does not occur for any 
of the alloy random structure sampling. For more information on the independent cell 
approximation, please see the Methods. 
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In Figure 5a, we highlight the thermodynamic density of states (TDOS) for SG 225 (“NaCl”) 
and 187-N (“WC”) structure-types since they have a strong structural contrast. All energies 
are expressed relative to the parent compounds, as enthalpies of mixing (ΔHmix). The SG 
225 energies increase with nitrogen concentration, while the 187-N energies decrease. 
Such a finding provides a direct demonstration that nitrogen-rich compositions favor 
prismatic structures. Furthermore, the spread in the SG 225 TDOS is wider than that of 187-
N, signaling a higher preference for anion disorder in the 187-N structure. 

Figure 5 

 

Figure 5. Thermodynamic analysis is conducted on the discovered low-energy polymorphs. (a) The TDOS is 
shown for two contrasting structure-types, SG 225 (black) and 187-N (red). With increasing nitrogen content, 

the energetic penalty for adopting octahedra over trigonal prisms increases. (b) The smaller variance in the 
187-N TDOS translates to a higher entropy of mixing at 2000 K. (c) With enthalpies and entropies calculated, 

we show the free energy of mixing for all discovered low-energy polymorphs at 2000 K. There is limited 
solubility for both TaC and TaN. Many of the polymorphs are similar in free energy, as expected due to their 

similar structures. (d) In the limit where interfacial energies between polymorphs are negligible, the 
polymorphs can be treated as states within an ensemble. For instance, at TaC0.75N0.25, one can expect to 

see mostly SG 225, with a mix of the SG 166 polymorph as well. 

As a result, in Figure 5b the configurational entropy of SG 187-N is far closer to the ideal 
entropy of mixing (gray) than the SG 225 structure. In the high-temperature limit, the 
entropy of mixing for both phases converges to the ideal entropy of mixing. Herein, we set 
the effective temperature to 2000 K since previous work has shown that high effective 
temperatures correspond well to sputtering on low-temperature substrates. (43) 

With the TDOS in hand, we calculate the free energies of mixing for all eight observed 
polymorphs (Figure 5c). As consistent with our prior findings, octahedra-rich polymorphs 
are favored by carbon while the trigonal-prism and trigonal-planar motifs are favored by 
nitrogen. The free energy convex hull (gray) suggests that at elevated temperatures the SG 
225 phase is stable to ∼x = 1/12 nitrogen; more nitrogen-rich compositions will decompose 
to TaC11/12N1/12 and TaC1/12N11/12. Surprisingly, the two structures built exclusively 
from trigonal prisms (SG 194 and 187) exhibit startlingly different free energy curves. 

Throughout the TaC1–xNx alloy space, the lowest energy polymorphs have several 
competing phases that are close in energy (<0.1 eV/atom). One resulting outcome may 
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involve competing nucleation when the basin sizes are similar. However, the chemical 
structures of these phases offer a more complex scenario: multiple polymorphs can 
coexist as states within a single phase through stacking disorder. In other words, partial 
ergodicity may extend beyond individual basins of attraction. Such intergrowths are 
enabled by the common octahedral and prismatic polyhedra, which all share triangular 
faces and hexagonal anion packing. 

In the limit where interfacial energies are low between polymorphs, the independent cell 
approximation can be extended across multiple polymorphs. From Zint in eq 10, we 
estimate the free energy of the phase with intergrowths using the standard equation: ΔGint 
= −kBT ln Zint. Overall, the ΔGint that emerges from a phase with intergrowths largely 
reflects the lowest energy polymorph. The probability for various polymorph contributions 
at a given temperature and composition are given by eq 9. Despite these modest changes 
to stability, the ergodic approximation does suggest a nontrivial concentration of stacking 
faults associated with mixing polymorphs. In Figure 5d, we illustrate the potential 
intergrowth concentration for TaC3/4N1/4. Under the ergodic approximation at 2000 K, an 
intergrowth involving ∼70% SG 225 and ∼30% SG 166 is predicted. 

It is worth noting that the energetics differ slightly from that of Figure 3c. Namely, the 
observed lowest energy structure found through random structure sampling has a parent 
spacegroup of 225, whereas a single SG 166 structure was found, and it is 4 meV/atom 
higher in energy. When conducting the independent cell approximation, 50 configurations 
of each structure-type are initialized, and with this increased, focused sampling, the lowest 
energy 166 SG configuration observed is 2 meV/atom below the lowest energy 225 SG 
configuration. As such, at 0 K the intergrowth would be entirely SG 166, as seen in Figure 
5d. Ultimately, these small differences in energetic ordering are small, and most likely 
inconsequential at relevant growth temperatures. 

Implications for the Synthesis of TaC1–xNx 

Beyond serving as a model system to understand how composition can adjust basin size, 
TaC and TaC1–xNx alloys have potential as epitaxial substrates. (24) As one might expect 
based on the different crystal structures and local motifs, there is limited solubility 
between TaC and TaN under thermodynamic equilibrium. However, the SG 225 structure-
type is the dominant basin up to TaC0.25N0.75. As such, there is a possibility for stabilizing 
the rocksalt structure out to much more N-rich compositions with the use of a 
nonequilibrium growth technique like physical vapor deposition. To access these 
compositions, one might try conducting physical vapor deposition under carbon-rich 
compositions initially, and then layering on relatively nitrogen-rich layers. Previously, 
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Al0.7Ga0.3N has been grown on binary TaC. (24) Successful growth of metastable TaC1–
xNx rocksalt films would provide access to a wider range of lattice parameters (Figure S7). 

From TaC0.25N0.75 to TaN, the potential energy surface becomes increasingly glassy, with 
many high-energy minima and narrow basins. It thus may be harder to form metastable, 
crystalline thin films at those compositions; rather, amorphous films are generally 
expected. Potentially, one could modulate the film composition during growth to ultimately 
reach more N-rich compositions or use an appropriate epitaxial substrate. 

Potential for Accelerated Basin-Size Mapping 

For complex systems where the relevant structures have large unit cells, the basin-size 
mapping method would still work. However, larger simulation cells would be required, 
adding to the computational cost. Furthermore, a general trend is that basin sizes tend to 
shrink with the number of atoms in the simulation cell, since the number of minima on the 
potential energy surface is expected to grow exponentially. (44) As such, more random 
structure samples would be required in order to discover the relevant basins and obtain 
sufficient statistics to precisely determine their relative sizes. 

The use of machine-learned interatomic potentials (MLIP) could increase the efficiency of 
basin-size mapping, allowing for better statistics and larger simulation cells. Still, 
leveraging MLIPs for basin-size mapping currently poses its own set of challenges. MLIPs 
would likely require large amounts of training data to handle the incredibly broad array of 
configurations that is inherent to random structure sampling. Incorrectly predicting the 
forces on atoms could result in significantly different relaxation trajectories and 
qualitatively different basin sizes. Given the sensitivity and difficulty in training such a 
model, uncertainty quantification for MLIP predictions would be desirable. However, 
quantifying the uncertainty in the energies and forces predicted by MLIPs is already a 
difficult task and an ongoing area of research. (45−47) Evaluating uncertainties over 
relaxation trajectories would only compound the difficulty. There is, however, reason for 
optimism given the promising recent efforts in producing MLIPs for random structure 
search. (48,49) For instance, with the use of a newly developed ephemeral data derived 
potential, Pickard has been able to use 56-atom cells to conduct random search for high-
pressure phases of boron. (50) If MLIPs become sufficiently accurate for basin-size 
mapping, the combination of MLIPs with the uncertainty quantification shown herein would 
provide two complementary strategies for effectively mapping basin sizes. 

Conclusions 

Herein, we demonstrate that alloying tunes the potential energy surface, thus altering basin 
sizes and metastable polymorph synthesizability. Random structure sampling provides a 
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method for probing the distribution of states that occur far from equilibrium, where random 
structures locally relax into various basins of attraction. For TaCxN1–x, the change in basin 
sizes with nitrogen content can be rationalized in terms of two effects. First, there is a 
gradual shift toward a corrugated potential energy surface with smaller basins, as seen by 
the observed energy distributions. Second, the preference for nitrogen to adopt trigonal 
prism environments results in growing the basins of structures rich in trigonal prisms and 
shrinking the basins associated with octahedra-rich structures. With respect to growing 
TaCxN1–x for epitaxial purposes, we note that adding nitrogen to TaC does not immediately 
reduce the rocksalt basin size. As such, there is a significant composition range where the 
rocksalt basin dominates in size, despite it being thermodynamically unstable. Within that 
composition window, there is an opportunity for leveraging nonequilibrium syntheses to 
grow metastable TaCxN1–x alloys with variable lattice parameters. 

The generally small basin sizes found across the TaCxN1–x composition space posed a 
challenge in robustly establishing trends. Uncertainty quantification was conducted for 
both basin sizes and energy distributions of local minima. Looking forward, we expect that 
the uncertainty quantification presented herein will allow for a more efficient use of 
random structure sampling for basin-size mapping, allowing for searches over broader 
thermodynamic conditions. 

Methods 

Structure Generation 

Lattices are constructed such that lattice vector angles are between 60 and 140°. Lattice 
vectors are set to have lengths between 0.8 and 1.4 of the overall “scale” of the structure. 
Atoms are then placed within the lattice. The scale is used to adjust the volume of the cell 
such that the random structures are initialized from physically reasonable starting points. 
To be clear, these physically reasonable structures are often multiple eV/atom above their 
local minima. We calibrate the scale such that the shortest bond length is 90–100% of the 
bond lengths found in experimentally determined ground state structures. The shortest Ta–
C and Ta–N bond lengths, as found from the experimentally reported ground state 
structures (SG 225 and SG 189) in the Inorganic Crystal Structure Database (ICSD) are 2.2 
and 2.0 Å, respectively. The shortest starting bond length in the produced random 
structures for all compositions was 1.9 Å. 

Atom placement is biased toward configurations that are dominantly cation–anion 
coordinated, by distributing cations and anions over two interpenetrating grids within the 
simulation cell, as detailed elsewhere. (12) Random structure sampling has been 
demonstrated to be effective in finding both the ground state structures as well as the 
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experimentally realizable metastable polymorphs for systems such as C, Si, MgO, ZnO, 
SnO2, group-IV carbides, and ternary nitrides. (12,14,17,18) 

Simulation-Cell Size 

Each random structure is populated with 24 atoms. Generally, we find that 24-atom cells 
are sufficient for modeling disordered systems. In our previous work on IV–VI alloys, we 
showed that an ensemble of 24-atom supercells produced high-temperature ensemble 
averages of thermodynamics and the bulk modulus that were sufficiently close to a 128-
atom Special Quasi-random Structure. (41) Even smaller cell sizes have been successfully 
used for modeling disorder within the independent cell approximation. (38,51) Moreover, in 
our work on elemental silicon (33) and SiO2, (52) we showed that 24-atom cells are 
sufficient to accurately model structural properties of amorphous and glassy states. 
However, running tests for cell sizes with less than 16 atoms resulted in finite-size effects 
for both alloy and glassy ensembles. (33,41) Regarding basin sizes, using structures with 
too few atoms has also resulted in an over representation of ordered structures that did not 
match experimental polymorphism in SnO2, while 24-atom cells did. (12) Finally, 
nucleation processes that result in the growth of a certain phase start at the nanometer 
scale. Hence, cells on the order of 10s of atoms are commensurate with the potential 
energy surface that nucleation seeds would encounter. 

Composition Sampling 

24-atom simulation cells include 12 cation sites and 12 anion sites. As such, 13 different 
compositions are available, including the two parent compounds. The number of random 
structures used for each composition is determined through convergence testing. For TaC, 
only 1000 structures was necessary, and for both TaC0.916N0.084 and TaN, 2000 
structures were required. For all other compositions, 1200 structures were found to be 
sufficient for the converged results to be obtained. 

Structure Classification 

To determine basin sizes, relaxed random structure samples need to be grouped. When 
constructing basins for pure compounds, the choices for grouping are fairly 
straightforward, but with alloys there are nuances that need explaining. Here we use the 
average coordination number of the Ta atoms and the “parent spacegroup” as 
classification criteria. Structures are considered to be within the same basin if they have 
the same parent spacegroup and their average coordination number is within 0.1 of each 
other. 

The coordination shell for each Ta atom was calculated in the following way. Space is 
searched radially outward from the central Ta atom, and atoms that are encountered are 
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added to the coordination shell. The search radius increases until one of two criteria are 
met: (1) the radial distance has exceeded 0.5 Å of the shortest bond length found; or (2) a 
Ta atom is found. If a second Ta atom is encountered, it is not added to the coordination 
shell. Disorder can result in structural distortions that break local symmetry. As a result, 
the coordination environment of each Ta atom will be slightly different, even within a given 
structure. We use the average coordination number such that our classification methods 
are not too sensitive to anion disorder, but rather pick up on the underlying structure-types. 

Similarly, we evaluate the “parent spacegroup” by assigning all C and N atoms the same 
label (C). The spacegroup assignment is then evaluated using a tolerance factor of 0.5 Å to 
accommodate the differences in the bond distances and bond angles due to the varying 
atom identities. The tolerance of 0.5 Å for both the spacegroup and coordination shell 
accommodates the expected differences in the Ta–C and Ta–N bond lengths. The 
magnitude was also justified by extensive visual inspection of the grouped structures and 
both their polyhedra and bond arrangements therein. All spacegroups were calculated 
using spglib. (53) 

Quantifying Basin-Size Uncertainty with the Beta Distribution 

The relative basin sizes are expressed as probabilities; namely, we estimate the probability 
that a randomly generated structure will relax into a given basin of attraction. However, for 
a finite number of samples, there is a chance that the empirical probability distribution (the 
one measured) differs from the true underlying distribution. The same argument can be 
made for the empirical energy distributions: an observed distributions can differ from the 
true distribution. 

In this work, we take a Bayesian approach and employ the related Beta and Dirichlet 
distributions to quantify the uncertainty in the measured probabilities and energy 
distributions. (54,55) The goal in using these distributions is to produce a probability 
distribution over possible outcomes given the observed data (i.e., a posterior distribution). 
The breadths of the resulting posterior distributions are used to demonstrate the 
uncertainty in our measurements. In Figure 4a, we quantify the uncertainty as the standard 
deviation in the posterior Beta distribution for each basin size. In Figure 3b, we visually 
show the breadth in the posterior Dirichlet distribution over energy distributions is small. 

We will begin with our treatment of the Beta distribution since it is the one-dimensional 
analog of a Dirichlet. The Beta distribution is useful for quantifying the uncertainty in the 
probability for an event with two possible outcomes. In our case, the two possible 
outcomes will be whether a random structure relaxes into a given basin. Since there are 
only two possibilities, the probability distribution is determined by a single parameter, θ, 
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which expresses the probability for one of the categories to occur (the probability for the 
other outcome is 1 – θ). A Beta distribution is specified by two parameters α and β, and is 
given by 

𝑃(𝜃|𝛼,𝛽)=𝜃𝛼−1(1−𝜃)𝛽−1∫10𝜃𝛼−1(1−𝜃)𝛽−1d𝜃      (1) 

Assuming a uniform prior (α = β = 1), then the posterior distribution over possible θ values 
(conditioned on observed data) is given by a Beta distribution, where α – 1 is the number of 
times that the first outcome has been observed, and β – 1 is number of times the second 
outcome has been observed. In Figure 6, we show the Beta distributions for the rocksalt 
basin probabilities as a function of composition. The exact α and β parameters are 
included in the Supporting Information (Table S1). 

Figure 6 

 

Figure 6. The Beta distribution is employed to quantify the uncertainty in the probability to fall into a given 
structure-type. While this procedure is conducted for all structure-types, here we highlight rocksalt. The 

posterior probability densities for rocksalt probabilities are calculated from the values in Table S1 and are 
shown on a linear scale for each composition. The integral of the probability density functions is, by 
definition, unity. The error bars shown in the Figure 4a correspond to the standard deviation of these 

probability density functions. Broadly, the probability of falling into the rocksalt basin decreases with nitrogen 
content. 

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript. 
The published version of the article is available from the relevant publisher.



Quantifying Energy-Distribution Uncertainty with the Dirichlet Distribution 

Through random structure sampling, we seek to obtain relative basin sizes and the 
distribution of energetic states. The Beta distribution is useful for quantifying the 
uncertainty in basin sizes, but the Dirichlet distribution is more suited for handling the 
uncertainty in energy distributions. As such, we employ the Dirichlet distribution, the n-
dimensional analog of Beta, to quantify the uncertainty in events that have multiple 
categorical outcomes. 

In the Dirichlet distribution, Θ represents the underlying probability distribution, and it is a 
vector that adds up to 1. Each component of Θ represents the probability of a given 
outcome (the multidimensional analog to θ). K is the number of assumed categories and α 
– 1 is a vector of length K. If we assume a uniform prior (α = 1), then α – 1 corresponds to the 
observed counts for all categories. As such, the posterior Dirichlet distribution represents 
the distribution over possible categorical distributions, Θ, with the following form 

𝑃(Θ|𝛼)=1𝐵(𝛼)∏𝑖=1𝐾Θ𝛼𝑖−1𝑖         (2) 

where B(α) is the normalizing constant. As can be seen above, the only two inputs to the 
Dirichlet distribution are the number of polymorphs, K, and the number of times each 
polymorph has been observed in random structure sampling, α – 1. 

The above treatment is extended to producing uncertainty in the observed energy 
distributions. To do so, we divide each energy spectrum into 50 bins (the same number of 
bins as is shown in the energy histograms in Figure 3). The lower bound of the energy 
spectrum is taken to be a linear combination of the parent energies for that composition. In 
other words, we assume that the enthalpy of mixing will be positive for all observed 
structures. The upper bound is arbitrarily set to an enthalpy of mixing of 0.8 eV/atom. The 
Dirichlet distribution is then produced from the absolute counts for each energetic bin, as 
seen in Figure 7. 
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Figure 7 

 

Figure 7. For each composition, a Dirichlet distribution is defined, and the samples from the distributions are 
visualized with a heat map. For each energy bin, the heat map values sum to one, corresponding to a 

probability over possible energy-bin probabilities. With an increasing number of random structure samples, 
the energy distributions take form. Minimal smearing, and thus small uncertainties, are produced with 

∼1000–2000 random structures. 

Here, the Dirichlet distribution is a distribution over possible energy histograms, and each 
Dirichlet sample corresponds to a histogram. It can be difficult to ascertain much 
knowledge by viewing many histogram samples superimposed on top of each other. 
Instead, we take these histograms and plot their overall density. The heat map values are 
normalized such that, for a given energy window, the distribution over heat map values 
sums to one. As such, the heat map value (i.e., the Dirichlet probability) corresponds to the 
probability that, for a given energy bin, the histogram will be a given value. 

In Figure 7, we show how the posterior distribution over energy distributions develops with 
an increasing number of observed random structures (samples). Our prior distribution is 
the weakest possible uniform distribution. As such, our α vector begins with all ones. Most 
samples from the uniform distribution tend to result in uniform energy distributions as well. 
After 100 observations, the energy distributions still have significant uncertainty, 
corresponding to the smearing in the y-values. By 400 observations, the general shape of 
the distributions is produced. We continue to sample random structures until the 
distributions are sufficiently converged. Notably, the Dirichlet distribution shows that 
relatively small uncertainties can be produced with roughly 1000–2000 random structures. 
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The Dirichlet distribution sampling was conducted with scipy. (56) It is worth noting that the 
distribution over possible heights for a single energy bin is a Beta distribution (Figure S7).  

Independent Cell Approximation 

The use of the Independent Cell Approximation is the same as described before. (41) 
Structures are generated on a fixed lattice and relaxed. The enthalpy of mixing, ΔHmix,i, for 
configuration i, is defined in the following equation 

Δ𝐻mix,𝑖=(𝐸𝑖+𝑝𝑉𝑖)−∑𝑗𝑘𝑥(𝐸𝑗+𝑝𝑉𝑗)        (3) 

Here, the second term sums over k parent compounds with indices j. p is the pressure and 
V is the volume per atom. All results presented correspond to the low pressure (p ≈ 0) case 
for which internal energy and enthalpy are equal, as are the Helmholtz and Gibbs free 
energies. The probability for the ith configuration is given by 

𝑝𝑖=e−𝐸𝑖/𝑘B𝑇𝑍          (4) 

where kB is Boltzmann’s constant and T is temperature. The partition function, Z, serves as 
a normalization constant, resulting from the sum over all n configurations 

Z=∑𝑖𝑛e−𝐸𝑖/𝑘B𝑇          (5) 

The ensemble averaged enthalpy of mixing is thus 

Δ𝐻mix=𝔼𝑖[Δ𝐻mix,𝑖]=∑𝑖𝑛𝑝𝑖Δ𝐻mix,𝑖        (6) 

The entropy of mixing is calculated as 

Δ𝑆mix=−𝑘B∑𝑖𝑛𝑝𝑖ln𝑝𝑖          (7) 

Since exhaustive sampling is not employed, the entropy needs to be scaled; here we scale 
the entropy by a multiplicative constant such that in the high-temperature limit, the entropy 
approaches ΔS = −kBx ln(x) – (1 – x)kB ln(1 – x), as was done previously. (41) Again, x is the 
fraction of nitrogen. The free energy of mixing, ΔGmix, is evaluated as 

Δ𝐺mix=Δ𝐻mix−𝑇Δ𝑆mix         (8) 

Composition-polymorph pairs that are on the lower bound of the convex hull are 
considered to be thermodynamically stable. The convex hull was generated using the qhull 
algorithm (57) within the scipy library. (56) Custom code was built to isolate the lower 
bound of the hull. 

To evaluate the concentration of intergrowths, we assume full ergodicity between 
structure-types. As such, the probability for the ath structure-type to occur is given by 

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript. 
The published version of the article is available from the relevant publisher.



𝑝𝑎=e−Δ𝐺mix,𝑎/𝑘B𝑇𝑍int         (9) 

where Zint is defined as the sum over all structure-types 

𝑍int=∑𝑎e−Δ𝐺mix,𝑎/𝑘B𝑇         (10) 

DFT Relaxations 

All structures are fully relaxed using density functional theory. All degrees of freedom are 
relaxed including the volume, cell shape, and atomic positions. We employ the PBE 
functional (58) within the projector-augmented wave method (59) as implemented in the 
VASP code. (60) The total energies are calculated using a plane-wave cutoff of 340 eV and 
the Monkhorst–Pack k-point grid (61) is chosen such that the total energies are converged 
to within 3 meV/atom. In addition, an on-site Coulomb interaction U = 3 eV term is applied 
to Ta-d states following the rotationally invariant DFT + U formalism. (62) The choice of the 
U-value follows the fitted elemental reference energy (FERE) procedure (63) developed to 
provide accurate compound enthalpies of formation. All structures are relaxed to total final 
pressure of less than 3 kbar. Management of calculations and the analysis of results is 
carried out using the pylada software. (64) 

Notes 

The authors declare no competing financial interest. 

Acknowledgments 

This work was supported under NSF OAC 2118201. M.J. and V.S acknowledge support from 
NSF Grant no. DMR-1945010. Additional support came from NSF OAC 1940199 (A.N. and 
E.T.) and OAC-1940224 (Q.N.). This work was authored in part by the National Renewable 
Energy Laboratory (NREL), operated by Alliance for Sustainable Energy, LLC, for the U.S. 
Department of Energy (DOE) under Contract no. DE-AC36-08GO28308. This work was 
supported by the Laboratory Directed Research and Development (LDRD) Program at 
NREL. The views expressed in the article do not necessarily represent the views of the DOE 
or the U.S. Government. 

References 

1. Therrien, F.; Jones, E. B.; Stevanović, V. Metastable materials discovery in the age of 
large-scale computation. Applied Physics Reviews 2021, 8, 031310, DOI: 
10.1063/5.0049453 

2. Greenaway, A. L.; Melamed, C. L.; Tellekamp, M. B.; Woods-Robinson, R.; Toberer, E. S.; 
Neilson, J. R.; Tamboli, A. C. Ternary Nitride Materials: Fundamentals and Emerging 

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript. 
The published version of the article is available from the relevant publisher.



Device Applications. Annu. Rev. Mater. Res. 2021, 51, 591– 618, DOI: 10.1146/annurev-
matsci-080819-012444 

3. Schnepf, R. R.; Cordell, J. J.; Tellekamp, M. B.; Melamed, C. L.; Greenaway, A. L.; Mis, A.; 
Brennecka, G. L.; Christensen, S.; Tucker, G. J.; Toberer, E. S.; Lany, S.; Tamboli, A. C. 
Utilizing Site Disorder in the Development of New Energy-Relevant Semiconductors. 
ACS Energy Lett. 2020, 5, 2027– 2041, DOI: 10.1021/acsenergylett.0c00576 

4. Aykol, M.; Dwaraknath, S. S.; Sun, W.; Persson, K. A. Thermodynamic limit for synthesis 
of metastable inorganic materials. Sci. Adv. 2018, 4, eaaq0148 DOI: 
10.1126/sciadv.aaq0148 

5. Sun, W.; Dacek, S. T.; Ong, S. P.; Hautier, G.; Jain, A.; Richards, W. D.; Gamst, A. C.; 
Persson, K. A.; Ceder, G. The thermodynamic scale of inorganic crystalline 
metastability. Sci. Adv. 2016, 2, e1600225 DOI: 10.1126/sciadv.1600225 

6. Pöhls, J.-H.; Heyberger, M.; Mar, A. Comparison of computational and experimental 
inorganic crystal structures. J. Solid State Chem. 2020, 290, 121557, DOI: 
10.1016/j.jssc.2020.121557 

7. Stillinger, F. H.; Weber, T. A. Packing structures and transitions in liquids and solids. 
Science 1984, 225, 983– 989, DOI: 10.1126/science.225.4666.983 

8. Asenjo, D.; Paillusson, F.; Frenkel, D. Numerical calculation of granular entropy. Phys. 
Rev. Lett. 2014, 112, 098002, DOI: 10.1103/PhysRevLett.112.098002 

9. Martiniani, S.; Schrenk, K. J.; Stevenson, J. D.; Wales, D. J.; Frenkel, D. Structural 
analysis of high-dimensional basins of attraction. Phys. Rev. E 2016, 94, 031301, DOI: 
10.1103/PhysRevE.94.031301 

10. Martiniani, S.; Casiulis, M. When you ’t count, sample! Computable entropies beyond 
equilibrium from basin volumes. Pap. Phys. 2023, 15, 150001, DOI: 10.4279/pip.150001 

11. Valade, A.; Libeskind, N. I.; Pomarède, D.; Tully, R. B.; Hoffman, Y.; Pfeifer, S.; Kourkchi, 
E. Identification of basins of attraction in the local Universe. Nat. Astron. 2024, 8, 1610– 
1616, DOI: 10.1038/s41550-024-02370-0 

12. Stevanović, V. Sampling Polymorphs of Ionic Solids using Random Superlattices. Phys. 
Rev. Lett. 2016, 116, 075503, DOI: 10.1103/PhysRevLett.116.075503 

13. Caskey, C. M.; Holder, A.; Shulda, S.; Christensen, S. T.; Diercks, D.; Schwartz, C. P.; 
Biagioni, D.; Nordlund, D.; Kukliansky, A.; Natan, A. Synthesis of a mixed-valent tin 
nitride and considerations of its possible crystal structures. J. Chem. Phys. 2016, 144, 
144201, DOI: 10.1063/1.4945561 

14. Jones, E. B.; Stevanović, V. Polymorphism in elemental silicon: Probabilistic 
interpretation of the realizability of metastable structures. Phys. Rev. B 2017, 96, 
184101, DOI: 10.1103/PhysRevB.96.184101 

15. Fertitta, E.; Das, S.; Banerjee, D.; Ebrahimi, F.; Barraud, C.; Du, K.; Tian, H.; Pickard, C. 
J.; Weber, C.; Ramesh, R.; Littlewood, P.; Dubbink, D. Study of disorder in pulsed laser 

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript. 
The published version of the article is available from the relevant publisher.



deposited double perovskite oxides by first-principle structure prediction. npj Comput. 
Mater. 2021, 7, 92, DOI: 10.1038/s41524-021-00561-1 

16. Woods-Robinson, R.; Stevanović, V.; Lany, S.; Heinselman, K. N.; Horton, M. K.; 
Persson, K. A.; Zakutayev, A. Role of disorder in the synthesis of metastable zinc 
zirconium nitrides. Phys. Rev. Mater. 2022, 6, 043804, DOI: 
10.1103/PhysRevMaterials.6.043804 

17. Jankousky, M.; Garrity, E. M.; Stevanović, V. Polymorphism of group-IV carbides: 
Structures,(meta) stability, electronic, and transport properties. Phys. Rev. Mater. 2023, 
7, 053606, DOI: 10.1103/PhysRevMaterials.7.053606 

18. Zakutayev, A.; Jankousky, M.; Wolf, L.; Feng, Y.; Rom, C. L.; Bauers, S. R.; Borkiewicz, O.; 
LaVan, D. A.; Smaha, R. W.; Stevanovic, V. Synthesis pathways to thin films of stable 
layered nitrides. Nat. Synth. 2024, 3, 1471– 1480, DOI: 10.1038/s44160-024-00643-0 

19. Pickard, C. J.; Needs, R. J. Ab initiorandom structure searching. J. Phys.: Condens. 
Matter 2011, 23, 053201, DOI: 10.1088/0953-8984/23/5/053201 

20. Friedrich, A.; Winkler, B.; Bayarjargal, L.; Juarez Arellano, E. A.; Morgenroth, W.; Biehler, 
J.; Schröder, F.; Yan, J.; Clark, S. M. In situ observation of the reaction of tantalum with 
nitrogen in a laser heated diamond anvil cell. J. Alloys Compd. 2010, 502, 5– 12, DOI: 
10.1016/j.jallcom.2010.04.113 

21. Friedrich, A.; Morgenroth, W.; Bayarjargal, L.; Juarez-Arellano, E. A.; Winkler, B.; 
Konôpková, Z. In situ study of the high pressure high-temperature stability field of TaN 
and of the compressibilities of -TaN and TaON. High Pressure Res. 2013, 33, 633– 641, 
DOI: 10.1080/08957959.2013.813943 

22. Chaudhuri, S.; Maasilta, I. J.; Chandernagor, L.; Ging, M.; Lahtinen, M. Fabrication of 
superconducting tantalum nitride thin films using infrared pulsed laser deposition. J. 
Vac. Sci. Technol., A 2013, 31, 061502, DOI: 10.1116/1.4812698 

23. Nakamura, K.; Yashima, M. Crystal structure of NaCl-type transition metal 
monocarbides MC (M= V, Ti, Nb, Ta, Hf, Zr), a neutron powder diffraction study. Mater. 
Sci. Eng., C 2008, 148, 69– 72, DOI: 10.1016/j.mseb.2007.09.040 

24. Roberts, D. M.; Hachtel, J. A.; Haegel, N. M.; Miller, M. K.; Rice, A. D.; Tellekamp, M. B. 
Designing TaC Virtual Substrates for Vertical AlxGa1–xN Power Electronics Devices. PRX 
Energy 2024, 3, 033007, DOI: 10.1103/PRXEnergy.3.033007 

25. Nehate, S.; Saikumar, A.; Prakash, A.; Sundaram, K. A review of boron carbon nitride 
thin films and progress in nanomaterials. Mater. Today Adv. 2020, 8, 100106, DOI: 
10.1016/j.mtadv.2020.100106 

26. Jankousky, M.; Chen, H.; Novick, A.; Stevanović, V. All “roads” lead to rocksalt structure. 
J. Am. Chem. Soc. 2024, 146, 23004– 23011, DOI: 10.1021/jacs.4c02974 

27. Christensen, A. N.; Lebech, B. A reinvestigation of the structure of ϵ-tantalum nitride. 
Acta Crystallogr., Sect. B 1978, 34, 261– 263, DOI: 10.1107/S0567740878002733 

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript. 
The published version of the article is available from the relevant publisher.



28. Lehmann, T. S.; Niewa, R. Electrochemical synthesis of transition metal oxide nitrides 
with -TaN, -NbN and -Mo2N structure type in a molten salt system. Z. Naturforsch., B:J. 
Chem. Sci. 2020, 75, 33– 40, DOI: 10.1515/znb-2019-0022 

29. Brauer, G.; Mohr, E.; Neuhaus, A.; Skokan, A. -TaN. eine Hochdruckform von 
Tantalnitrid. Monatsh. Chem. 1972, 103, 794– 798, DOI: 10.1007/bf00905439 

30. Doye, J. P.; Wales, D. J.; Miller, M. A. Thermodynamics and the global optimization of 
Lennard-Jones clusters. J. Chem. Phys. 1998, 109, 8143– 8153, DOI: 10.1063/1.477477 

31. Doye, J. P. K.; Massen, C. P. Characterizing the network topology of the energy 
landscapes of atomic clusters. J. Chem. Phys. 2005, 122, 084105, DOI: 
10.1063/1.1850468 

32. Massen, C. P.; Doye, J. P. Power-law distributions for the areas of the basins of attraction 
on a potential energy landscape. Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 2007, 
75, 037101, DOI: 10.1103/physreve.75.037101 

33. Jones, E. B.; Stevanović, V. The glassy solid as a statistical ensemble of crystalline 
microstates. npj Comput. Mater. 2020, 6, 56, DOI: 10.1038/s41524-020-0329-2 

34. Wu, M.; Tang, G.; Qian, G.; Qian, Q.; Chen, D.; Dong, G.; Yang, Z. The multicomponent 
oxide glass as a statistical ensemble of neighboring glassy compounds in the 
composition space. J. Am. Ceram. Soc. 2023, 106, 306– 316, DOI: 10.1111/jace.18763 

35. Perim, E.; Lee, D.; Liu, Y.; Toher, C.; Gong, P.; Li, Y.; Simmons, W. N.; Levy, O.; Vlassak, J. 
J.; Schroers, J.; Curtarolo, S. Spectral descriptors for bulk metallic glasses based on the 
thermodynamics of competing crystalline phases. Nat. Commun. 2016, 7, 12315, DOI: 
10.1038/ncomms12315 

36. Tsukimoto, S.; Moriyama, M.; Murakami, M. Microstructure of amorphous tantalum 
nitride thin films. Thin Solid Films 2004, 460, 222– 226, DOI: 10.1016/j.tsf.2004.01.073 

37. Dastan, D.; Shan, K.; Jafari, A.; Gity, F.; Yin, X.-T.; Shi, Z.; Alharbi, N. D.; Reshi, B. A.; Fu, 
W.; Ţălu, Ş. Influence of nitrogen concentration on electrical, mechanical, and 
structural properties of tantalum nitride thin films prepared via DC magnetron 
sputtering. Appl. Phys. A: Mater. Sci. Process. 2022, 128, 400, DOI: 10.1007/s00339-
022-05501-4 

38. Jiang, C.; Uberuaga, B. P. Efficient ab initio modeling of random multicomponent alloys. 
Phys. Rev. Lett. 2016, 116, 105501, DOI: 10.1103/PhysRevLett.116.105501 

39. Yang, K.; Oses, C.; Curtarolo, S. Modeling off-stoichiometry materials with a high-
throughput ab-initio approach. Chem. Mater. 2016, 28, 6484– 6492, DOI: 
10.1021/acs.chemmater.6b01449 

40. Sorkin, V.; Tan, T. L.; Yu, Z.; Zhang, Y. Generalized small set of ordered structures 
method for the solid-solution phase of high-entropy alloys. Phys. Rev. B 2020, 102, 
174209, DOI: 10.1103/PhysRevB.102.174209 

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript. 
The published version of the article is available from the relevant publisher.



41. Novick, A.; Nguyen, Q.; Garnett, R.; Toberer, E.; Stevanović, V. Simulating high-entropy 
alloys at finite temperatures: An uncertainty-based approach. Phys. Rev. Mater. 2023, 7, 
063801, DOI: 10.1103/PhysRevMaterials.7.063801 

42. Kuner, M. C.; Rothchild, E.; Asta, M. D.; Chrzan, D. C. Ab initio property predictions of 
quinary solid solutions using small binary cells. Comput. Mater. Sci. 2024, 238, 112924, 
DOI: 10.1016/j.commatsci.2024.112924 

43. Ndione, P. F.; Shi, Y.; Stevanovic, V.; Lany, S.; Zakutayev, A.; Parilla, P. A.; Perkins, J. D.; 
Berry, J. J.; Ginley, D. S.; Toney, M. F. Control of the electrical properties in spinel oxides 
by manipulating the cation disorder. Adv. Funct. Mater. 2014, 24, 610– 618, DOI: 
10.1002/adfm.201302535 

44. Stillinger, F. H. Energy Landscapes, Inherent Structures, and Condensed-Matter 
Phenomena; Princeton University Press, 2015. 

45. Zhu, A.; Batzner, S.; Musaelian, A.; Kozinsky, B. Fast uncertainty estimates in deep 
learning interatomic potentials. J. Chem. Phys. 2023, 158, 164111, DOI: 
10.1063/5.0136574 

46. Tan, A. R.; Urata, S.; Goldman, S.; Dietschreit, J. C.; Gómez-Bombarelli, R. Single-model 
uncertainty quantification in neural network potentials does not consistently 
outperform model ensembles. npj Comput. Mater. 2023, 9, 225, DOI: 10.1038/s41524-
023-01180-8 

47. Carrete, J.; Montes-Campos, H.; Wanzenböck, R.; Heid, E.; Madsen, G. K. H. Deep 
ensembles vs committees for uncertainty estimation in neural-network force fields: 
Comparison and application to active learning. J. Chem. Phys. 2023, 158, 204801, DOI: 
10.1063/5.0146905 

48. Pickard, C. J. Ephemeral data derived potentials for random structure search. Phys. Rev. 
B 2022, 106, 014102, DOI: 10.1103/PhysRevB.106.014102 

49. Salzbrenner, P. T.; Joo, S. H.; Conway, L. J.; Cooke, P. I. C.; Zhu, B.; Matraszek, M. P.; Witt, 
W. C.; Pickard, C. J. Developments and further applications of ephemeral data derived 
potentials. J. Chem. Phys. 2023, 159, 144801, DOI: 10.1063/5.0158710 

50. Pickard, C. J. Beyond theory-driven discovery: introducing hot random search and 
datum-derived structures. Faraday Discuss. 2025, DOI: 10.1039/d4fd00134f 

51. Sarker, P.; Harrington, T.; Toher, C.; Oses, C.; Samiee, M.; Maria, J.-P.; Brenner, D. W.; 
Vecchio, K. S.; Curtarolo, S. High-entropy high-hardness metal carbides discovered by 
entropy descriptors. Nat. Commun. 2018, 9, 4980, DOI: 10.1038/s41467-018-07160-7 

52. Wolf, L.; Novick, A.; Stevanović, V. Modeling glasses from first-principles using random 
structure sampling. arXiv 2024, arXiv:2410.09726 

53. Togo, A.; Shinohara, K.; Tanaka, I. Spglib: a software library for crystal symmetry search. 
Sci. Technol. Adv. Mater.:Methods 2024, 4, 2384822, DOI: 
10.1080/27660400.2024.2384822 

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript. 
The published version of the article is available from the relevant publisher.



54. Gelman, A.; Carlin, J. B.; Stern, H. S.; Rubin, D. B. Bayesian Data Analysis; Chapman 
and Hall/CRC, 1995. 

55. Ross, S. M. Introduction to Probability Models; Academic Press, 2014. 
56. Virtanen, P. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. 

Methods 2020, 17, 261– 272, DOI: 10.1038/s41592-019-0686-2 
57. Barber, C. B.; Dobkin, D. P.; Huhdanpaa, H. The quickhull algorithm for convex hulls. 

ACM Trans. Math Software 1996, 22, 469– 483, DOI: 10.1145/235815.235821 
58. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. 

Phys. Rev. Lett. 1996, 77, 3865– 3868, DOI: 10.1103/PhysRevLett.77.3865 
59. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B: Condens. Matter Mater. 

Phys. 1994, 50, 17953– 17979, DOI: 10.1103/PhysRevB.50.17953 
60. Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15, DOI: 10.1016/0927-

0256(96)00008-0 
61. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B: 

Solid State 1976, 13, 5188– 5192, DOI: 10.1103/PhysRevB.13.5188 
62. Liechtenstein, A. I.; Anisimov, V. I.; Zaanen, J. Density-functional theory and strong 

interactions: Orbital ordering in Mott-Hubbard insulators. Phys. Rev. B: Condens. Matter 
Mater. Phys. 1995, 52, R5467– R5470, DOI: 10.1103/PhysRevB.52.R5467 

63. Stevanović, V.; Lany, S.; Zhang, X.; Zunger, A. Correcting density functional theory for 
accurate predictions of compound enthalpies of formation: Fitted elemental-phase 
reference energies. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 85, 115104, DOI: 
10.1103/PhysRevB.85.115104 

64. pylada─A python computational physics framework. https://github.com/pylada 
(accessed January, 2023). 

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript. 
The published version of the article is available from the relevant publisher.


	Abstract
	Introduction
	Results and Discussion
	Parent-Compound Basins
	Alloy Energetics and Structures
	Tuning Basin Size with Composition
	Mixing Thermodynamics
	Implications for the Synthesis of TaC1–xNx
	Potential for Accelerated Basin-Size Mapping

	Conclusions
	Methods
	Structure Generation
	Simulation-Cell Size
	Composition Sampling
	Structure Classification
	Quantifying Basin-Size Uncertainty with the Beta Distribution
	Quantifying Energy-Distribution Uncertainty with the Dirichlet Distribution
	Independent Cell Approximation
	DFT Relaxations

	Acknowledgments
	References



