
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

Accelerating GNNs on GPU Sparse Tensor Cores
through N:M Sparsity-Oriented Graph Reordering

Jou-An Chen1, Hsin-Hsuan Sung1, Ruifeng Zhang1, Ang Li2, Xipeng Shen1
1North Carolina State University

2Pacific Northwest National Laboratory and University of Washington
{jchen73,hsung2,xshen5,rzhang38}@ncsu.edu,ang.li@pnnl.gov

Abstract
Recent GPUs have introduced Sparse Tensor Cores (SPTC)
to accelerate computations on sparse matrices meeting the
N:M sparse patterns. Software tools expand the support to
more general V:N:M patterns. Graphs in Graph Neural Net-
works (GNNs) are typically sparse, but the sparsity is often
irregular, not conforming to the required V:N:M sparse pat-
terns. This paper proposes a novel graph reordering algo-
rithm to transform irregular graph data into the required
sparse patterns for GNNs to benefit from SPTC. The opti-
mization is lossless, maintaining the accuracy of GNN. It
at the same time keeps the symmetry of the adjacency ma-
trices of the graphs so that the same matrices can remain
compatible with many symmetry-based graph algorithms.
The optimization successfully removes 98-100% violations of
the N:M sparse patterns at the vector level and increases the
portion of conforming graphs in the SuiteSparse collection
from 5-9% to 88.7-93.5%. On A100 GPUs, the optimization
accelerates Sparse Matrix Matrix (SpMM) by up to 43X (a
geomean speedup of 2.3X – 7.5X) over cuSPARSE and speeds
up the key graph operations in GNNs on real graphs by as
much as 8.6X (3.5X on average).

CCS Concepts: • Computing methodologies→Massively
parallel algorithms; Neural networks; • Computer sys-
tems organization → Single instruction, multiple data.

Keywords: GNN, Sparsity, GPU, Graph Reorder
ACM Reference Format:
Jou-AnChen1, Hsin-Hsuan Sung1, Ruifeng Zhang1, Ang Li2, Xipeng
Shen1. 2025. Accelerating GNNs on GPU Sparse Tensor Cores
through N:M Sparsity-Oriented Graph Reordering. In The 30th
ACM SIGPLAN Annual Symposium on Principles and Practice of
Parallel Programming (PPoPP ’25), March 1–5, 2025, Las Vegas, NV,
USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3710848.3710881

1 Introduction
GraphNeural Networks (GNNs) [18, 24, 34, 52] have emerged
as a vital and versatile tool in addressing a wide array of
graph-related problems. Their capacity to model and un-
derstand complex relationships within graphs has led to

PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA
2025. ACM ISBN 979-8-4007-1443-6/25/03
https://doi.org/10.1145/3710848.3710881

• • •
• •

•
• •

• •
• •

• • •
• •

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

• • •
• •

•
• •

• •
• •

• • •
• •

0 1 2 4 3 5 6 7

0

1

2

4

3

5

6

7

7

5

2

1

3

6

0

4

•
•

Reorder

7

5

2

1

4

6

0

3

•
•

Sparse Adjacency Matrix
in invalid N:M form

Sparse Adjacency Matrix
in valid N:M form

Dense
Matrix

Dense
Matrix

× ×

Figure 1.Graph vertex reordering leads to swapping of some
rows (and columns) in the adjacency matrix, transforming
row 6 into N:M-conforming (2:4 in this illustration) vectors.
(Note that the corresponding rows in the dense matrix to
multiply with must be swapped too.)

their increasing importance in numerous fields, including
social networks [21], recommendation systems [37], molec-
ular chemistry [23, 26], and more. However, the utility of
GNNs comes hand in hand with the pressing concern of
computational efficiency, particularly as graph sizes grow
and the computation becomes more resource-intensive. The
pursuit of accelerating GNN speed continues to be a critical
endeavor.

This paper explores a new approach to accelerating GNNs,
reordering graphs to make GNNs better take advantage of
the Sparse Tensor Cores (SPTC) on modern GPUs.

SPTC is a hardware feature prevalence in recent GPUs [4,
16, 46]. They are in all recent NVIDIA GPUs (Ampere and
later), and similar hardware is getting into AI/ML hardware
accelerators of other vendors (e.g., AMD/Xilinx ACAPs) [53,
56]. It provides efficient support for sparse fusedmultiplication-
accumulation (FMA) instructions, or the mma.sp instruction,
the key operation in sparse-matrix-multiply-dense-matrix
(SPMM). The support is tailored explicitly for N:M sparsity.
N:M sparsity refers to a pattern in a matrix where every M
consecutive elements (called segment vectors) contain at most
N non-zeros. Through hardware support, SPTC dynamically
packs the non-zeros together to enable efficient FMA. Recent
work [11] shows that a generalized pattern V:N:M (explained
in Section 2) can be supported if one combines the hardware

1

https://doi.org/10.1145/3710848.3710881
https://doi.org/10.1145/3710848.3710881
https://doi.org/10.1145/3710848.3710881

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Jou-An Chen, Hsin-Hsuan Sung, Ruifeng Zhang, Ang Li, Xipeng Shen

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

support with a software abstraction, producing even more
speedups for SPMM over executions on dense tensor cores.

Despite the enormous potential of SPTC, most GNNs can-
not take full advantage of it. It is not because GNNs have
no sparse matrices: The key data structure in GNNs, the
adjacency matrix of the input graph, is usually sparse. The
reason is that most sparse matrices in GNNs do not conform
to the required fine-grained sparsity patterns (e.g., 2:4 by
default). Among 1356 graphs surveyed in the SuiteSparse col-
lection [17], for instance, only 5-9% conform to the sparsity
patterns (details in Section 5).

This paper proposes a novel solution, named N:M sparsity-
oriented graph reordering. The basic idea is to transform as
many non-N:M segment vectors within a matrix into N:M
conforming vectors by graph reordering, that is, by swapping
some rows (as well as responding columns) in the adjacency
matrix of a graph. Unlike typical matrix reordering [60], the
swapping in our method does not change the graph seman-
tics but only the order of graph vertices. They are materi-
alized by renumbering the graph vertices based on the fact
that rows and columns in an adjacency matrix represent the
vertices of the graph. As illustrated in Figure 1, if node 4 is
renumbered to 3 and 3 to 4, the corresponding adjacency
matrix would have rows 3 and 4 swapped and columns 3
and 4 swapped. The graph stays the same except for the
numbering of vertices. The adjacency matrix of the graph
can hence stay symmetric, keeping the matrix usable by the
many graph algorithms that rely on its symmetry, such as
algorithms designed for graph isomorphism, partitioning,
minimum spanning tree, and so on. The constraint mean-
while makes the reordering algorithm more challenging to
design than typical matrix reordering.

Prior work has used graph reordering to reduce non-zero
blocks in format storage [6–8, 10, 15, 19, 33, 51, 56, 64]. But to
the best of our knowledge, no prior work has studied graph
reordering for N:M sparsity.
The critical challenge is how to find effective reordering

for a given graph. The solution must work for various N:M
patterns, including the generalized V:N:M variants. It does
not have to be real-time, for a graph is often used many times
(node features may change), and the one-time reordering is
an offline preprocessing step. But it must still be efficient,
as graphs can be large. The problem of finding the optimal
reordering is NP-hard [7, 8, 15, 19], rendering enumeration
impractical due to the vast combinatorial space of possible
permutations. To the best of our knowledge, no prior work
has undertaken this challenge. The only prior attempt is
Jigsaw [60], but it applies only to the basic N:M patterns, and
as a typical matrix reordering rather than graph reordering,
it deprives the symmetry from the adjacency matrix.
Our solution consists of an iterative two-level graph re-

ordering algorithm and an efficient bit intrinsic-based im-
plementation. The algorithm, coined dual-level N:M-sparsity
oriented reordering, consists of two reordering stages at its

core. They, respectively, address the violations of tile-level
patterns (a tile is a group of segment vectors) and vector-
level patterns. The former converts a segment vector into a
binary string and employs Hamming-distance position en-
coding [25, 55] to reorder columns and rows, while the latter
uses a greedy reordering strategy to efficiently make each
segment vector conform to the vector-level patterns [5, 38].
The two steps go hand-in-hand, forming the core of an iter-
ative process. The proposed algorithm is general, working
for various graphs, N:M and V:N:M patterns and GNNs. It
efficiently and effectively fixes the sparsity pattern violations
with a nlog(n) computational complexity.

To deliver the full benefits of the algorithm, we develop
the algorithm as an efficient library on GPUs, named SO-
GRE (Sparsity-Oriented Graph Reordering). SOGRE uses bit
strings to represent the vectors in adjacency matrices and
employs efficient bit-operations and intra-warp intrinsics on
GPUs to materialize the core routines in the algorithm. The
library can be integrated into existing GNN programming
frameworks (e.g., PYG [22], DGL [48]).
As a lossless optimization, the reordering does not cause

any accuracy loss. Experiments on 1356 adjacency matri-
ces in SuiteSparse Matrix Collection show that the reorder-
ing algorithm can eliminate 98-100% violations of the N:M
sparse patterns at the vector level and increase the propor-
tion of conforming graphs in SuiteSparse collection from
5-9% to 88.7-93.5%. On A100 GPUs, the optimization acceler-
ates Sparse Matrix Matrix (SpMM) by up to 43X (2.3X–7.5X
on average) and speeds up the critical graph operations in
GNNs on 12 real graphs by as much as 8.6X (3.5X on aver-
age) over cuSPARSE. The reordering takes 0.05–30s to run
on average, offering an effective method for offline prepro-
cessing of graphs that will be reused repeatedly across many
inferences.

2 Terms and Background
This section provides the background needed for understand-
ing the rest of the paper. (For the broader background on
SPTC hardware and VENOM, please see references [4, 11,
16, 38].)
Terms and sparse patterns Figure 2 lists the frequently
used terms in this paper, along with an illustration. The
terms ‘segment’, ‘meta-block’, and ‘segment-vector’ refer
to three levels of components in an adjacency matrix; see
the illustration in Figure 2. The two notations, N:M and
V:N:M, refer to two levels of sparse patterns. N:M is about the
patterns in anM-element vector, where there are up to N non-
zeros. V:N:M is about the patterns in a V-by-M tile, where
every row is an N:M vector and, at the same time, at most k of
its columns contain non-zeros. The value of k is determined
by the SPTC hardware, 4 by default. N:M represents the
patterns natively supported by SPTC hardware and V:N:M
patterns are generalized forms introduced in the VENOM

2

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

N:M Sparsity-Oriented Graph Reordering PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … …
… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … …

Segment

Segment
vector

v=4

N:M=2:8Meta-block

n

Term Description

n Number of vertices in a graph

N:M A sparse pattern with up to N non-zeros in M
consecutive elements

V:N:M A sparse pattern of a V-by-M tile, in which, (i) at most k
columns contain non-zeros, and (ii) each row is a N:M vector.
[k is a constant determined by the SPTC hardware; 4 by
default]

Segment An n-by-M submatrix in an adjacency matrix of a graph

Meta-block A V-by-M tile in an adjacency matrix

Segment vector A M-element row vector in an adjacency matrix

Figure 2. Terms frequently used in this paper.

work [11]. The VENOM authors show that such patterns can
benefit from SPTC hardware when combined with a software
abstraction.
GNN Background GNN [18, 24, 34, 52] captures contextual
information of vertices and propagates it through graphs. It
is a neural network performed on graph data. In a graph used
in GNN, nodes represent entities in a problem domain (e.g.,
a user in a social network), each carrying a feature vector.
Edges between nodes indicate their relationship, quantified
with edge weights.

hl+1
v = ReLU((SUMu→v(euv ⊙ hl

u)) ⊗ Wl) (1)

A computing layer in GNN consists of both graph opera-
tions and neural operations. A simple example is shown in
Equation 1, which computes the hidden features of center
node v on layer l + 1. The input for layer l is the hidden
features hl; u → v means that there is an edge from node u
to node v; euv is the value on the edge (zero means no edge
between two nodes).

There are typically two phases in a layer’s computation. In
the aggregation phase, each vertex gathers information from
its neighboring vertices within the graph. This phase often
involves weighted summation or other aggregation func-
tions. The implementation of this phase is usually based on
matrix-matrix multiplication, which multiplies the graph’s
adjacency matrix with the nodes’ feature matrix or hidden
weightmatrices. The second phase is the update phase, which
performs fully-connected layer operations with activation
functions, such as the ReLU function in Equation 1, to trans-
form the aggregated info at each node and produce the hid-
den features of the nodes for the next layer hl+1 to process.
The aggregation phase is what SpMM acceleration focuses
on.

3 Problem Statement
For clarity, this section gives a formal definition of the re-
ordering problem tackled in this work.

SPTC-oriented graph reordering problem (SGRP): Let A rep-
resent an n × n adjacency matrix of a graph G = (V, E),
whereV is a set of n vertices with ordering ϕ : (1, 2, ..., n),

and V:N:M (which is N:M when V=1) be the sparsity struc-
ture constraints of the SPTC of interest; the SGRP problem
is to find a permutation of the vertices in V that transforms
ϕ into ϕ ′ such that the new form of the adjacency matrix
meets the N:M (or V:N:M) constraints of the SPTC as much
as possible.

It is worth noting that tiling is often used in SpMM, where
the matrix is regarded as a collection of tiles; each tile is
multiplied by the relevant sections in the other matrix, and
the results are then put together to get the final result. So
for a given tile size, the goal of SGRP becomes to minimize
the number of tiles violating the V:N:M constraints.
We introduce a metric, improvement rate, to measure

the effectiveness of reordering. It is calculated as
finalω−initial ω

initial ω , where ω represents the count of segment
vectors that violate the required sparse pattern.

Problem Complexity. At the first glance, the search space
for finding the optimal permutation ϕ is n!. However, there
are redundancies in these permutations. For instance, a tile
can remain a qualified N:M pattern when the ordering vari-
ance is within the tile boundary, reducing the total search
space to n!

(M!)
n
M

. But even with that, it is still too large to
find optimal solutions in a polynomial time.

4 Graph Reordering Algorithm
4.1 Overview
The design of the reordering algorithm is based on the fol-
lowing principles:

(1) The algorithm should be general, able to work for vari-
ous N:M and V:N:M patterns, graphs, and GNNs.
(2) The algorithm should be beneficial, giving significant

improvement rates for various adjacency matrices and pro-
ducing substantial speedups for GNNs.

(3) The algorithm should be efficient. The intended use of
the algorithm is offline use, preprocessing a graph to prepare
it for its repeated uses. Although the preprocessing time
is not critical, the algorithm with a lower computational
complexity could make it more friendly to adopt.

3

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Jou-An Chen, Hsin-Hsuan Sung, Ruifeng Zhang, Ang Li, Xipeng Shen

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

Based on these principles, we design a two-level N:M
sparsity-oriented algorithm, outlined in Algorithm 1. This
algorithm provides a unified treatment to N:M and V:N:M
patterns by considering N:M as a special case of V:N:M when
V=1. Its core consists of two stages of reordering, respectively,
corresponding to the two constraints of V:N:M patterns. Re-
call from Section 2, V:N:M has the following two constraints:
(i) In each V-by-M meta-block, at most k columns have

non-zero values. We call it vertical constraint.
(ii) In each row vector in each meta-block, there are at

most N nonzero values. We call it horizontal constraint.
The first stage tries to reorder to minimize the violations of

the vertical constraint, and the second stage for the horizontal
constraint. Because the two stages influence each other’s
results, the algorithm repeats the two stages until no further
progress can be made or the maximal iterations are reached,
as outlined in Algorithm 1.

Both stages are designed to be efficient and effective, with
computational complexities linear to n or nlog(n) (recall n
is the number of vertices in the graph). The algorithm makes
no special assumptions on the sparse patterns, graphs, or
matrices, making it generally applicable. We next explain
each of the two stages.

Algorithm 1: The top-level pseudo-code of the pro-
posed reordering algorithm
Input: Graph adjacency matrix A with vertex order ϕ,

V:N:M pattern
Output: New vertex order

1 while V:N:M violations remain and max. iteration is not yet
reached do

2 ϕ = Stage-1.reorder(A, V, N, M, ϕ)
3 ϕ = Stage-2.reorder(A, N, M, ϕ)

4.2 Stage-1 Reordering
Our design of stage-1 reordering hinges on two insights. The
first is that it is likely to reduce violations of the vertical
constraint if a reordering makes the rows in a meta-block
more similar in terms of their nonzero positions. The second
insight is that Hamming-distance order [55] of binary strings
shares a similar objective as the first insight states, and hence
using it could help solve our reordering problem. The first
insight is easy to understand; we explain Hamming-distance
order and the second insight next.
Hamming-distance Order Hamming distance is the count
of differing digits between two binary strings. For instance,
the hamming distance between 0011 and 0111 is one because
they differ at only one position, the second digit from the left.
The cumulative Hamming distance of a sequence of binary
strings is the sum of the Hamming distances between every
two adjacent strings. For example, the cumulative Hamming
distance of sequence {00, 01, 10, 11} is 1+2+1=4 because the

Hamming distance of the first pair of strings is 1, the second
pair is 2, and the third pair is 1.

TheHamming-distance order of a sequence of binary strings
is the order that has the smallest cumulative Hamming dis-
tance. For instance, the Hamming-distance order of all 2-digit
binary strings is {00,01,11,10}, whose cumulative Hamming
distance is 3. Previous work [55] has proved that there is a
unique Hamming-distance order for all k-digit binary strings
(k ∈ N+).
Hamming Position Encoding A key idea in our stage-I
algorithm is to use Hamming position code to encode every
segment vector in a sparse matrix and then sort them numeri-
cally to help identify a good order for reducing the violations
of the vertical constraint. We explain it as follows.
The Hamming position code of a k-digit binary string

is defined as its rank in the Hamming-distance order of all
k-digit binary strings. For instance, the Hamming position
code of a 2-digit binary string, 11, is 2 because it is entry 2
(0-based) in the Hamming-distance order of 2-digit binary
strings {00, 01, 11, 10}.

In our encoding, we give special treatment to specific seg-
ment vectors. If a vector violates the horizontal constraint, its
position code is negated. For instance, the original adjacency
matrix’s bottom row in Figure 3 contains three nonzeros in its
first segment vector, breaching the 2:8 constraint. Thus, the
encoding result of that segment vector is -25. This technique
aids subsequent sorting steps in preventing these vectors
from contaminating other well-formed meta-blocks.
Stage-I Algorithm (Alg. 2) Alg. 2 outlines the Stage-I al-

Algorithm 2: Stage-1 Algorithm for Increasing Ver-
tical Conformity
Input: Graph adjacency matrix A with vertex order ϕ,

V:N:M pattern
Output: New vertex order ϕ ′

1 iter← 0

2 MBscore← GetMbScore(A,V,N,M)

3 whileMBscore > 0 and iter ≤ MAXITER do
4 Initialize 2D matrix Vec to store the segment vector

encodings per row (per vertex)
5 for i← 0 to n− 1 do
6 for s← 0 to ⌈ n

M ⌉ − 1 do
7 bstr← binary string representation of

A[i][s]
8 Vec[i][s]← Hamming position code of

bstr

9 if bstr is invalid N : M pattern then
10 Vec[i][s]← −Vec[i][s]

11 Sort rows in Vec

12 Get the sorted order of Vec as ϕ ′

13 Reorder A with ϕ ′; ϕ← ϕ ′ iter← iter+ 1

14 MBscore← GetMbScore(A,V,N,M)

gorithm. The core of the algorithm contains five steps as
4

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

N:M Sparsity-Oriented Graph Reordering PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA

496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

index
Hamming-distance
position code

1. binary
string
encoding

2. Ham.
dist. pos
encoding

3. Vector
sorting

4. Reorder
rows &
columns

5. Cal.
MBScore

Figure 3. One iteration of the Stage-I algorithm (Alg. 2) for reducing vertical constraint violations. The example targets a
V:N:M format as 8:2:8. It reduces the number of meta-blocks violating the vertical constraints (orange-covered blocks) from 2
to 1.

follows. Figure 3 uses an example to illustrate each of the
steps.
(i) Binary string encoding: It represents every segment

vector in an adjacency matrix as a binary string.
(ii) Hamming-distance position encoding: It encodes each

binary stringwith its Hamming-distance position code, which
transforms every row in the adjacency matrix into an integer
vector.

(iii) Vector sorting: It sorts these integer vectors numeri-
cally to get a new order. The sorting result will have rows
with similar Hamming position codes sitting close to each
other. Because similar Hamming position codes entail few
differences in the positions of nonzeros in the rows, the new
order is likely to increase the conformity of the meta blocks
regarding the V:N:M constraints.

(iv) Reordering: It swaps the adjacency matrix’s rows (and
columns) as per the new order.

(v) Assessment: It counts the number of non-conforming
meta-blocks (called MBScore, denoted as FMB(ϕ)), and re-
peats steps (i-v) as needed.
Complexity Analysis. The theoretical computational com-
plexity of the algorithm isO(n log(n)) (in terms of the num-
ber of row sorting), given that the maximal number of iter-
ations of the outermost loop is a constant. In practice, the
sorting is much faster because many segment vectors are
zero vectors and are left out of the sorting operation.

4.3 Stage-2 Reordering
After the Stage-1 algorithm reduces the vertical constraint
violations at the Meta-block level, Stage-2 tries to reorder the
graph to reduce the horizontal constraint violations at the
segment vector level, that is, reduce the number of segment
vectors in the adjacency matrix that violates the N:M pattern.

The challenge comes from the vast space of possible orders
of the vertices in a graph. Finding the optimal is NP-hard.
The question is how to find a good order without taking too
much time. Our design takes the following strategy:

• Focus on a pair of segments each time. Recall from Sec-
tion 2 that a segment is an n-by-M submatrix within
an adjacency matrix. It consists of n segment vectors
and its M columns correspond to M graph vertices.

So, if we focus on two segments, each is aboutM ver-
tices. We have only 2M vertices to consider, a much
smaller scope.

• For a pair of segments, we try to identify the best
pair between their vertices. Here, the best pair is a
pair of vertices that, if we swap them, we get the
largest reduction of the PScore of the adjacencymatrix,
where, PScore is defined as the number of horizontal
constraint violations (P for pattern). As each segment
hasM vertices, there are onlyM2 pairs to consider,
which can be enumerated quickly to identify the best
pair.

• After swapping the vertices in the best pair, we con-
tinue to explore other swapping opportunities.

Here, the order we follow when working with the seg-
ments in an adjacency matrix matters. Our strategy is to
pick the worst segment (i.e., having the largest PScore) and
keep working with it until all its columns have been used for
swapping or its PScore cannot be lowered further, then move
to the next worst segment, and so on. We call it our primary
segment. To form a pair for the aforementioned vertex swap-
ping, we need another segment, which we call target segment.
We start with the worst of the remaining segments as our
target segment and then move on to other segments to find
more beneficial swapping opportunities with the primary
segment.

Algorithm 3 outlines the algorithm. There are several de-
tails worth noting. (i) First, we exclude healthy segments (i.e.,
having zero PScore) from consideration, which can prevent
polluting those segments and also help with the algorithm
efficiency as it reduces the problem space. (ii) Second, when
there is only one unhealthy segment left to examine, we
choose the sparsest segment to form a swapping pair with it
(line 6 in Algorithm 3). As that segment has the least nonzero
elements, using it can maximize the chance of fixing the un-
healthy segment while keeping itself healthy. That is the
only time when a healthy segment may be used. (iii) Third,
after a segment finishes serving as a primary segment, it
will no longer be considered in any swapping, reflected by
line 9 in Algorithm 3. This helps avoid polluting it after its
treatment, and ensures the progress of the algorithm. (iv)

5

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Jou-An Chen, Hsin-Hsuan Sung, Ruifeng Zhang, Ang Li, Xipeng Shen

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660

Fourth, instead of swapping them immediately after identi-
fying a swapping pair, our algorithm records the swapping
pair without swapping. It waits until all the swap pairs are
recorded and then makes the swaps together (lines 21-23 in
Algorithm 3). It helps with the execution efficiency. (v) The
freshtop() function in line 13 chooses a swap pair that gives
the largest gains (i.e., the largest reduction of the pscore of
the primary and target segment), and none of its elements
has been added into the swap records (S). It ensures the
progress of the algorithm: The inner-most loop must exit
after M iterations.1
Complexity Analysis. Let ω be the total number of seg-
ments that contain unhealthy segment vectors. For each
primary segment, the number of iterations of the inner-most
loop (line 10 in Algorithm 3) is at most M as every iteration
adds one pair into S and there are at mostM pairs needed
to be added as the length of a segment is M. Both M and
MAXITER are constants. Therefore, the complexity of the
algorithm is O(ω), no larger than O(n).

4.4 Application to Large Graphs
The algorithm is intended for offline use, preprocessing a
graph to prepare it for its repeated uses. But still the low com-
putational complexity of the proposed algorithm will make
it more friendly to adopt. It is worth noting that in practice,
sampling is often used for GNNs on large graphs, where a
small subgraph is sampled each time from the large graph
for processing. The size of the subgraph is usually based on
the limit of the underlying libraries. Current sparse libraries
that use SPTC, such as NVIDIA official cuSparseLT [38] and
SPATHA (VENOM) [11], all have a limit at the level of about
45K-by-45K matrices. Empirically (Section 5), the reordering
algorithm completes within half a minute for sampled graphs
of that size. In addition, the algorithm is compatible with
parallel or distributed GNNs where each node conducts the
multiplications involving a portion of the adjacency matrix;
the reordering algorithm can be independently applied to
each portion of the matrix; the results are reordered back
before accumulation with the results from other nodes.

Listing 1. Bit-string encoding
1 int id = binarySearchInd(bsrcolind, idy, bsrrowptr[

idx/M], bsrrowptr[idx/M+1]);
2 register unsigned val = 0x00000000;
3 if (id != -1)
4 for (int i=0; i<M; i++)
5 val = (val << 1)|(bsrval[id*M*M+(

laneid%M)*M+i]);

1Notice that that function doesn’t require the gain to be positive: We tried a
design that enforces that condition but found it no more effective in practice
but make the algorithm run much slower.

Algorithm 3: Stage-2 Algorithm for Increasing N:M
Conformity
Input: Graph adjacency matrix A with vertex order ϕ, N:M

pattern
Output: New vertex order ϕ ′

1 I← GetPScoreList(A,N,M) // A priority list
2 Exclude valid segments from I

3 while |I| ≥ 1 and iter ≤ MAXITER do
4 S← ∅
5 if |I| = 1 then
6 Make beneficial swaps with the sparsest segment
7 else
8 while |I| > 1 do
9 (segIDprim, pscoreprim)← I.pop()

10 for (segIDtarg, pscoretarg)=I.next() do
11 swap_cands← GetCandi-

dates(segIDprim, segIDtarg)

12 Vertex pair
(u, v)← swap_cands.freshtop()

13 S← S ∪ {(u, v)}

14 pscoreprim ← pscoreprim − u.gain

15 pscoretarg ← pscoretarg − v.gain

16 if pscoretarg == 0 then
17 remove segIDtarg from I

18 if pscoreprim == 0 or all vertics of
segIDprim have been added into S then

19 break

20 Initialize ϕ ′ with ϕ

21 for (u, v) ∈ S do
22 Swap u and v in ϕ

′

23 Reorder A with ϕ
′ ; ϕ← ϕ

′

24 iter← iter+ 1

25 I← GetPScoreList(A,N,M) // update I
26 Exclude valid segments from I

4.5 Library and Integration
We implement the graph reordering algorithm as a library
for easy adoption. The implementation is in CUDA, so it can
benefit from GPUs. The implementation carefully takes ad-
vantage of the low-level intrinsics (e.g., intra-warp shuffling,
voting) for high efficiency. As values in an adjacency ma-
trix are binary, we use bit intrinsics in CUDA for frequently
invoked subroutines.
Listing 1 shows an example. This routine converts an

adjacency matrix into a binary string. The adjacency matrix
is stored in a Block Sparse Row (BSR) format [2]. In that
format, the matrix is viewed as a collection of M-by-M blocks
(called bsr block). It builds indexing structures (bsrcolind
and bsrrowptr) (like those in CSR format) to help index the
positions of the bsr blocks in the adjacency matrix. By doing
that, it only needs to store (in the bsrval array) the values
of the bsr blocks that contain any nonzeros. In Lst 1, line 1
lets each GPU thread locate, based on (idx, idy), the segment

6

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715

N:M Sparsity-Oriented Graph Reordering PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA

716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770

vector that it needs to do the binary string encoding. Line 5
uses bit shifting to complete the binary string encoding for
one number in the segment vector. Its enclosing loop at line
4 makes the thread accomplish the encoding of the whole
segment vector.

More subroutines are in the supplementary material. (For
GPU intrinsics, see documentation [1].)
Integration with Existing GNN Frameworks Our opti-
mization is complementary to other GNN optimizations and
can be used together. Our optimization results in matrix for-
mats that can benefit from the efficient SpMM kernels on
SPTC. Those kernels can serve as a drop-in replacement of
the SpMM kernels in existing frameworks and the existing
optimizations in the frameworks can take effect as usual.
The SPTC SpMM kernels we use is based on Spatha [11]; the
used PTX mma instruction is mma.sp.sync with the default
m16n8k32, and the default index representation [3] required
by SPTC is used. During SpMM execution, the kernels put
the matrices into the SPTC required form on the fly and then
uses the mma instructions to do the computations. The time
spent on data movement is negligible (over three orders of
magnitude less) compared to both the reordering and SpMM
execution times. Section 5 reports the benefits of integrating
the optimization with two existing GNN frameworks, PyG
and DGL.

5 Evaluation
We evaluate the efficacy of the reordering algorithm. The
reordering happens in an offline preprocessing stage, apply-
ing our reordering algorithms to the graphs first to make
them conform to the constraints and then measure the GNN
performance. It determines the best V:N:M by trying 1:2:M
forms, with M initialized to 4 and progressively doubled un-
til the graph can no longer be reordered to conform to the
form. Then, it fixes M and determines the best V by trying
V:2:M with V going from 1 to 32 in a similar manner (N must
be 2 due to the hardware constraint). In our experiments,
we set the maximum number of iterations for the vertical
and fine-grained reordering loops to 10. For most matrices,
these loops converge within six iterations or fewer. As the
reordering is an offline process and the results can benefit all
future use of the graphs, the reordering time is not counted
in the GNN running time.

Table 1. SuiteSparse graph collection. (Med: Median)

#V #E Avg
Degree

Max
Degree

Diam-
eter #Graphs

Small Avg 426 4.97k 12.5 60.7 12.5 444Med 430 2.19k 7.6 15 6
Medium Avg 3.6k 93.2k 22.5 405.1 42.1 724Med 2.6k 24.1k 9.7 61 8
Large Avg 22.6k 878k 36.1 1041.6 75.9 188Med 20.5k 229k 13.8 98.5 10

Table 2. GNN graph dataset.

Dataset #V #E #Features #Classes
Cora [54] 2,708 10,556 1,433 7

Citeseer [54] 3,327 9,104 3,703 6
Facebook [54] 4,039 88,234 1,283 193
Computers [44] 13,752 491,722 767 10

CS [44] 18,333 163,788 6,805 15
CoraFull [9] 19,793 126,842 8,710 70

Amazon-ratings [41] 24,492 93,050 300 5
Physics [44] 34,493 495,924 8,415 5

ogbn-proteins [27] 132,534 39,561,252 128 2
ogbn-products [27] 2,449,029 61,859,140 100 47
ogbn-arxiv [27] 169,343 1,166,243 128 40

ogbn-papers100M [27] 111,059,956 1,615,685,872 128 172

Datasets: In evaluating the performance benefits to GNNs,
we use 12 graph datasets, widely adopted in the GNN field,
for our evaluation. The characteristics of these datasets, in-
cluding the number of vertices, edges, features, and classes
for node classification, are listed in Table 2. In addition, for a
more comprehensive evaluation of the performance benefits
brought to SpMMby our reordering algorithm, we conducted
a performance comparison of SpMM on the 1356 adjacency
matrices of the real-world graphs included in the SuiteSparse
Matrix Collection [17]. The adjacency matrices in the col-
lection are organized into three classes, small, medium, and
large, as shown in Table 1.
GNNModels:We use four commonly used GNN models: (1)
Graph Convolutional Neural Networks (GCN) [34] (2) Graph-
SAGE (SAGE) [24] (3) Chebyshev Spectral Graph Convolu-
tional Neural Networks (Cheb) [18] (4) Simplifying Graph
Convolutional Networks (SGC) [52].
Platforms: The performance evaluation of executing re-
ordered graphs was primarily carried out on a node with
NVIDIA A100 GPUs with 40GB memory (CUDA v11.7) and
4th Generation AMD EPYC CPUs.

5.1 GNN Performance Comparison
In this subsection, we assess the performance of GNN (per-
layer and end-to-end). To our best knowledge, even though
many prior studies have explored graph reordering, none is
for and hence applicable to the V:N:M configurations. As the
first algorithm to that end, we evaluate it by assessing the
speeds of GNNs and the SPMM kernels before and after the
reordering. Our evaluation focuses on the forward pass of
node classification.

We use two widely used GNN frameworks: PyTorch Geo-
metric (PYG) [22] and Deep Graph Library (DGL) [48]. Both
libraries are well optimized for GPUs and have supported a
broad range of existing research works [18, 24, 34, 52]. It is
worth noting that our reordering method should be seen as a
modular utility orthogonal to all existing GNN frameworks,
as reordering can be applied offline as a preprocessing step.
Consequently, any GNN framework that relies on GPU-based
SpMM can essentially benefit from our approach.
The default SpMM kernels in PYG and DGL do not take

advantage of SPTCs on GPU. We create revised versions of
7

771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825

PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Jou-An Chen, Hsin-Hsuan Sung, Ruifeng Zhang, Ang Li, Xipeng Shen

826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

Table 3. Normalized speedup of four GNN models compared to the default PyG [22] and DGL [48] (default-original). “Best
V:N:M” is the best format the graph can reach through the proposed reordering algorithm. “LYR” refers to average speedup on
aggregation; “ALL” refers to end-to-end speedup.

Dataset Best
V:N:M

PYG DGL
GCN SAGE Cheb SGC GCN SAGE Cheb SGC

LYR ALL LYR ALL LYR ALL LYR ALL LYR ALL LYR ALL LYR ALL LYR ALL
Cora 1:2:4 1.41 1.12 2.13 1.15 2.33 1.53 2.63 2.03 1.18 1.08 2.01 1.27 3.80 1.34 2.06 1.67

Citeseer 32:2:8 2.11 1.11 2.84 1.16 3.16 1.65 3.40 1.69 1.71 1.09 2.92 1.34 4.49 1.46 2.94 2.71
Facebook 1:2:4 3.26 1.64 6.01 2.23 8.56 4.22 8.64 6.37 3.27 1.63 6.01 2.42 4.41 2.98 6.39 4.74
Computers 1:2:4 2.72 2.99 3.83 2.85 5.31 4.02 5.30 5.15 3.30 2.65 4.12 2.91 2.90 3.06 4.13 4.05

CS 16:2:16 1.73 1.11 3.12 1.79 4.36 2.60 4.38 4.21 1.85 1.12 2.78 1.56 2.12 1.70 2.69 2.61
CoraFull 32:2:16 1.44 1.05 2.05 1.40 2.91 1.96 2.95 2.73 1.53 1.06 1.96 1.30 1.96 1.39 1.88 1.79

Amazon-ratings 1:2:32 2.01 1.99 3.42 1.98 4.24 2.20 4.30 3.85 1.30 1.43 1.99 1.38 2.00 1.30 1.80 1.70
Physics 16:2:16 1.56 1.14 3.00 2.28 4.46 3.21 4.76 4.68 1.80 1.14 2.23 1.61 2.20 1.70 2.20 2.18

the two frameworks by replacing their SpMM kernels with
Spatha SpMM, a SpMM library that takes advantage of SPTCs.
Spathawas developed in a prior VENOMwork [11] for DNNs.
It is the only available library that supports V:N:M patterns.
It, however, cannot directly apply to GNNs because most
graphs, including those in our experiments, do not conform
to the pattern constraints of V:N:M—a problem addressed by
our reordering algorithm. We compare the performance in
four settings.

• Default-original: the default PYG and DGL frame-
works (without SPTC support) on the original matri-
ces.

• Default-reordered: the default PYG and DGL frame-
works (without SPTC support) on our reordered ma-
trices. Because our reordering is for leveraging SPTC
while this setting does not use SPTC, we do not expect
this setting to have performance improvement over
the default-original.

• Revised-pruned: the revised PYG and DGL frame-
works (with SPTC support) on pruned matrices. The
pruning is based on magnitude of values. For each
V:N:M meta-block, it zeros a minimum number of
elements with the least magnitude such that the meta-
block conforms to the SPTC required V:N:M sparse
pattern. This method can turn matrices into SPTC-
required forms and hence is expected to generate sim-
ilar speedups over the default-original as our method
does, but because its pruning introduces errors, it is ex-
pected to affect the prediction accuracy of the GNNs.

• Revised-reordered (our solution): the revised PYG
and DGL frameworks (with SPTC support) on our
reordered matrices. This is our solution. We expect
that by making the matrices able to take advantage
of SPTC, this method shall bring significant speedups
over default-original. Reordering is a lossless trans-
formation: It renumbers the vertices in a graph and
involves no approximation at all. So it does not com-
promise the accuracy of GNN.

Compare to default-original: Table 3 reports the speedups
of our solution over the default-original version of PyG and
DGL. PYG uses the Torchsparse-based CSR-SpMM for SpMM.

As shown in the left part of Table 3, the average layer-wise
speedup of our approach over PYG is from 1.4 to 3.3X for
the GCN model and 2.6-8.6X at maximum for SGC. These
translate into an end-to-end speedup of 1.1-3X for GCN and 2-
6.3X for SGC. GraphSAGE (SAGE in Table 3) and Cheb show
speedups in the between. The differences in the GNN compo-
sition and hence the execution order of computations cause
the differences. For instance, GCN aggregates after its linear
layer, and GraphSAGE aggregates before two linear layers,
which makes GraphSAGE exhibit more speedups over GCN
as our optimizations are for linear layers. The performance
difference between the Torchsparse-based CSR-SpMM and
the SPTC-based SpMM becomes even more prominent when
the multiplier matrix has more columns, which typically rep-
resent larger feature lengths, hidden embedding lengths, and
numbers of classes. For example, SGC has more feature em-
bedding columns than GCN does, and gains more substantial
speedups through the reordering and V:N:M of SPTC.
In general, DGL is more performant than PYG (except in

some cases where the vertices exceed 4,000 and H ≤ 512),
partially because it uses CuSparse CSR SPMM kernel with
the “CUSPARSE_SPMM_CSR_ALG2” algorithm for SpMM,
which is overall faster than the one used in PYG. Nonethe-
less, there are clear speedups across the board when DGL
adopts our reordering-based SpMM kernel. The trends are
similar to those observed on PYG. Compare to default-
reordered: Table 4 shows the speedups of default-reordered
over default-original. There are no significant speedups, in
both the aggregation layers and the end-to-end GNNs. The
reason is that in this setting, the GNN kernels work similarly
to those in default-original, CSR-based SpMM running on
CUDA cores. The reordered matrices have the same spar-
sity as the original matrices have and the CUDA cores are
oblivious to the V:N:M sparse patterns.
Compare to revised-pruned: Like our solution, the revised-
pruned setting also yields matrices conforming to the re-
quired V:N:M sparse patterns. So it is no surprise that the
revised PyG and DGL in the revised-pruned setting are able
to generate the same degree of speedups as in our solution.
The differences between their measured speedups over the
default-original are marginal, ranging from ±0.01 to ±0.07,

8

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935

N:M Sparsity-Oriented Graph Reordering PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA

936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990

Table 4. Speedups of default-reordered over default-original

Dataset Best
V:N:M

PYG DGL
GCN SAGE Cheb SGC GCN SAGE Cheb SGC

LYR ALL LYR ALL LYR ALL LYR ALL LYR ALL LYR ALL LYR ALL LYR ALL
Cora 1:2:4 1.01 1.00 1.02 1.01 1.04 1.03 0.99 0.99 1.03 1.01 0.98 0.99 1.06 1.01 1.08 1.07

Citeseer 32:2:8 1.05 1.02 1.01 1.00 1.02 1.01 0.98 0.98 1.04 1.01 0.97 0.99 1.00 1.00 1.01 1.01
Facebook 1:2:4 1.02 1.02 1.02 1.01 1.02 1.01 1.02 1.02 0.94 0.97 0.99 1.01 0.98 0.99 0.98 0.99
Computers 1:2:4 0.94 0.94 0.99 1.00 1.01 1.01 1.00 1.00 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00

CS 16:2:16 0.97 1.00 0.98 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00
CoraFull 32:2:16 1.00 1.00 0.98 0.98 0.95 0.96 0.99 0.99 0.99 1.00 0.98 1.00 0.98 1.00 0.98 0.98

Amazon-ratings 1:2:32 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.02 1.01 1.01 1.00 0.98 0.99
Physics 16:2:16 1.00 1.00 0.96 0.99 0.98 0.98 1.00 1.00 0.97 1.00 1.01 1.00 1.00 1.00 1.00 1.00

Table 5. Accuracy comparison between our solution (reorder) and revised-pruned. Reorder is lossless and causes no accuracy
loss, but pruning is lossy. The numbers in brackets are the accuracy loss caused by pruning.

Dataset Sparsity Prune
ratio

GCN acc GraphSAGE acc ChebNet acc SGC acc
reorder prune reorder prune reorder prune reorder prune

Cora 0.14% 1.48% 0.8130 0.7940 (-2.34%) 0.8040 0.7770 (-3.36%) 0.7910 0.7360 (-6.95%) 0.8010 0.7840 (-2.12%)
Citeseer 0.08% 0.88% 0.6860 0.6720 (-2.04%) 0.7030 0.6750 (-3.98%) 0.6900 0.6400 (-7.25%) 0.6660 0.6610 (-0.75%)
Facebook 0.54% 4.35% 0.6922 0.6452 (-6.79%) 0.6452 0.5933 (-8.04%) 0.5167 0.4784 (-7.41%) 0.6737 0.6403 (-4.96%)
Computers 0.26% 0.09% 0.8975 0.7899 (-11.9%) 0.8964 0.8177 (-8.78%) 0.6036 0.5227 (-13.4%) 0.8895 0.8644 (-2.82%)

CS 0.05% 0.004% 0.9414 0.9343 (-0.75%) 0.9504 0.9414 (-0.95%) 0.9515 0.9436 (-0.83%) 0.9419 0.9321 (-1.04%)
CoraFull 0.03% 9.14% 0.7076 0.6788 (-4.07%) 0.6909 0.6437 (-6.83%) 0.6437 0.5707 (-11.3%) 0.7121 0.6831 (-4.07%)

Amazon-ratings 0.02% 0.72% 0.4307 0.4187 (-2.79%) 0.4350 0.4215 (-3.10%) 0.4378 0.4225 (-3.49%) 0.4060 0.3813 (-6.08%)
Physics 0.04% 0.007% 0.9694 0.9580 (-1.18%) 0.9704 0.9635 (-0.71%) 0.9707 0.9657 (-0.52%) 0.9629 0.9572 (-0.59%)

within 1% of the speedups. It is the case even for large
datasets. For instance, for Facebook graph, their average
layer-wise speedups on PyG vary in the range of 8.49×–
8.56×, and their end-to-end speedups vary in the range of
4.19×—4.22×. The key differences are in the prediction ac-
curacy, which is what our report focuses on in Table 5. Be-
cause reordering is a lossless transformation, our solution
preserves the prediction accuracy of GNNs. But pruning is
lossy. Table 5 shows the accuracy comparison. Unlike weight
pruning in DNNs, graph edges carry critical information, and
their removal can result in significant accuracy degradation.
Some graphs have a small pruning ratio due to their small
numbers of pattern violations, allowing them to maintain
accuracy with a drop of less than or around 1%. A small prun-
ing ratio however does not always lead to a small accuracy
drop. For instance, in the case of 0.09% pruned Computers,
the accuracy loss can reach as high as 13.4%, surpassing that
of 9.14% pruned CoraFull in most GNNs. Furthermore, the
accuracy drop varies depending on the network’s robustness.
For example, pruned graphs generally result in higher accu-
racy drops for ChebNet compared to SGC, but for the least
pruned graphs, the trend is reversed. Reordering is a more
reliable solution than pruning for achieving V:N:M sparse
patterns.

5.2 Speedups on Distributed GNN on Large Graphs
For large graphs that cannot fit into a single GPU, our ex-
periments follow the typical practice: partitioning or sam-
pling the large graphs into smaller subgraphs for process-
ing. The OGBN dataset is often used to evaluate multi-GPU
GNNs. For the completeness of the evaluation, we use each
of the four datasets in OGBN in our experiment, even though
some of them are small enough to fit into one of the A100

Table 6. OGBN [27] large graphs GNN evaluation. “LYR”
refers to average speedup on aggregation; “ALL” refers to
end-to-end speedup.

ogbn-proteins ogbn-arxiv ogbn-products ogbn-papers100M
LYR 1.140 6.494 1.423 2.781
ALL 1.159 3.229 1.399 2.449

GPUs. Specifically, the four datasets in OGBN, ogbn-protein,
arxiv, products, and papers100M are partitioned into mul-
tiple subgraphs using the PYG’s NeighborSampler, with
average vertex counts of 24604, 2514, 19833, and 7607 per
sample, respectively. After the sampled subgraphs are re-
ordered, they serve the SPTC-based GNNs in parallel on
four A100 GPUs. Table 6 shows the per-layer and overall
speedups of our approach over PYG implementation using
the SGC model. Overall, our reordering with SPTC can de-
liver 1.16–3.23× speedups in end-to-end GNN performance.
The speedups come not only from the performance bene-
fits of SPTCs (which become usable after our reordering)
over CUDA cores, but also from the software efficiency. The
baseline performs SpMM on the CUDA cores using a sparse
format (i.e., CSR), which causes it to suffer from irregular
memory access; the baseline performance is hence far be-
low the theoretical performance of CUDA cores. In contrast,
SPTC-based computing uses a compact format, and enjoys
efficient regular memory access and superior cache benefits,
yielding a much higher throughput.

5.3 SpMM Kernel Evaluation
As the key benefits come from the SpMM kernels, we give a
comprehensive evaluation of the SpMM kernel performance
using the 1356 adjacency matrices in SparseSuite.

9

991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045

PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Jou-An Chen, Hsin-Hsuan Sung, Ruifeng Zhang, Ang Li, Xipeng Shen

1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100

Graph Adjacency Matrices

Sp
ee

du
p

(x
)

0.6
1.0

2.0

4.0
6.0

x H=64 H=128 H=256 H=512

(a) Small

Graph Adjacency Matrices

Sp
ee

du
p

(x
)

0.1
1.0

10.0
100.0

x H=64 H=128 H=256 H=512

(b)Medium

Graph Adjacency Matrices

Sp
ee

du
p

(x
)

0.5

5.0

50.0

x H=64 H=128 H=256 H=512

(c) Large

Figure 4. Speedup of SpMM over cuSPARSE brought by graph reordering matrices to their best V:N:M formats. The x-axis
corresponds to individual graphs in SuiteSparse; “H” is #columns in the second matrix in SpMM.
Table 7. 1:2:4 Reordering algorithm quality on SuiteSparse.
The “#inv segvec” is the number of invalid segment vectors
in 1:2:4 (i.e., Fp(ϕ)). “Iter.” is the number of iterations needed
for the process to conclude. This value depends on both how
much invalid segment vectors are there initially and how
effectively the exploration converges.The rightmost column
lists the average times for the reordering. (Med: Median)

Init.
#invsegvec

Finl.
#invsegvec

Imprv.
rate Iter. Reorder

time (s)

Small Avg 510.31 0.96 99.29% 34.40 0.05
Med 120.00 0.00 100.00% 20.00 0.01

Medium Avg 12,656.56 21.43 99.94% 267.62 4.39
Med 1,124.00 0.00 100.00% 208.50 0.63

Large Avg 33,202.87 930.11 98.87% 670.70 30.55
Med 8,423.00 0.00 100.00% 589.00 11.12

Speedups. Figure 4 illustrates the normalized speedups over
cuSPARSE. We adjust the number of columns in the mul-
tiplier matrix from 64 to 512, reflecting common hidden
embedding dimensions in GNNs. As can be seen, significant
speedups are achieved generally across all three size cate-
gories, particularly within medium and large. This trend can
be attributed to larger graphs having increasingly sparse
adjacency matrices, thereby providing greater scope and
potential for reordering-based SPTC executions.
Additionally, we noticed that a small subset of matrices

(3.9%) experienced slowdowns following the reordering pro-
cess. Further analysis revealed that these matrices are ex-
tremely sparse (mostly with density < 0.01%), where the
advantages of focusing solely on non-zero elements perhaps
surpass the benefits of using SPTC. This is because SPTC still
needs to process some zero elements if the matrices are very
sparse for successful ordering and compaction. Neverthe-
less, since reordering is performed offline, users can decide
whether their graph is unsuitable for reordering based on
these considerations.
Effects on fixing pattern violations. Among the 1356 ad-
jacency matrices, over 94% of them do not conform to any
V:N:M patterns. As reported in Table 7, the reordering al-
gorithm (for the 1:2:4 pattern) reduces the segment vectors
with invalid patterns by 98.9–100% and increases the propor-
tion of conforming matrices from 8.74% to 93.92% for small

Table 8. Reordering success rate on SuiteSparse.

Small Medium Large
V:2:8 V:2:16 V:2:8 V:2:16 V:2:8 V:2:16

V=1 69.1% 49.6% 65.6% 49.1% 71.7% 61.3%
V=4 29.1% 8.2% 16.2% 10.2% 25.8% 14.6%
V=8 8.1% 3.1% 5.0% 6.2% 31.0% 13.5%
V=16 3.8% 0.4% 7.0% 4.6% 17.9% 7.3%
V=32 2.2% 2.2% 7.9% 2.2% 1.3% 1.2%

graphs, 7.32% to 87.85% for medium graphs, and 5.91% to
89.25% to large graphs.
Reordering time. The rightmost column in Table 7 lists the
average and median reordering times reordering takes for
the 1356 adjacency matrices. The times range from 0.01s to
30.55s.
Distribution of preferred V:N:M patterns. Different ma-
trices may prefer different V:N:M patterns. It depends on the
matrix density and the distributions of non-zeros. Table 8
presents the distribution of preferred V:N:M formats across
the matrices. The proportions of formats with larger V val-
ues tend to be smaller than those of other formats. This is
because as V increases, the size of the meta-block imposes
stricter restrictions on non-zero patterns. Consequently, for
manymatrices, although the reordering algorithm effectively
optimizes numerous segment vectors, transforming the en-
tire matrix to fit the required patterns becomes challenging.
Therefore, despite patterns with larger V values often yield
more remarkable speedups, they are not the most frequently
selected choices. It is possible to create some machine learn-
ing models to predict the preferred V:N:M pattern for a given
matrix, akin to the predictors of the best sparse storage for-
mat for a matrix [62, 63, 66], which is out of the scope of this
work. Given that the reordering algorithm is completed in
only a short time, a simple approach is to try a number of
common patterns and select the best one.

6 Related Work
There have been many efforts on how to make irregular
computations best benefit from the massive parallelism of
GPUs. The line of research was pioneered by the on-the-fly
optimizations introduced by Zhang and others [57, 58]. Since

10

1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155

N:M Sparsity-Oriented Graph Reordering PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA

1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210

Huang and others’ systematic exploration of the implications
of GNN performance gaps [29], many studies have been
devoted to bridging the gap [12, 28, 49, 50, 59].
Several existing efforts address the challenge of mitigat-

ing sparse workloads on tensor cores. TC-GNN [50] and
DTC-SpMM [20] tackle sparse workloads by employing spe-
cialized formats and designs to execute them on dense tensor
cores. The use of dense formats significantly increase mem-
ory usage, adding tens to hundreds of times more space and
memory pressure—a critical issue for large graphs.
Graph Reordering. Graph reordering has been commonly
used as a preprocessing technique for graph computation to
improve data locality and other purposes [7, 8, 15, 19, 30, 36,
40, 45]. This is because altering the vertex order, along with
their corresponding edges in representations like the adja-
cencymatrix, typically doesn’t impact correctness but can po-
tentially optimize data layout for more efficient computation.
Existing fine-grained graph reordering proposals, such as
MinLA [39] and MiLogA [14, 43], tailor vertex orders specifi-
cally for social network computation. Meanwhile, GScore in
GOrder confines the reordering within a sliding window, en-
hancing graph processing efficiency on CPUs [51]. For scala-
bility, coarser-grained reordering methods like degree-based
sorting [19, 31, 35, 61] and partitioning [6, 10, 33, 56, 64] come
into play. These methods aim to balance subgraph size for
workload balancing or minimize cuts for enhanced commu-
nication efficiency during scaling. Despite the demonstrated
effectiveness of graph reordering in optimizing data layout
and subgraph workload distribution, no prior studies like
our work has explored graph reordering for V:N:M sparse
patterns to unlock the potential of SPTCs on GPUs.
N:M Sparsity. Many DNN pruning and fine-tuning tech-
niques have emerged for fittingDNNs into 2:4 sparse patterns
for SPTCs. Zhou et al. [65] present a training approach to
construct an N:M fine-grained structured sparse network
from scratch. They also present a metric called Sparse Archi-
tecture Divergence (SAD) to track and guide the topology
change of the sparse DNN during training. Sun et al. [47]
present DominoSearch for iterative N:M sparsity determina-
tion in DNN training using magnitude-based pruning. Pool
et al. [42] suggest rearranging CNN channels prior to prun-
ing for N:M compliance, which can reduce the possibility of
pruning significant entries that are important to accuracy.
Kao et al. [32] develop “structure decay” for iterative N:M
pruning, using a mask decay method to improve training
stability. Chen et al. [13] present Dynamic Feature Selective
Sparsity (DFSS) in Transformers, dynamically pruning the
network to the N:M pattern. All of these works, including
popular libraries such as cuSPARSELt [38] and VENOM [11],
however, focus on transforming dense DNNs into N:M struc-
tured sparse models through lossy DNN compression such
as pruning. Our work centers on the lossless transformation

of adjacency matrices to best fit the constraints of V:N:M
sparse patterns.
A study concurrent to our work is Jigsaw [60]. Jigsaw

directly reorders the columns of adjacency matrices into 2:4
sparse forms and uses their customized SpMM kernels to
harness the power of SPTC. It differs from our work in sev-
eral aspects. First, because our method is graph reordering,
the adjacency matrix remains symmetric after reordering,
while it is not the case for the column reordering in Jigsaw.
The symmetry is essential to many graph algorithms, such
as Graph Isomorphism, Graph Partitioning using spectral
clustering, Kruskal’s Algorithm for Minimum Spanning Tree,
and so on. Second, our reordering algorithm runs more ef-
ficient and hence reorders more matrices in shorter times,
thanks to its design and efficient implementation on GPU.
For large graphs in SparseSuite, for instance, our method
can reorder 52% of the graphs within 20s each while JigSaw
can do only 30%. Finally, Jigsaw supports only the 2:4 for-
mat, whereas our algorithm accommodates the more flexible
V:N:M formats. We note that Jigsaw introduces additional
optimizations to the sparse kernel implementation to hide
memory access latency. Those kernel-level optimizations
could further enhance the performance of our solution.

7 Conclusion
This paper presents a novel graph reordering technique
to harvest modern GPU sparse tensor cores for GNNs. By
orchestrating bit-level operations, our proposed algorithm
transforms graph adjacency matrices into V:N:M formats,
employing an iterative two-stage reordering process based
on Hamming-distance order and greedy algorithm designs.
Experiments show that the method can accelerate the essen-
tial graph computation kernel SPMM by 2.3-7.5×, boosting
the GNN computation significantly.

Acknowledgment
We thank the anonymous shepherd for guiding the prepara-
tion of the final version of this paper, and the anonymous
reviewers for their helpful comments. This material is based
upon work supported by the National Science Foundation
(NSF) under Grant No. CNS-2312207 and the Department
of Energy (DOE) under Grant No. DE-EE0009357, as well
as the work supported by DOE Office of Science, Office of
Advanced Scientific Computing Research, ComPort: Rigor-
ous Testing Methods to Safeguard Software Porting, under
Award Number 78284. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of NSF or DOE. The Pacific Northwest National Laboratory
is operated by Battelle for the U.S. Department of Energy
under Contract DE-AC05-76RL01830.

11

1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265

PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Jou-An Chen, Hsin-Hsuan Sung, Ruifeng Zhang, Ang Li, Xipeng Shen

1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320

References
[1] [n. d.]. CUDA Math API Documentation: Integer Intrinsics.

https://docs.nvidia.com/cuda/cuda-math-api/group__CUDA_
_MATH__INTRINSIC__INT.html Accessed: 2023-11-30.

[2] [n. d.]. Scipy Block Compressed Row Format (BSR). https://scipy-
lectures.org/advanced/scipy_sparse/storage_schemes.html#block-
compressed-row-format-bsr Accessed: 2023-11-30.

[3] [n. d.]. SPTC index. https://docs.nvidia.com/cuda/parallel-thread-
execution/index.html#warp-level-sparse-matrix-storage

[4] 2023. Nvidia ampere architecture in-depth. https://developer.nvidia.
com/blog/nvidia-ampere-architecture-in-depth/

[5] NVIDIA Corporation Accessed: 2023-09-08. NVIDIA CUDA Docu-
mentation — Warp Level Matrix Multiply-Accumulate Instructions.
NVIDIA Corporation. https://docs.nvidia.com/cuda/parallel-thread-
execution/index.html#warp-level-matrix-multiply-accumulate-
instructions

[6] Junya Arai, Hiroaki Shiokawa, Takeshi Yamamuro, Makoto Onizuka,
and Sotetsu Iwamura. 2016. Rabbit order: Just-in-time parallel re-
ordering for fast graph analysis. In 2016 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 22–31.

[7] Vignesh Balaji and Brandon Lucia. 2018. When is graph reordering
an optimization? studying the effect of lightweight graph reorder-
ing across applications and input graphs. In 2018 IEEE International
Symposium on Workload Characterization (IISWC). IEEE, 203–214.

[8] Reet Barik, Marco Minutoli, Mahantesh Halappanavar, Nathan R Tal-
lent, and Ananth Kalyanaraman. 2020. Vertex reordering for real-
world graphs and applications: An empirical evaluation. In 2020 IEEE
International Symposium on Workload Characterization (IISWC). IEEE,
240–251.

[9] Aleksandar Bojchevski and Stephan Günnemann. 2018. Deep Gaussian
Embedding of Graphs: Unsupervised Inductive Learning via Rank-
ing. In International Conference on Learning Representations. https:
//openreview.net/forum?id=r1ZdKJ-0W

[10] Aydın Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and
Christian Schulz. 2016. Recent advances in graph partitioning. Springer.

[11] Roberto L. Castro, Andrei Ivanov, Diego Andrade, Tal Ben-Nun,
Basilio B. Fraguela, and Torsten Hoefler. 2023. VENOM: A Vectorized
N:M Format for Unleashing the Power of Sparse Tensor Cores. In
Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis (Denver, CO, USA) (SC ’23).
Association for Computing Machinery, New York, NY, USA, Article
72, 14 pages. https://doi.org/10.1145/3581784.3607087

[12] Jou-An Chen, Hsin-Hsuan Sung, Xipeng Shen, Sutanay Choudhury,
and Ang Li. 2023. BitGNN: Unleashing the Performance Potential
of Binary Graph Neural Networks on GPUs. In Proceedings of the
37th International Conference on Supercomputing (Orlando, FL, USA)
(ICS ’23). Association for Computing Machinery, New York, NY, USA,
264–276. https://doi.org/10.1145/3577193.3593725

[13] Zhaodong Chen, Zheng Qu, Yuying Quan, Liu Liu, Yufei Ding, and
Yuan Xie. 2023. Dynamic n: M fine-grained structured sparse attention
mechanism. In Proceedings of the 28th ACM SIGPLAN Annual Sympo-
sium on Principles and Practice of Parallel Programming. 369–379.

[14] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael Mitzen-
macher, Alessandro Panconesi, and Prabhakar Raghavan. 2009. On
compressing social networks. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining. 219–
228.

[15] Benjamin Coleman, Santiago Segarra, Alex Smola, and Anshumali
Shrivastava. 2022. Graph Reordering for Cache-Efficient Near Neigh-
bor Search. In Advances in Neural Information Processing Systems,
Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho
(Eds.). https://openreview.net/forum?id=8LeCgKb6UX

[16] NVIDIA Corporation. 2023. NVIDIA H100 Tensor Core GPU Archi-
tecture. https://resources.nvidia.com/en-us-tensor-core Accessed:

2023-11-28.
[17] Timothy A. Davis. 2019. Algorithm 1000: SuiteSparse:GraphBLAS:

Graph Algorithms in the Language of Sparse Linear Algebra. 45, 4,
Article 44 (Dec. 2019), 25 pages. https://doi.org/10.1145/3322125

[18] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016.
Convolutional Neural Networks on Graphs with Fast Localized Spec-
tral Filtering (NIPS’16). Curran Associates Inc., Red Hook, NY, USA,
3844–3852.

[19] Priyank Faldu, Jeff Diamond, and Boris Grot. 2019. A closer look at
lightweight graph reordering. In 2019 IEEE International Symposium
on Workload Characterization (IISWC). IEEE, 1–13.

[20] Ruibo Fan, Wei Wang, and Xiaowen Chu. 2024. DTC-SpMM: Bridg-
ing the Gap in Accelerating General Sparse Matrix Multiplication
with Tensor Cores (ASPLOS ’24). Association for Computing Machin-
ery, New York, NY, USA, 253–267. https://doi.org/10.1145/3620666.
3651378

[21] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and
Dawei Yin. 2019. Graph neural networks for social recommendation.
In The world wide web conference. 417–426.

[22] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation
Learning with PyTorch Geometric. In ICLRWorkshop on Representation
Learning on Graphs and Manifolds.

[23] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and
George E Dahl. 2017. Neural message passing for quantum chemistry.
In International conference on machine learning. PMLR, 1263–1272.

[24] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive
representation learning on large graphs. In Proceedings of the 31st
International Conference on Neural Information Processing Systems.
1025–1035.

[25] Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David P.
Woodruff, and Amir Zandieh. 2023. HyperAttention: Long-context
Attention in Near-Linear Time. arXiv:2310.05869 [cs.LG]

[26] Hatem Helal, Jesun Firoz, Jenna Bilbrey, Mario Michael Krell, Tom
Murray, Ang Li, Sotiris Xantheas, and Sutanay Choudhury. 2022. Ex-
treme Acceleration of Graph Neural Network-based PredictionModels
for Quantum Chemistry. arXiv preprint arXiv:2211.13853 (2022).

[27] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren,
Bowen Liu, Michele Catasta, and Jure Leskovec. 2020. Open graph
benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems 33 (2020), 22118–22133.

[28] Kezhao Huang, Jidong Zhai, Liyan Zheng, Haojie Wang, Yuyang Jin,
Qihao Zhang, Runqing Zhang, Zhen Zheng, Youngmin Yi, and Xipeng
Shen. 2024. Nollie: Optimizing GNN with Joint Workload Partition of
Graph and Operations. In Proceedings of The European Conference on
Computer Systems (EuroSys). Aveiro, Portugal. April 22, 2024.

[29] Kezhao Huang, Jidong Zhai, Zhen Zheng, Youngmin Yi, and Xipeng
Shen. 2021. Understanding and Bridging the Gaps in Current GNN
Performance Optimizations. In Proceedings of the 26th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. As-
sociation for Computing Machinery, New York, NY, USA, 119–132.
https://doi.org/10.1145/3437801.3441585

[30] E. J. Im, K. A. Yelick, and R. Vuduc. 2004. SPARSITY: Framework for
optimizing sparse matrix-vector multiply. International Journal of
High Performance Computing Applications 18, 1 (Feb 2004), 135–158.

[31] U Kang and Christos Faloutsos. 2011. Beyond’caveman communities’:
Hubs and spokes for graph compression and mining. In 2011 IEEE 11th
international conference on data mining. IEEE, 300–309.

[32] Sheng-Chun Kao, Amir Yazdanbakhsh, Suvinay Subramanian, Shivani
Agrawal, Utku Evci, and Tushar Krishna. 2022. Training Recipe for N:
M Structured Sparsity with Decaying Pruning Mask. arXiv preprint
arXiv:2209.07617 (2022).

[33] George Karypis and Vipin Kumar. 1998. Multilevel algorithms for
multi-constraint graph partitioning. In SC’98: Proceedings of the 1998
ACM/IEEE Conference on Supercomputing. IEEE, 28–28.

12

https://docs.nvidia.com/cuda/cuda-math-api/group__CUDA__MATH__INTRINSIC__INT.html
https://docs.nvidia.com/cuda/cuda-math-api/group__CUDA__MATH__INTRINSIC__INT.html
https://scipy-lectures.org/advanced/scipy_sparse/storage_schemes.html#block-compressed-row-format-bsr
https://scipy-lectures.org/advanced/scipy_sparse/storage_schemes.html#block-compressed-row-format-bsr
https://scipy-lectures.org/advanced/scipy_sparse/storage_schemes.html#block-compressed-row-format-bsr
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-sparse-matrix-storage
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-sparse-matrix-storage
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-multiply-accumulate-instructions
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-multiply-accumulate-instructions
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-multiply-accumulate-instructions
https://openreview.net/forum?id=r1ZdKJ-0W
https://openreview.net/forum?id=r1ZdKJ-0W
https://doi.org/10.1145/3581784.3607087
https://doi.org/10.1145/3577193.3593725
https://openreview.net/forum?id=8LeCgKb6UX
https://resources.nvidia.com/en-us-tensor-core
https://doi.org/10.1145/3322125
https://doi.org/10.1145/3620666.3651378
https://doi.org/10.1145/3620666.3651378
https://arxiv.org/abs/2310.05869
https://doi.org/10.1145/3437801.3441585

1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375

N:M Sparsity-Oriented Graph Reordering PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA

1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430

[34] ThomasN. Kipf andMaxWelling. 2017. Semi-Supervised Classification
with Graph Convolutional Networks. In International Conference on
Learning Representations (ICLR).

[35] Yongsub Lim, U Kang, and Christos Faloutsos. 2014. Slashburn: Graph
compression and mining beyond caveman communities. IEEE Trans-
actions on Knowledge and Data Engineering 26, 12 (2014), 3077–3089.

[36] J. Mellor-Crummey, D. Whalley, and K. Kennedy. 2001. Improving
Memory Hierarchy Performance for Irregular Applications Using
Data and Computation Reorderings. International Journal of Par-
allel Programming 29 (2001), 217–247. https://doi.org/10.1023/A:
1011119519789

[37] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu
Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit
Gupta, Carole-Jean Wu, Alisson G Azzolini, et al. 2019. Deep learn-
ing recommendation model for personalization and recommendation
systems. arXiv preprint arXiv:1906.00091 (2019).

[38] NVIDIA. 2023. cuSPARSELt: A High-Performance CUDA Library for
Sparse Matrix-Matrix Multiplication. https://docs.nvidia.com/cuda/
cusparselt/index.html

[39] Jordi Petit. 2003. Experiments on the minimum linear arrangement
problem. Journal of Experimental Algorithmics (JEA) 8 (2003).

[40] J. C. Pichel, D. B. Heras, J. C. Cabaleiro, and F. F. Rivera. 2005. Perfor-
mance optimization of irregular codes based on the combination of
reordering and blocking techniques. Parallel Comput. 31, 8-9 (2005),
858–876.

[41] Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko,
and Liudmila Prokhorenkova. 2023. A critical look at evaluation of
GNNs under heterophily: Are we really making progress?. In The
Eleventh International Conference on Learning Representations.

[42] Jeff Pool and Chong Yu. 2021. Channel permutations for n: m sparsity.
Advances in Neural Information Processing Systems 34 (2021), 13316–
13327.

[43] Ilya Safro and Boris Temkin. 2011. Multiscale approach for the network
compression-friendly ordering. Journal of Discrete Algorithms 9, 2
(2011), 190–202.

[44] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and
Stephan Günnemann. 2018. Pitfalls of Graph Neural Network Evalua-
tion. ArXiv abs/1811.05868 (2018). https://api.semanticscholar.org/
CorpusID:53303554

[45] M. M. Strout and P. D. Hovland. 2004. Metrics and models for reorder-
ing transformations. In Proceedings of the MSP ’04. Association for
Computing Machinery, New York, NY, USA, 23–34.

[46] Wei Sun, Ang Li, Tong Geng, Sander Stuijk, and Henk Corporaal. 2022.
Dissecting Tensor Cores via Microbenchmarks: Latency, Throughput
and Numeric Behaviors. IEEE Transactions on Parallel and Distributed
Systems 34, 1 (2022), 246–261.

[47] Wei Sun, Aojun Zhou, Sander Stuijk, Rob Wijnhoven, Andrew O Nel-
son, Henk Corporaal, et al. 2021. DominoSearch: Find layer-wise fine-
grained N:M sparse schemes from dense neural networks. Advances
in Neural Information Processing Systems 34 (2021), 20721–20732.

[48] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye,
Mufei Li, Jinjing Zhou, Qi Huang, Chao Ma, et al. 2019. Deep Graph
Library: Towards Efficient and Scalable Deep Learning on Graphs.
ICLR Workshop on Representation Learning on Graphs and Manifolds
(2019).

[49] Yuke Wang, Boyuan Feng, and Yufei Ding. 2022. QGTC: Accelerating
Quantized GNN via GPU Tensor Core. In ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming. (PPoPP’22).

[50] Yuke Wang, Boyuan Feng, Zheng Wang, Guyue Huang, and Yufei
Ding. 2023. TC-GNN: Bridging Sparse GNN Computation and Dense
Tensor Cores on GPUs. In 2023 USENIX Annual Technical Conference
(USENIX ATC 23). USENIX Association, Boston, MA, 149–164. https:
//www.usenix.org/conference/atc23/presentation/wang-yuke

[51] HaoWei, Jeffrey Xu Yu, Can Lu, and Xuemin Lin. 2016. Speedup graph
processing by graph ordering. In Proceedings of the 2016 International
Conference on Management of Data. 1813–1828.

[52] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and
Kilian Weinberger. 2019. Simplifying Graph Convolutional Networks.
In Proceedings of the 36th International Conference on Machine Learning.
PMLR, 6861–6871.

[53] Xilinx. 2023. AMD Xilinx Versal Adaptive Compute Acceleration Plat-
forms. https://www.xilinx.com/products/silicon-devices/acap/versal.
html Accessed: 2023-10-19.

[54] Renchi Yang, Jieming Shi, Xiaokui Xiao, Yin Yang, Sourav S. Bhowmick,
and Juncheng Liu. 2023. PANE: scalable and effective attributed net-
work embedding. The VLDB Journal 32, 6 (March 2023), 1237–1262.
https://doi.org/10.1007/s00778-023-00790-4

[55] Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. 2023. KDE-
former: Accelerating Transformers via Kernel Density Estimation. In
Proceedings of the 40th International Conference on Machine Learning
(Honolulu, Hawaii, USA) (ICML’23). JMLR.org, Article 1701, 19 pages.

[56] Chengming Zhang, Tong Geng, Anqi Guo, Jiannan Tian, Martin Her-
bordt, Ang Li, and Dingwen Tao. 2022. H-gcn: A graph convolutional
network accelerator on versal acap architecture. In 2022 32nd Interna-
tional Conference on Field-Programmable Logic and Applications (FPL).
IEEE, 200–208.

[57] Eddy Z. Zhang, Yunlian Jiang, Ziyu Guo, and Xipeng Shen. 2010.
Streamlining GPU Applications On the Fly. In Proceedings of the ACM
International Conference on Supercomputing (ICS). Tsukuba, Japan.

[58] Eddy Z. Zhang, Yunlian Jiang, Ziyu Guo, Kai Tian, and Xipeng Shen.
2011. On-the-Fly Elimination of Dynamic Irregularities for GPU
Computing. In Proceedings of the 16th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS). Newport Beach, California, USA.

[59] Hengrui Zhang, Zhongming Yu, Guohao Dai, Guyue Huang, Yufei
Ding, Yuan Xie, and Yu Wang. 2022. Understanding GNN Computa-
tional Graph: A Coordinated Computation, IO, and Memory Perspec-
tive. Proceedings of Machine Learning and Systems (MLSys).

[60] Kaige Zhang, Xiaoyan Liu, Hailong Yang, Tianyu Feng, Xinyu Yang,
Yi Liu, Zhongzhi Luan, and Depei Qian. 2024. Jigsaw: Accelerating
SpMM with Vector Sparsity on Sparse Tensor Core. In Proceedings
of the 53rd International Conference on Parallel Processing (Gotland,
Sweden) (ICPP ’24). Association for Computing Machinery, New York,
NY, USA, 1124–1134. https://doi.org/10.1145/3673038.3673108

[61] Yunming Zhang, Vladimir Kiriansky, Charith Mendis, Saman Ama-
rasinghe, and Matei Zaharia. 2017. Making caches work for graph
analytics. In 2017 IEEE International Conference on Big Data (Big Data).
IEEE, 293–302.

[62] Yue Zhao, Jiajia Li, Chunhua Liao, and Xipeng Shen. 2018. Bridging
the gap between deep learning and sparse matrix format selection. In
Proceedings of the 23rd ACM SIGPLAN symposium on principles and
practice of parallel programming. 94–108.

[63] Yue Zhao,Weijie Zhou, Xipeng Shen, and GrahamYiu. 2018. Overhead-
conscious format selection for SpMV-based applications. In IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS). IEEE,
950–959.

[64] Da Zheng, Xiang Song, Chengru Yang, Dominique LaSalle, and George
Karypis. 2022. Distributed hybrid CPU and GPU training for graph
neural networks on billion-scale heterogeneous graphs. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining. 4582–4591.

[65] Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun
Yuan, Wenxiu Sun, and Hongsheng Li. 2021. Learning N:M Fine-
grained Structured Sparse Neural Networks From Scratch. In Inter-
national Conference on Learning Representations. https://openreview.
net/forum?id=K9bw7vqp_s

13

https://doi.org/10.1023/A:1011119519789
https://doi.org/10.1023/A:1011119519789
https://docs.nvidia.com/cuda/cusparselt/index.html
https://docs.nvidia.com/cuda/cusparselt/index.html
https://api.semanticscholar.org/CorpusID:53303554
https://api.semanticscholar.org/CorpusID:53303554
https://www.usenix.org/conference/atc23/presentation/wang-yuke
https://www.usenix.org/conference/atc23/presentation/wang-yuke
https://www.xilinx.com/products/silicon-devices/acap/versal.html
https://www.xilinx.com/products/silicon-devices/acap/versal.html
https://doi.org/10.1007/s00778-023-00790-4
https://doi.org/10.1145/3673038.3673108
https://openreview.net/forum?id=K9bw7vqp_s
https://openreview.net/forum?id=K9bw7vqp_s

1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485

PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Jou-An Chen, Hsin-Hsuan Sung, Ruifeng Zhang, Ang Li, Xipeng Shen

1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540

[66] Weijie Zhou, Yue Zhao, Xipeng Shen, and Wang Chen. 2019. Enabling
Runtime SpMV Format Selection through an Overhead Conscious

Method. IEEE Transactions on Parallel and Distributed Systems 31, 1
(2019), 80–93.

14

	Abstract
	1 Introduction
	2 Terms and Background
	3 Problem Statement
	4 Graph Reordering Algorithm
	4.1 Overview
	4.2 Stage-1 Reordering
	4.3 Stage-2 Reordering
	4.4 Application to Large Graphs
	4.5 Library and Integration

	5 Evaluation
	5.1 GNN Performance Comparison
	5.2 Speedups on Distributed GNN on Large Graphs
	5.3 SpMM Kernel Evaluation

	6 Related Work
	7 Conclusion
	References

