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Abstract
Recent GPUs have introduced Sparse Tensor Cores (SPTC)
to accelerate computations on sparse matrices meeting the
N:M sparse patterns. Software tools expand the support to
more general V:N:M patterns. Graphs in Graph Neural Net-
works (GNNs) are typically sparse, but the sparsity is often
irregular, not conforming to the required V:N:M sparse pat-
terns. This paper proposes a novel graph reordering algo-
rithm to transform irregular graph data into the required
sparse patterns for GNNs to benefit from SPTC. The opti-
mization is lossless, maintaining the accuracy of GNN. It
at the same time keeps the symmetry of the adjacency ma-
trices of the graphs so that the same matrices can remain
compatible with many symmetry-based graph algorithms.
The optimization successfully removes 98-100% violations of
the N:M sparse patterns at the vector level and increases the
portion of conforming graphs in the SuiteSparse collection
from 5-9% to 88.7-93.5%. On A100 GPUs, the optimization
accelerates Sparse Matrix Matrix (SpMM) by up to 43X (a
geomean speedup of 2.3X – 7.5X) over cuSPARSE and speeds
up the key graph operations in GNNs on real graphs by as
much as 8.6X (3.5X on average).

CCS Concepts: • Computing methodologies→Massively
parallel algorithms; Neural networks; • Computer sys-
tems organization → Single instruction, multiple data.
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1 Introduction
GraphNeural Networks (GNNs) [18, 24, 34, 52] have emerged
as a vital and versatile tool in addressing a wide array of
graph-related problems. Their capacity to model and un-
derstand complex relationships within graphs has led to
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Figure 1.Graph vertex reordering leads to swapping of some
rows (and columns) in the adjacency matrix, transforming
row 6 into N:M-conforming (2:4 in this illustration) vectors.
(Note that the corresponding rows in the dense matrix to
multiply with must be swapped too.)

their increasing importance in numerous fields, including
social networks [21], recommendation systems [37], molec-
ular chemistry [23, 26], and more. However, the utility of
GNNs comes hand in hand with the pressing concern of
computational efficiency, particularly as graph sizes grow
and the computation becomes more resource-intensive. The
pursuit of accelerating GNN speed continues to be a critical
endeavor.

This paper explores a new approach to accelerating GNNs,
reordering graphs to make GNNs better take advantage of
the Sparse Tensor Cores (SPTC) on modern GPUs.

SPTC is a hardware feature prevalence in recent GPUs [4,
16, 46]. They are in all recent NVIDIA GPUs (Ampere and
later), and similar hardware is getting into AI/ML hardware
accelerators of other vendors (e.g., AMD/Xilinx ACAPs) [53,
56]. It provides efficient support for sparse fusedmultiplication-
accumulation (FMA) instructions, or the mma.sp instruction,
the key operation in sparse-matrix-multiply-dense-matrix
(SPMM). The support is tailored explicitly for N:M sparsity.
N:M sparsity refers to a pattern in a matrix where every M
consecutive elements (called segment vectors) contain at most
N non-zeros. Through hardware support, SPTC dynamically
packs the non-zeros together to enable efficient FMA. Recent
work [11] shows that a generalized pattern V:N:M (explained
in Section 2) can be supported if one combines the hardware

1

https://doi.org/10.1145/3710848.3710881
https://doi.org/10.1145/3710848.3710881
https://doi.org/10.1145/3710848.3710881


111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Jou-An Chen, Hsin-Hsuan Sung, Ruifeng Zhang, Ang Li, Xipeng Shen

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

support with a software abstraction, producing even more
speedups for SPMM over executions on dense tensor cores.

Despite the enormous potential of SPTC, most GNNs can-
not take full advantage of it. It is not because GNNs have
no sparse matrices: The key data structure in GNNs, the
adjacency matrix of the input graph, is usually sparse. The
reason is that most sparse matrices in GNNs do not conform
to the required fine-grained sparsity patterns (e.g., 2:4 by
default). Among 1356 graphs surveyed in the SuiteSparse col-
lection [17], for instance, only 5-9% conform to the sparsity
patterns (details in Section 5).

This paper proposes a novel solution, named N:M sparsity-
oriented graph reordering. The basic idea is to transform as
many non-N:M segment vectors within a matrix into N:M
conforming vectors by graph reordering, that is, by swapping
some rows (as well as responding columns) in the adjacency
matrix of a graph. Unlike typical matrix reordering [60], the
swapping in our method does not change the graph seman-
tics but only the order of graph vertices. They are materi-
alized by renumbering the graph vertices based on the fact
that rows and columns in an adjacency matrix represent the
vertices of the graph. As illustrated in Figure 1, if node 4 is
renumbered to 3 and 3 to 4, the corresponding adjacency
matrix would have rows 3 and 4 swapped and columns 3
and 4 swapped. The graph stays the same except for the
numbering of vertices. The adjacency matrix of the graph
can hence stay symmetric, keeping the matrix usable by the
many graph algorithms that rely on its symmetry, such as
algorithms designed for graph isomorphism, partitioning,
minimum spanning tree, and so on. The constraint mean-
while makes the reordering algorithm more challenging to
design than typical matrix reordering.

Prior work has used graph reordering to reduce non-zero
blocks in format storage [6–8, 10, 15, 19, 33, 51, 56, 64]. But to
the best of our knowledge, no prior work has studied graph
reordering for N:M sparsity.
The critical challenge is how to find effective reordering

for a given graph. The solution must work for various N:M
patterns, including the generalized V:N:M variants. It does
not have to be real-time, for a graph is often used many times
(node features may change), and the one-time reordering is
an offline preprocessing step. But it must still be efficient,
as graphs can be large. The problem of finding the optimal
reordering is NP-hard [7, 8, 15, 19], rendering enumeration
impractical due to the vast combinatorial space of possible
permutations. To the best of our knowledge, no prior work
has undertaken this challenge. The only prior attempt is
Jigsaw [60], but it applies only to the basic N:M patterns, and
as a typical matrix reordering rather than graph reordering,
it deprives the symmetry from the adjacency matrix.
Our solution consists of an iterative two-level graph re-

ordering algorithm and an efficient bit intrinsic-based im-
plementation. The algorithm, coined dual-level N:M-sparsity
oriented reordering, consists of two reordering stages at its

core. They, respectively, address the violations of tile-level
patterns (a tile is a group of segment vectors) and vector-
level patterns. The former converts a segment vector into a
binary string and employs Hamming-distance position en-
coding [25, 55] to reorder columns and rows, while the latter
uses a greedy reordering strategy to efficiently make each
segment vector conform to the vector-level patterns [5, 38].
The two steps go hand-in-hand, forming the core of an iter-
ative process. The proposed algorithm is general, working
for various graphs, N:M and V:N:M patterns and GNNs. It
efficiently and effectively fixes the sparsity pattern violations
with a nlog(n) computational complexity.

To deliver the full benefits of the algorithm, we develop
the algorithm as an efficient library on GPUs, named SO-
GRE (Sparsity-Oriented Graph Reordering). SOGRE uses bit
strings to represent the vectors in adjacency matrices and
employs efficient bit-operations and intra-warp intrinsics on
GPUs to materialize the core routines in the algorithm. The
library can be integrated into existing GNN programming
frameworks (e.g., PYG [22], DGL [48]).
As a lossless optimization, the reordering does not cause

any accuracy loss. Experiments on 1356 adjacency matri-
ces in SuiteSparse Matrix Collection show that the reorder-
ing algorithm can eliminate 98-100% violations of the N:M
sparse patterns at the vector level and increase the propor-
tion of conforming graphs in SuiteSparse collection from
5-9% to 88.7-93.5%. On A100 GPUs, the optimization acceler-
ates Sparse Matrix Matrix (SpMM) by up to 43X (2.3X–7.5X
on average) and speeds up the critical graph operations in
GNNs on 12 real graphs by as much as 8.6X (3.5X on aver-
age) over cuSPARSE. The reordering takes 0.05–30s to run
on average, offering an effective method for offline prepro-
cessing of graphs that will be reused repeatedly across many
inferences.

2 Terms and Background
This section provides the background needed for understand-
ing the rest of the paper. (For the broader background on
SPTC hardware and VENOM, please see references [4, 11,
16, 38].)
Terms and sparse patterns Figure 2 lists the frequently
used terms in this paper, along with an illustration. The
terms ‘segment’, ‘meta-block’, and ‘segment-vector’ refer
to three levels of components in an adjacency matrix; see
the illustration in Figure 2. The two notations, N:M and
V:N:M, refer to two levels of sparse patterns. N:M is about the
patterns in anM-element vector, where there are up to N non-
zeros. V:N:M is about the patterns in a V-by-M tile, where
every row is an N:M vector and, at the same time, at most k of
its columns contain non-zeros. The value of k is determined
by the SPTC hardware, 4 by default. N:M represents the
patterns natively supported by SPTC hardware and V:N:M
patterns are generalized forms introduced in the VENOM
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Segment

Segment
vector

v=4

N:M=2:8Meta-block

n

Term Description

n Number of vertices in a graph

N:M A sparse pattern with up to N non-zeros in M
consecutive elements

V:N:M A sparse pattern of a V-by-M tile, in which, (i) at most k 
columns contain non-zeros, and (ii) each row is a N:M vector. 
[ k is a constant determined by the SPTC hardware; 4 by 
default ]

Segment An n-by-M submatrix in an adjacency matrix of a graph

Meta-block A V-by-M tile in an adjacency matrix

Segment vector A M-element row vector in an adjacency matrix

Figure 2. Terms frequently used in this paper.

work [11]. The VENOM authors show that such patterns can
benefit from SPTC hardware when combined with a software
abstraction.
GNN Background GNN [18, 24, 34, 52] captures contextual
information of vertices and propagates it through graphs. It
is a neural network performed on graph data. In a graph used
in GNN, nodes represent entities in a problem domain (e.g.,
a user in a social network), each carrying a feature vector.
Edges between nodes indicate their relationship, quantified
with edge weights.

hl+1
v = ReLU((SUMu→v(euv ⊙ hl

u)) ⊗ Wl) (1)

A computing layer in GNN consists of both graph opera-
tions and neural operations. A simple example is shown in
Equation 1, which computes the hidden features of center
node v on layer l + 1. The input for layer l is the hidden
features hl; u → v means that there is an edge from node u
to node v; euv is the value on the edge (zero means no edge
between two nodes).

There are typically two phases in a layer’s computation. In
the aggregation phase, each vertex gathers information from
its neighboring vertices within the graph. This phase often
involves weighted summation or other aggregation func-
tions. The implementation of this phase is usually based on
matrix-matrix multiplication, which multiplies the graph’s
adjacency matrix with the nodes’ feature matrix or hidden
weightmatrices. The second phase is the update phase, which
performs fully-connected layer operations with activation
functions, such as the ReLU function in Equation 1, to trans-
form the aggregated info at each node and produce the hid-
den features of the nodes for the next layer hl+1 to process.
The aggregation phase is what SpMM acceleration focuses
on.

3 Problem Statement
For clarity, this section gives a formal definition of the re-
ordering problem tackled in this work.

SPTC-oriented graph reordering problem (SGRP): Let A rep-
resent an n × n adjacency matrix of a graph G = (V, E),
whereV is a set of n vertices with ordering ϕ : (1, 2, ..., n),

and V:N:M (which is N:M when V=1) be the sparsity struc-
ture constraints of the SPTC of interest; the SGRP problem
is to find a permutation of the vertices in V that transforms
ϕ into ϕ ′ such that the new form of the adjacency matrix
meets the N:M (or V:N:M) constraints of the SPTC as much
as possible.

It is worth noting that tiling is often used in SpMM, where
the matrix is regarded as a collection of tiles; each tile is
multiplied by the relevant sections in the other matrix, and
the results are then put together to get the final result. So
for a given tile size, the goal of SGRP becomes to minimize
the number of tiles violating the V:N:M constraints.
We introduce a metric, improvement rate, to measure

the effectiveness of reordering. It is calculated as
finalω−initial ω

initial ω , where ω represents the count of segment
vectors that violate the required sparse pattern.

Problem Complexity. At the first glance, the search space
for finding the optimal permutation ϕ is n!. However, there
are redundancies in these permutations. For instance, a tile
can remain a qualified N:M pattern when the ordering vari-
ance is within the tile boundary, reducing the total search
space to n!

(M!)
n
M

. But even with that, it is still too large to
find optimal solutions in a polynomial time.

4 Graph Reordering Algorithm
4.1 Overview
The design of the reordering algorithm is based on the fol-
lowing principles:

(1) The algorithm should be general, able to work for vari-
ous N:M and V:N:M patterns, graphs, and GNNs.
(2) The algorithm should be beneficial, giving significant

improvement rates for various adjacency matrices and pro-
ducing substantial speedups for GNNs.

(3) The algorithm should be efficient. The intended use of
the algorithm is offline use, preprocessing a graph to prepare
it for its repeated uses. Although the preprocessing time
is not critical, the algorithm with a lower computational
complexity could make it more friendly to adopt.

3
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Based on these principles, we design a two-level N:M
sparsity-oriented algorithm, outlined in Algorithm 1. This
algorithm provides a unified treatment to N:M and V:N:M
patterns by considering N:M as a special case of V:N:M when
V=1. Its core consists of two stages of reordering, respectively,
corresponding to the two constraints of V:N:M patterns. Re-
call from Section 2, V:N:M has the following two constraints:
(i) In each V-by-M meta-block, at most k columns have

non-zero values. We call it vertical constraint.
(ii) In each row vector in each meta-block, there are at

most N nonzero values. We call it horizontal constraint.
The first stage tries to reorder to minimize the violations of

the vertical constraint, and the second stage for the horizontal
constraint. Because the two stages influence each other’s
results, the algorithm repeats the two stages until no further
progress can be made or the maximal iterations are reached,
as outlined in Algorithm 1.

Both stages are designed to be efficient and effective, with
computational complexities linear to n or nlog(n) (recall n
is the number of vertices in the graph). The algorithm makes
no special assumptions on the sparse patterns, graphs, or
matrices, making it generally applicable. We next explain
each of the two stages.

Algorithm 1: The top-level pseudo-code of the pro-
posed reordering algorithm
Input: Graph adjacency matrix A with vertex order ϕ,

V:N:M pattern
Output: New vertex order

1 while V:N:M violations remain and max. iteration is not yet
reached do

2 ϕ = Stage-1.reorder(A, V, N, M, ϕ)
3 ϕ = Stage-2.reorder(A, N, M, ϕ)

4.2 Stage-1 Reordering
Our design of stage-1 reordering hinges on two insights. The
first is that it is likely to reduce violations of the vertical
constraint if a reordering makes the rows in a meta-block
more similar in terms of their nonzero positions. The second
insight is that Hamming-distance order [55] of binary strings
shares a similar objective as the first insight states, and hence
using it could help solve our reordering problem. The first
insight is easy to understand; we explain Hamming-distance
order and the second insight next.
Hamming-distance Order Hamming distance is the count
of differing digits between two binary strings. For instance,
the hamming distance between 0011 and 0111 is one because
they differ at only one position, the second digit from the left.
The cumulative Hamming distance of a sequence of binary
strings is the sum of the Hamming distances between every
two adjacent strings. For example, the cumulative Hamming
distance of sequence {00, 01, 10, 11} is 1+2+1=4 because the

Hamming distance of the first pair of strings is 1, the second
pair is 2, and the third pair is 1.

TheHamming-distance order of a sequence of binary strings
is the order that has the smallest cumulative Hamming dis-
tance. For instance, the Hamming-distance order of all 2-digit
binary strings is {00,01,11,10}, whose cumulative Hamming
distance is 3. Previous work [55] has proved that there is a
unique Hamming-distance order for all k-digit binary strings
(k ∈ N+).
Hamming Position Encoding A key idea in our stage-I
algorithm is to use Hamming position code to encode every
segment vector in a sparse matrix and then sort them numeri-
cally to help identify a good order for reducing the violations
of the vertical constraint. We explain it as follows.
The Hamming position code of a k-digit binary string

is defined as its rank in the Hamming-distance order of all
k-digit binary strings. For instance, the Hamming position
code of a 2-digit binary string, 11, is 2 because it is entry 2
(0-based) in the Hamming-distance order of 2-digit binary
strings {00, 01, 11, 10}.

In our encoding, we give special treatment to specific seg-
ment vectors. If a vector violates the horizontal constraint, its
position code is negated. For instance, the original adjacency
matrix’s bottom row in Figure 3 contains three nonzeros in its
first segment vector, breaching the 2:8 constraint. Thus, the
encoding result of that segment vector is -25. This technique
aids subsequent sorting steps in preventing these vectors
from contaminating other well-formed meta-blocks.
Stage-I Algorithm (Alg. 2) Alg. 2 outlines the Stage-I al-

Algorithm 2: Stage-1 Algorithm for Increasing Ver-
tical Conformity
Input: Graph adjacency matrix A with vertex order ϕ,

V:N:M pattern
Output: New vertex order ϕ ′

1 iter← 0

2 MBscore← GetMbScore(A,V,N,M)

3 whileMBscore > 0 and iter ≤ MAXITER do
4 Initialize 2D matrix Vec to store the segment vector

encodings per row (per vertex)
5 for i← 0 to n− 1 do
6 for s← 0 to ⌈ n

M ⌉ − 1 do
7 bstr← binary string representation of

A[i][s]
8 Vec[i][s]← Hamming position code of

bstr

9 if bstr is invalid N : M pattern then
10 Vec[i][s]← −Vec[i][s]

11 Sort rows in Vec

12 Get the sorted order of Vec as ϕ ′

13 Reorder A with ϕ ′; ϕ← ϕ ′ iter← iter+ 1

14 MBscore← GetMbScore(A,V,N,M)

gorithm. The core of the algorithm contains five steps as
4
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Figure 3. One iteration of the Stage-I algorithm (Alg. 2) for reducing vertical constraint violations. The example targets a
V:N:M format as 8:2:8. It reduces the number of meta-blocks violating the vertical constraints (orange-covered blocks) from 2
to 1.

follows. Figure 3 uses an example to illustrate each of the
steps.
(i) Binary string encoding: It represents every segment

vector in an adjacency matrix as a binary string.
(ii) Hamming-distance position encoding: It encodes each

binary stringwith its Hamming-distance position code, which
transforms every row in the adjacency matrix into an integer
vector.

(iii) Vector sorting: It sorts these integer vectors numeri-
cally to get a new order. The sorting result will have rows
with similar Hamming position codes sitting close to each
other. Because similar Hamming position codes entail few
differences in the positions of nonzeros in the rows, the new
order is likely to increase the conformity of the meta blocks
regarding the V:N:M constraints.

(iv) Reordering: It swaps the adjacency matrix’s rows (and
columns) as per the new order.

(v) Assessment: It counts the number of non-conforming
meta-blocks (called MBScore, denoted as FMB(ϕ)), and re-
peats steps (i-v) as needed.
Complexity Analysis. The theoretical computational com-
plexity of the algorithm isO(n log(n)) (in terms of the num-
ber of row sorting), given that the maximal number of iter-
ations of the outermost loop is a constant. In practice, the
sorting is much faster because many segment vectors are
zero vectors and are left out of the sorting operation.

4.3 Stage-2 Reordering
After the Stage-1 algorithm reduces the vertical constraint
violations at the Meta-block level, Stage-2 tries to reorder the
graph to reduce the horizontal constraint violations at the
segment vector level, that is, reduce the number of segment
vectors in the adjacency matrix that violates the N:M pattern.

The challenge comes from the vast space of possible orders
of the vertices in a graph. Finding the optimal is NP-hard.
The question is how to find a good order without taking too
much time. Our design takes the following strategy:

• Focus on a pair of segments each time. Recall from Sec-
tion 2 that a segment is an n-by-M submatrix within
an adjacency matrix. It consists of n segment vectors
and its M columns correspond to M graph vertices.

So, if we focus on two segments, each is aboutM ver-
tices. We have only 2M vertices to consider, a much
smaller scope.

• For a pair of segments, we try to identify the best
pair between their vertices. Here, the best pair is a
pair of vertices that, if we swap them, we get the
largest reduction of the PScore of the adjacencymatrix,
where, PScore is defined as the number of horizontal
constraint violations (P for pattern). As each segment
hasM vertices, there are onlyM2 pairs to consider,
which can be enumerated quickly to identify the best
pair.

• After swapping the vertices in the best pair, we con-
tinue to explore other swapping opportunities.

Here, the order we follow when working with the seg-
ments in an adjacency matrix matters. Our strategy is to
pick the worst segment (i.e., having the largest PScore) and
keep working with it until all its columns have been used for
swapping or its PScore cannot be lowered further, then move
to the next worst segment, and so on. We call it our primary
segment. To form a pair for the aforementioned vertex swap-
ping, we need another segment, which we call target segment.
We start with the worst of the remaining segments as our
target segment and then move on to other segments to find
more beneficial swapping opportunities with the primary
segment.

Algorithm 3 outlines the algorithm. There are several de-
tails worth noting. (i) First, we exclude healthy segments (i.e.,
having zero PScore) from consideration, which can prevent
polluting those segments and also help with the algorithm
efficiency as it reduces the problem space. (ii) Second, when
there is only one unhealthy segment left to examine, we
choose the sparsest segment to form a swapping pair with it
(line 6 in Algorithm 3). As that segment has the least nonzero
elements, using it can maximize the chance of fixing the un-
healthy segment while keeping itself healthy. That is the
only time when a healthy segment may be used. (iii) Third,
after a segment finishes serving as a primary segment, it
will no longer be considered in any swapping, reflected by
line 9 in Algorithm 3. This helps avoid polluting it after its
treatment, and ensures the progress of the algorithm. (iv)
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Fourth, instead of swapping them immediately after identi-
fying a swapping pair, our algorithm records the swapping
pair without swapping. It waits until all the swap pairs are
recorded and then makes the swaps together (lines 21-23 in
Algorithm 3). It helps with the execution efficiency. (v) The
freshtop() function in line 13 chooses a swap pair that gives
the largest gains (i.e., the largest reduction of the pscore of
the primary and target segment), and none of its elements
has been added into the swap records (S). It ensures the
progress of the algorithm: The inner-most loop must exit
after M iterations.1
Complexity Analysis. Let ω be the total number of seg-
ments that contain unhealthy segment vectors. For each
primary segment, the number of iterations of the inner-most
loop (line 10 in Algorithm 3) is at most M as every iteration
adds one pair into S and there are at mostM pairs needed
to be added as the length of a segment is M. Both M and
MAXITER are constants. Therefore, the complexity of the
algorithm is O(ω), no larger than O(n).

4.4 Application to Large Graphs
The algorithm is intended for offline use, preprocessing a
graph to prepare it for its repeated uses. But still the low com-
putational complexity of the proposed algorithm will make
it more friendly to adopt. It is worth noting that in practice,
sampling is often used for GNNs on large graphs, where a
small subgraph is sampled each time from the large graph
for processing. The size of the subgraph is usually based on
the limit of the underlying libraries. Current sparse libraries
that use SPTC, such as NVIDIA official cuSparseLT [38] and
SPATHA (VENOM) [11], all have a limit at the level of about
45K-by-45K matrices. Empirically (Section 5), the reordering
algorithm completes within half a minute for sampled graphs
of that size. In addition, the algorithm is compatible with
parallel or distributed GNNs where each node conducts the
multiplications involving a portion of the adjacency matrix;
the reordering algorithm can be independently applied to
each portion of the matrix; the results are reordered back
before accumulation with the results from other nodes.

Listing 1. Bit-string encoding
1 int id = binarySearchInd(bsrcolind, idy, bsrrowptr[

idx/M], bsrrowptr[idx/M+1]);
2 register unsigned val = 0x00000000;
3 if (id != -1)
4 for (int i=0; i<M; i++)
5 val = (val << 1)|(bsrval[id*M*M+(

laneid%M)*M+i]);

1Notice that that function doesn’t require the gain to be positive: We tried a
design that enforces that condition but found it no more effective in practice
but make the algorithm run much slower.

Algorithm 3: Stage-2 Algorithm for Increasing N:M
Conformity
Input: Graph adjacency matrix A with vertex order ϕ, N:M

pattern
Output: New vertex order ϕ ′

1 I← GetPScoreList(A,N,M) // A priority list
2 Exclude valid segments from I

3 while |I| ≥ 1 and iter ≤ MAXITER do
4 S← ∅
5 if |I| = 1 then
6 Make beneficial swaps with the sparsest segment
7 else
8 while |I| > 1 do
9 (segIDprim, pscoreprim)← I.pop()

10 for (segIDtarg, pscoretarg)=I.next() do
11 swap_cands← GetCandi-

dates(segIDprim, segIDtarg)

12 Vertex pair
(u, v)← swap_cands.freshtop()

13 S← S ∪ {(u, v)}

14 pscoreprim ← pscoreprim − u.gain

15 pscoretarg ← pscoretarg − v.gain

16 if pscoretarg == 0 then
17 remove segIDtarg from I

18 if pscoreprim == 0 or all vertics of
segIDprim have been added into S then

19 break

20 Initialize ϕ ′ with ϕ

21 for (u, v) ∈ S do
22 Swap u and v in ϕ

′

23 Reorder A with ϕ
′ ; ϕ← ϕ

′

24 iter← iter+ 1

25 I← GetPScoreList(A,N,M) // update I
26 Exclude valid segments from I

4.5 Library and Integration
We implement the graph reordering algorithm as a library
for easy adoption. The implementation is in CUDA, so it can
benefit from GPUs. The implementation carefully takes ad-
vantage of the low-level intrinsics (e.g., intra-warp shuffling,
voting) for high efficiency. As values in an adjacency ma-
trix are binary, we use bit intrinsics in CUDA for frequently
invoked subroutines.
Listing 1 shows an example. This routine converts an

adjacency matrix into a binary string. The adjacency matrix
is stored in a Block Sparse Row (BSR) format [2]. In that
format, the matrix is viewed as a collection of M-by-M blocks
(called bsr block). It builds indexing structures (bsrcolind
and bsrrowptr) (like those in CSR format) to help index the
positions of the bsr blocks in the adjacency matrix. By doing
that, it only needs to store (in the bsrval array) the values
of the bsr blocks that contain any nonzeros. In Lst 1, line 1
lets each GPU thread locate, based on (idx, idy), the segment
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vector that it needs to do the binary string encoding. Line 5
uses bit shifting to complete the binary string encoding for
one number in the segment vector. Its enclosing loop at line
4 makes the thread accomplish the encoding of the whole
segment vector.

More subroutines are in the supplementary material. (For
GPU intrinsics, see documentation [1].)
Integration with Existing GNN Frameworks Our opti-
mization is complementary to other GNN optimizations and
can be used together. Our optimization results in matrix for-
mats that can benefit from the efficient SpMM kernels on
SPTC. Those kernels can serve as a drop-in replacement of
the SpMM kernels in existing frameworks and the existing
optimizations in the frameworks can take effect as usual.
The SPTC SpMM kernels we use is based on Spatha [11]; the
used PTX mma instruction is mma.sp.sync with the default
m16n8k32, and the default index representation [3] required
by SPTC is used. During SpMM execution, the kernels put
the matrices into the SPTC required form on the fly and then
uses the mma instructions to do the computations. The time
spent on data movement is negligible (over three orders of
magnitude less) compared to both the reordering and SpMM
execution times. Section 5 reports the benefits of integrating
the optimization with two existing GNN frameworks, PyG
and DGL.

5 Evaluation
We evaluate the efficacy of the reordering algorithm. The
reordering happens in an offline preprocessing stage, apply-
ing our reordering algorithms to the graphs first to make
them conform to the constraints and then measure the GNN
performance. It determines the best V:N:M by trying 1:2:M
forms, with M initialized to 4 and progressively doubled un-
til the graph can no longer be reordered to conform to the
form. Then, it fixes M and determines the best V by trying
V:2:M with V going from 1 to 32 in a similar manner (N must
be 2 due to the hardware constraint). In our experiments,
we set the maximum number of iterations for the vertical
and fine-grained reordering loops to 10. For most matrices,
these loops converge within six iterations or fewer. As the
reordering is an offline process and the results can benefit all
future use of the graphs, the reordering time is not counted
in the GNN running time.

Table 1. SuiteSparse graph collection. (Med: Median)

#V #E Avg
Degree

Max
Degree

Diam-
eter #Graphs

Small Avg 426 4.97k 12.5 60.7 12.5 444Med 430 2.19k 7.6 15 6
Medium Avg 3.6k 93.2k 22.5 405.1 42.1 724Med 2.6k 24.1k 9.7 61 8
Large Avg 22.6k 878k 36.1 1041.6 75.9 188Med 20.5k 229k 13.8 98.5 10

Table 2. GNN graph dataset.

Dataset #V #E #Features #Classes
Cora [54] 2,708 10,556 1,433 7

Citeseer [54] 3,327 9,104 3,703 6
Facebook [54] 4,039 88,234 1,283 193
Computers [44] 13,752 491,722 767 10

CS [44] 18,333 163,788 6,805 15
CoraFull [9] 19,793 126,842 8,710 70

Amazon-ratings [41] 24,492 93,050 300 5
Physics [44] 34,493 495,924 8,415 5

ogbn-proteins [27] 132,534 39,561,252 128 2
ogbn-products [27] 2,449,029 61,859,140 100 47
ogbn-arxiv [27] 169,343 1,166,243 128 40

ogbn-papers100M [27] 111,059,956 1,615,685,872 128 172

Datasets: In evaluating the performance benefits to GNNs,
we use 12 graph datasets, widely adopted in the GNN field,
for our evaluation. The characteristics of these datasets, in-
cluding the number of vertices, edges, features, and classes
for node classification, are listed in Table 2. In addition, for a
more comprehensive evaluation of the performance benefits
brought to SpMMby our reordering algorithm, we conducted
a performance comparison of SpMM on the 1356 adjacency
matrices of the real-world graphs included in the SuiteSparse
Matrix Collection [17]. The adjacency matrices in the col-
lection are organized into three classes, small, medium, and
large, as shown in Table 1.
GNNModels:We use four commonly used GNN models: (1)
Graph Convolutional Neural Networks (GCN) [34] (2) Graph-
SAGE (SAGE) [24] (3) Chebyshev Spectral Graph Convolu-
tional Neural Networks (Cheb) [18] (4) Simplifying Graph
Convolutional Networks (SGC) [52].
Platforms: The performance evaluation of executing re-
ordered graphs was primarily carried out on a node with
NVIDIA A100 GPUs with 40GB memory (CUDA v11.7) and
4th Generation AMD EPYC CPUs.

5.1 GNN Performance Comparison
In this subsection, we assess the performance of GNN (per-
layer and end-to-end). To our best knowledge, even though
many prior studies have explored graph reordering, none is
for and hence applicable to the V:N:M configurations. As the
first algorithm to that end, we evaluate it by assessing the
speeds of GNNs and the SPMM kernels before and after the
reordering. Our evaluation focuses on the forward pass of
node classification.

We use two widely used GNN frameworks: PyTorch Geo-
metric (PYG) [22] and Deep Graph Library (DGL) [48]. Both
libraries are well optimized for GPUs and have supported a
broad range of existing research works [18, 24, 34, 52]. It is
worth noting that our reordering method should be seen as a
modular utility orthogonal to all existing GNN frameworks,
as reordering can be applied offline as a preprocessing step.
Consequently, any GNN framework that relies on GPU-based
SpMM can essentially benefit from our approach.
The default SpMM kernels in PYG and DGL do not take

advantage of SPTCs on GPU. We create revised versions of
7
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Table 3. Normalized speedup of four GNN models compared to the default PyG [22] and DGL [48] (default-original). “Best
V:N:M” is the best format the graph can reach through the proposed reordering algorithm. “LYR” refers to average speedup on
aggregation; “ALL” refers to end-to-end speedup.

Dataset Best
V:N:M

PYG DGL
GCN SAGE Cheb SGC GCN SAGE Cheb SGC

LYR ALL LYR ALL LYR ALL LYR ALL LYR ALL LYR ALL LYR ALL LYR ALL
Cora 1:2:4 1.41 1.12 2.13 1.15 2.33 1.53 2.63 2.03 1.18 1.08 2.01 1.27 3.80 1.34 2.06 1.67

Citeseer 32:2:8 2.11 1.11 2.84 1.16 3.16 1.65 3.40 1.69 1.71 1.09 2.92 1.34 4.49 1.46 2.94 2.71
Facebook 1:2:4 3.26 1.64 6.01 2.23 8.56 4.22 8.64 6.37 3.27 1.63 6.01 2.42 4.41 2.98 6.39 4.74
Computers 1:2:4 2.72 2.99 3.83 2.85 5.31 4.02 5.30 5.15 3.30 2.65 4.12 2.91 2.90 3.06 4.13 4.05

CS 16:2:16 1.73 1.11 3.12 1.79 4.36 2.60 4.38 4.21 1.85 1.12 2.78 1.56 2.12 1.70 2.69 2.61
CoraFull 32:2:16 1.44 1.05 2.05 1.40 2.91 1.96 2.95 2.73 1.53 1.06 1.96 1.30 1.96 1.39 1.88 1.79

Amazon-ratings 1:2:32 2.01 1.99 3.42 1.98 4.24 2.20 4.30 3.85 1.30 1.43 1.99 1.38 2.00 1.30 1.80 1.70
Physics 16:2:16 1.56 1.14 3.00 2.28 4.46 3.21 4.76 4.68 1.80 1.14 2.23 1.61 2.20 1.70 2.20 2.18

the two frameworks by replacing their SpMM kernels with
Spatha SpMM, a SpMM library that takes advantage of SPTCs.
Spathawas developed in a prior VENOMwork [11] for DNNs.
It is the only available library that supports V:N:M patterns.
It, however, cannot directly apply to GNNs because most
graphs, including those in our experiments, do not conform
to the pattern constraints of V:N:M—a problem addressed by
our reordering algorithm. We compare the performance in
four settings.

• Default-original: the default PYG and DGL frame-
works (without SPTC support) on the original matri-
ces.

• Default-reordered: the default PYG and DGL frame-
works (without SPTC support) on our reordered ma-
trices. Because our reordering is for leveraging SPTC
while this setting does not use SPTC, we do not expect
this setting to have performance improvement over
the default-original.

• Revised-pruned: the revised PYG and DGL frame-
works (with SPTC support) on pruned matrices. The
pruning is based on magnitude of values. For each
V:N:M meta-block, it zeros a minimum number of
elements with the least magnitude such that the meta-
block conforms to the SPTC required V:N:M sparse
pattern. This method can turn matrices into SPTC-
required forms and hence is expected to generate sim-
ilar speedups over the default-original as our method
does, but because its pruning introduces errors, it is ex-
pected to affect the prediction accuracy of the GNNs.

• Revised-reordered (our solution): the revised PYG
and DGL frameworks (with SPTC support) on our
reordered matrices. This is our solution. We expect
that by making the matrices able to take advantage
of SPTC, this method shall bring significant speedups
over default-original. Reordering is a lossless trans-
formation: It renumbers the vertices in a graph and
involves no approximation at all. So it does not com-
promise the accuracy of GNN.

Compare to default-original: Table 3 reports the speedups
of our solution over the default-original version of PyG and
DGL. PYG uses the Torchsparse-based CSR-SpMM for SpMM.

As shown in the left part of Table 3, the average layer-wise
speedup of our approach over PYG is from 1.4 to 3.3X for
the GCN model and 2.6-8.6X at maximum for SGC. These
translate into an end-to-end speedup of 1.1-3X for GCN and 2-
6.3X for SGC. GraphSAGE (SAGE in Table 3) and Cheb show
speedups in the between. The differences in the GNN compo-
sition and hence the execution order of computations cause
the differences. For instance, GCN aggregates after its linear
layer, and GraphSAGE aggregates before two linear layers,
which makes GraphSAGE exhibit more speedups over GCN
as our optimizations are for linear layers. The performance
difference between the Torchsparse-based CSR-SpMM and
the SPTC-based SpMM becomes even more prominent when
the multiplier matrix has more columns, which typically rep-
resent larger feature lengths, hidden embedding lengths, and
numbers of classes. For example, SGC has more feature em-
bedding columns than GCN does, and gains more substantial
speedups through the reordering and V:N:M of SPTC.
In general, DGL is more performant than PYG (except in

some cases where the vertices exceed 4,000 and H ≤ 512),
partially because it uses CuSparse CSR SPMM kernel with
the “CUSPARSE_SPMM_CSR_ALG2” algorithm for SpMM,
which is overall faster than the one used in PYG. Nonethe-
less, there are clear speedups across the board when DGL
adopts our reordering-based SpMM kernel. The trends are
similar to those observed on PYG. Compare to default-
reordered: Table 4 shows the speedups of default-reordered
over default-original. There are no significant speedups, in
both the aggregation layers and the end-to-end GNNs. The
reason is that in this setting, the GNN kernels work similarly
to those in default-original, CSR-based SpMM running on
CUDA cores. The reordered matrices have the same spar-
sity as the original matrices have and the CUDA cores are
oblivious to the V:N:M sparse patterns.
Compare to revised-pruned: Like our solution, the revised-
pruned setting also yields matrices conforming to the re-
quired V:N:M sparse patterns. So it is no surprise that the
revised PyG and DGL in the revised-pruned setting are able
to generate the same degree of speedups as in our solution.
The differences between their measured speedups over the
default-original are marginal, ranging from ±0.01 to ±0.07,
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Table 4. Speedups of default-reordered over default-original

Dataset Best
V:N:M

PYG DGL
GCN SAGE Cheb SGC GCN SAGE Cheb SGC

LYR ALL LYR ALL LYR ALL LYR ALL LYR ALL LYR ALL LYR ALL LYR ALL
Cora 1:2:4 1.01 1.00 1.02 1.01 1.04 1.03 0.99 0.99 1.03 1.01 0.98 0.99 1.06 1.01 1.08 1.07

Citeseer 32:2:8 1.05 1.02 1.01 1.00 1.02 1.01 0.98 0.98 1.04 1.01 0.97 0.99 1.00 1.00 1.01 1.01
Facebook 1:2:4 1.02 1.02 1.02 1.01 1.02 1.01 1.02 1.02 0.94 0.97 0.99 1.01 0.98 0.99 0.98 0.99
Computers 1:2:4 0.94 0.94 0.99 1.00 1.01 1.01 1.00 1.00 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00

CS 16:2:16 0.97 1.00 0.98 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00
CoraFull 32:2:16 1.00 1.00 0.98 0.98 0.95 0.96 0.99 0.99 0.99 1.00 0.98 1.00 0.98 1.00 0.98 0.98

Amazon-ratings 1:2:32 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.02 1.01 1.01 1.00 0.98 0.99
Physics 16:2:16 1.00 1.00 0.96 0.99 0.98 0.98 1.00 1.00 0.97 1.00 1.01 1.00 1.00 1.00 1.00 1.00

Table 5. Accuracy comparison between our solution (reorder) and revised-pruned. Reorder is lossless and causes no accuracy
loss, but pruning is lossy. The numbers in brackets are the accuracy loss caused by pruning.

Dataset Sparsity Prune
ratio

GCN acc GraphSAGE acc ChebNet acc SGC acc
reorder prune reorder prune reorder prune reorder prune

Cora 0.14% 1.48% 0.8130 0.7940 (-2.34%) 0.8040 0.7770 (-3.36%) 0.7910 0.7360 (-6.95%) 0.8010 0.7840 (-2.12%)
Citeseer 0.08% 0.88% 0.6860 0.6720 (-2.04%) 0.7030 0.6750 (-3.98%) 0.6900 0.6400 (-7.25%) 0.6660 0.6610 (-0.75%)
Facebook 0.54% 4.35% 0.6922 0.6452 (-6.79%) 0.6452 0.5933 (-8.04%) 0.5167 0.4784 (-7.41%) 0.6737 0.6403 (-4.96%)
Computers 0.26% 0.09% 0.8975 0.7899 (-11.9%) 0.8964 0.8177 (-8.78%) 0.6036 0.5227 (-13.4%) 0.8895 0.8644 (-2.82%)

CS 0.05% 0.004% 0.9414 0.9343 (-0.75%) 0.9504 0.9414 (-0.95%) 0.9515 0.9436 (-0.83%) 0.9419 0.9321 (-1.04%)
CoraFull 0.03% 9.14% 0.7076 0.6788 (-4.07%) 0.6909 0.6437 (-6.83%) 0.6437 0.5707 (-11.3%) 0.7121 0.6831 (-4.07%)

Amazon-ratings 0.02% 0.72% 0.4307 0.4187 (-2.79%) 0.4350 0.4215 (-3.10%) 0.4378 0.4225 (-3.49%) 0.4060 0.3813 (-6.08%)
Physics 0.04% 0.007% 0.9694 0.9580 (-1.18%) 0.9704 0.9635 (-0.71%) 0.9707 0.9657 (-0.52%) 0.9629 0.9572 (-0.59%)

within 1% of the speedups. It is the case even for large
datasets. For instance, for Facebook graph, their average
layer-wise speedups on PyG vary in the range of 8.49×–
8.56×, and their end-to-end speedups vary in the range of
4.19×—4.22×. The key differences are in the prediction ac-
curacy, which is what our report focuses on in Table 5. Be-
cause reordering is a lossless transformation, our solution
preserves the prediction accuracy of GNNs. But pruning is
lossy. Table 5 shows the accuracy comparison. Unlike weight
pruning in DNNs, graph edges carry critical information, and
their removal can result in significant accuracy degradation.
Some graphs have a small pruning ratio due to their small
numbers of pattern violations, allowing them to maintain
accuracy with a drop of less than or around 1%. A small prun-
ing ratio however does not always lead to a small accuracy
drop. For instance, in the case of 0.09% pruned Computers,
the accuracy loss can reach as high as 13.4%, surpassing that
of 9.14% pruned CoraFull in most GNNs. Furthermore, the
accuracy drop varies depending on the network’s robustness.
For example, pruned graphs generally result in higher accu-
racy drops for ChebNet compared to SGC, but for the least
pruned graphs, the trend is reversed. Reordering is a more
reliable solution than pruning for achieving V:N:M sparse
patterns.

5.2 Speedups on Distributed GNN on Large Graphs
For large graphs that cannot fit into a single GPU, our ex-
periments follow the typical practice: partitioning or sam-
pling the large graphs into smaller subgraphs for process-
ing. The OGBN dataset is often used to evaluate multi-GPU
GNNs. For the completeness of the evaluation, we use each
of the four datasets in OGBN in our experiment, even though
some of them are small enough to fit into one of the A100

Table 6. OGBN [27] large graphs GNN evaluation. “LYR”
refers to average speedup on aggregation; “ALL” refers to
end-to-end speedup.

ogbn-proteins ogbn-arxiv ogbn-products ogbn-papers100M
LYR 1.140 6.494 1.423 2.781
ALL 1.159 3.229 1.399 2.449

GPUs. Specifically, the four datasets in OGBN, ogbn-protein,
arxiv, products, and papers100M are partitioned into mul-
tiple subgraphs using the PYG’s NeighborSampler, with
average vertex counts of 24604, 2514, 19833, and 7607 per
sample, respectively. After the sampled subgraphs are re-
ordered, they serve the SPTC-based GNNs in parallel on
four A100 GPUs. Table 6 shows the per-layer and overall
speedups of our approach over PYG implementation using
the SGC model. Overall, our reordering with SPTC can de-
liver 1.16–3.23× speedups in end-to-end GNN performance.
The speedups come not only from the performance bene-
fits of SPTCs (which become usable after our reordering)
over CUDA cores, but also from the software efficiency. The
baseline performs SpMM on the CUDA cores using a sparse
format (i.e., CSR), which causes it to suffer from irregular
memory access; the baseline performance is hence far be-
low the theoretical performance of CUDA cores. In contrast,
SPTC-based computing uses a compact format, and enjoys
efficient regular memory access and superior cache benefits,
yielding a much higher throughput.

5.3 SpMM Kernel Evaluation
As the key benefits come from the SpMM kernels, we give a
comprehensive evaluation of the SpMM kernel performance
using the 1356 adjacency matrices in SparseSuite.

9



991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045

PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Jou-An Chen, Hsin-Hsuan Sung, Ruifeng Zhang, Ang Li, Xipeng Shen

1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100

Graph Adjacency Matrices

Sp
ee

du
p 

(x
)

0.6
1.0

2.0

4.0
6.0

x H=64 H=128 H=256 H=512

(a) Small

Graph Adjacency Matrices

Sp
ee

du
p 

(x
)

0.1
1.0

10.0
100.0

x H=64 H=128 H=256 H=512

(b)Medium

Graph Adjacency Matrices

Sp
ee

du
p 

(x
)

0.5

5.0

50.0

x H=64 H=128 H=256 H=512

(c) Large

Figure 4. Speedup of SpMM over cuSPARSE brought by graph reordering matrices to their best V:N:M formats. The x-axis
corresponds to individual graphs in SuiteSparse; “H” is #columns in the second matrix in SpMM.
Table 7. 1:2:4 Reordering algorithm quality on SuiteSparse.
The “#inv segvec” is the number of invalid segment vectors
in 1:2:4 (i.e., Fp(ϕ)). “Iter.” is the number of iterations needed
for the process to conclude. This value depends on both how
much invalid segment vectors are there initially and how
effectively the exploration converges.The rightmost column
lists the average times for the reordering. (Med: Median)

Init.
#invsegvec

Finl.
#invsegvec

Imprv.
rate Iter. Reorder

time (s)

Small Avg 510.31 0.96 99.29% 34.40 0.05
Med 120.00 0.00 100.00% 20.00 0.01

Medium Avg 12,656.56 21.43 99.94% 267.62 4.39
Med 1,124.00 0.00 100.00% 208.50 0.63

Large Avg 33,202.87 930.11 98.87% 670.70 30.55
Med 8,423.00 0.00 100.00% 589.00 11.12

Speedups. Figure 4 illustrates the normalized speedups over
cuSPARSE. We adjust the number of columns in the mul-
tiplier matrix from 64 to 512, reflecting common hidden
embedding dimensions in GNNs. As can be seen, significant
speedups are achieved generally across all three size cate-
gories, particularly within medium and large. This trend can
be attributed to larger graphs having increasingly sparse
adjacency matrices, thereby providing greater scope and
potential for reordering-based SPTC executions.
Additionally, we noticed that a small subset of matrices

(3.9%) experienced slowdowns following the reordering pro-
cess. Further analysis revealed that these matrices are ex-
tremely sparse (mostly with density < 0.01%), where the
advantages of focusing solely on non-zero elements perhaps
surpass the benefits of using SPTC. This is because SPTC still
needs to process some zero elements if the matrices are very
sparse for successful ordering and compaction. Neverthe-
less, since reordering is performed offline, users can decide
whether their graph is unsuitable for reordering based on
these considerations.
Effects on fixing pattern violations. Among the 1356 ad-
jacency matrices, over 94% of them do not conform to any
V:N:M patterns. As reported in Table 7, the reordering al-
gorithm (for the 1:2:4 pattern) reduces the segment vectors
with invalid patterns by 98.9–100% and increases the propor-
tion of conforming matrices from 8.74% to 93.92% for small

Table 8. Reordering success rate on SuiteSparse.

Small Medium Large
V:2:8 V:2:16 V:2:8 V:2:16 V:2:8 V:2:16

V=1 69.1% 49.6% 65.6% 49.1% 71.7% 61.3%
V=4 29.1% 8.2% 16.2% 10.2% 25.8% 14.6%
V=8 8.1% 3.1% 5.0% 6.2% 31.0% 13.5%
V=16 3.8% 0.4% 7.0% 4.6% 17.9% 7.3%
V=32 2.2% 2.2% 7.9% 2.2% 1.3% 1.2%

graphs, 7.32% to 87.85% for medium graphs, and 5.91% to
89.25% to large graphs.
Reordering time. The rightmost column in Table 7 lists the
average and median reordering times reordering takes for
the 1356 adjacency matrices. The times range from 0.01s to
30.55s.
Distribution of preferred V:N:M patterns. Different ma-
trices may prefer different V:N:M patterns. It depends on the
matrix density and the distributions of non-zeros. Table 8
presents the distribution of preferred V:N:M formats across
the matrices. The proportions of formats with larger V val-
ues tend to be smaller than those of other formats. This is
because as V increases, the size of the meta-block imposes
stricter restrictions on non-zero patterns. Consequently, for
manymatrices, although the reordering algorithm effectively
optimizes numerous segment vectors, transforming the en-
tire matrix to fit the required patterns becomes challenging.
Therefore, despite patterns with larger V values often yield
more remarkable speedups, they are not the most frequently
selected choices. It is possible to create some machine learn-
ing models to predict the preferred V:N:M pattern for a given
matrix, akin to the predictors of the best sparse storage for-
mat for a matrix [62, 63, 66], which is out of the scope of this
work. Given that the reordering algorithm is completed in
only a short time, a simple approach is to try a number of
common patterns and select the best one.

6 Related Work
There have been many efforts on how to make irregular
computations best benefit from the massive parallelism of
GPUs. The line of research was pioneered by the on-the-fly
optimizations introduced by Zhang and others [57, 58]. Since
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Huang and others’ systematic exploration of the implications
of GNN performance gaps [29], many studies have been
devoted to bridging the gap [12, 28, 49, 50, 59].
Several existing efforts address the challenge of mitigat-

ing sparse workloads on tensor cores. TC-GNN [50] and
DTC-SpMM [20] tackle sparse workloads by employing spe-
cialized formats and designs to execute them on dense tensor
cores. The use of dense formats significantly increase mem-
ory usage, adding tens to hundreds of times more space and
memory pressure—a critical issue for large graphs.
Graph Reordering. Graph reordering has been commonly
used as a preprocessing technique for graph computation to
improve data locality and other purposes [7, 8, 15, 19, 30, 36,
40, 45]. This is because altering the vertex order, along with
their corresponding edges in representations like the adja-
cencymatrix, typically doesn’t impact correctness but can po-
tentially optimize data layout for more efficient computation.
Existing fine-grained graph reordering proposals, such as
MinLA [39] and MiLogA [14, 43], tailor vertex orders specifi-
cally for social network computation. Meanwhile, GScore in
GOrder confines the reordering within a sliding window, en-
hancing graph processing efficiency on CPUs [51]. For scala-
bility, coarser-grained reordering methods like degree-based
sorting [19, 31, 35, 61] and partitioning [6, 10, 33, 56, 64] come
into play. These methods aim to balance subgraph size for
workload balancing or minimize cuts for enhanced commu-
nication efficiency during scaling. Despite the demonstrated
effectiveness of graph reordering in optimizing data layout
and subgraph workload distribution, no prior studies like
our work has explored graph reordering for V:N:M sparse
patterns to unlock the potential of SPTCs on GPUs.
N:M Sparsity. Many DNN pruning and fine-tuning tech-
niques have emerged for fittingDNNs into 2:4 sparse patterns
for SPTCs. Zhou et al. [65] present a training approach to
construct an N:M fine-grained structured sparse network
from scratch. They also present a metric called Sparse Archi-
tecture Divergence (SAD) to track and guide the topology
change of the sparse DNN during training. Sun et al. [47]
present DominoSearch for iterative N:M sparsity determina-
tion in DNN training using magnitude-based pruning. Pool
et al. [42] suggest rearranging CNN channels prior to prun-
ing for N:M compliance, which can reduce the possibility of
pruning significant entries that are important to accuracy.
Kao et al. [32] develop “structure decay” for iterative N:M
pruning, using a mask decay method to improve training
stability. Chen et al. [13] present Dynamic Feature Selective
Sparsity (DFSS) in Transformers, dynamically pruning the
network to the N:M pattern. All of these works, including
popular libraries such as cuSPARSELt [38] and VENOM [11],
however, focus on transforming dense DNNs into N:M struc-
tured sparse models through lossy DNN compression such
as pruning. Our work centers on the lossless transformation

of adjacency matrices to best fit the constraints of V:N:M
sparse patterns.
A study concurrent to our work is Jigsaw [60]. Jigsaw

directly reorders the columns of adjacency matrices into 2:4
sparse forms and uses their customized SpMM kernels to
harness the power of SPTC. It differs from our work in sev-
eral aspects. First, because our method is graph reordering,
the adjacency matrix remains symmetric after reordering,
while it is not the case for the column reordering in Jigsaw.
The symmetry is essential to many graph algorithms, such
as Graph Isomorphism, Graph Partitioning using spectral
clustering, Kruskal’s Algorithm for Minimum Spanning Tree,
and so on. Second, our reordering algorithm runs more ef-
ficient and hence reorders more matrices in shorter times,
thanks to its design and efficient implementation on GPU.
For large graphs in SparseSuite, for instance, our method
can reorder 52% of the graphs within 20s each while JigSaw
can do only 30%. Finally, Jigsaw supports only the 2:4 for-
mat, whereas our algorithm accommodates the more flexible
V:N:M formats. We note that Jigsaw introduces additional
optimizations to the sparse kernel implementation to hide
memory access latency. Those kernel-level optimizations
could further enhance the performance of our solution.

7 Conclusion
This paper presents a novel graph reordering technique
to harvest modern GPU sparse tensor cores for GNNs. By
orchestrating bit-level operations, our proposed algorithm
transforms graph adjacency matrices into V:N:M formats,
employing an iterative two-stage reordering process based
on Hamming-distance order and greedy algorithm designs.
Experiments show that the method can accelerate the essen-
tial graph computation kernel SPMM by 2.3-7.5×, boosting
the GNN computation significantly.
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