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Neutron-induced reaction cross sections of short-lived nuclei are imperative to understand the origin of
heavy elements in stellar nucleosynthesis and for societal applications, but their measurement is extremely
complicated due to the radioactivity of the targets involved. One way of overcoming this issue is to combine
surrogate reactions with the unique possibilities offered by heavy-ion storage rings. In this work, we
describe the first surrogate-reaction experiment in inverse kinematics, which we successfully conducted at
the Experimental Storage Ring (ESR) of the GSI/FAIR facility, using the 208Pbðp; p0Þ reaction as a
surrogate for neutron capture on 207Pb. Thanks to the outstanding detection efficiencies possible at the ESR,
we were able to measure for the first time the neutron-emission probability as a function of the excitation
energy of 208Pb. We have used this probability to select different descriptions of the γ-ray strength function
and nuclear level density, and provide reliable results for the neutron-induced radiative capture cross
section of 207Pb at energies for which no experimental data exist.
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Knowledge of neutron-induced reaction cross sections of
short-lived nuclei is pivotal to our understanding of the
synthesis of elements via the astrophysical slow (s) and rapid
(r) neutron capture processes, about which there are still
many uncertainties and open questions [1]. It is also of
interest for applications such as nuclear waste management
and innovative fuel cycles [2]. In traditional experiments,
the direct measurement of neutron-induced cross sections
of short-lived nuclei is very challenging because of the
difficulties to produce and handle radioactive targets.
Performing the same reaction in inverse kinematics, with
the heavy, radioactive nucleus impinging upon a target of
neutrons, is not possible either, since free neutron targets are
currently not available. For these reasons, when the target
nuclei are highly radioactive, experimental data are scarce
and most of the neutron-induced reaction cross sections rely
on theoretical model predictions. However, these predic-
tions often have large uncertainties due to difficulties in
describing the deexcitation process of the nucleus formed
after the capture of the neutron. This process is ruled by
fundamental properties (γ-ray strength functions, nuclear
level densities, fission barriers, etc.) for which the existing
nuclear models give very different predictions. This can lead
to discrepancies between the calculated cross sections as
large as 2 orders of magnitude or more [3,4].
Indirect methods have been developed to infer neutron-

induced reaction cross sections of short-lived nuclei [5–9].
Here we use the surrogate reaction method [7]. In this
method, the excited nucleus produced in the neutron-
induced reaction of interest is formed through an alternative
and experimentally feasible binary reaction, typically an
inelastic scattering or a transfer reaction. The measurement
of the probabilities of the different decay channels of the
excited nucleus (γ-ray emission, neutron emission, fission,
etc.) as a function of its excitation energy provides the
information which is required to constrain the models of the
above-mentioned nuclear properties. This significantly
improves the predictions of the cross sections of the
neutron-induced reactions of interest. To date, the surro-
gate-reactionmethod has been used and successfully bench-
marked in direct kinematics, see, e.g., Refs. [7,10–12].
The probability Pχ that a nucleus with excitation energy

E� formed with a surrogate reaction Xða; bÞ decays via
channel χ is given by the expression

PχðE�Þ ¼ Nc;χðE�Þ
NsðE�ÞϵχðE�Þ ; ð1Þ

where Ns is the number of light ejectiles b measured, the
so-called single events. Nc;χ is the number of products of
decay channel χ measured in coincidence with the ejectiles
b and ϵχ is the efficiency for detecting the products of decay
χ for the reactions in which the outgoing ejectile b is
detected. The excitation energy E� is obtained by meas-
uring the kinetic energies of the projectile beam and of the
ejectile b, and the angle θ between them.

Surrogate-reaction experiments in direct kinematics
(where the light nucleus a is the projectile and the heavy
nucleus X is at rest) have significant limitations. When the
nuclei of interest are far from stability, the targets required
for the surrogate reaction are also unavailable. Additionally,
competing reactions in target contaminants (such as oxygen)
and backings produce a large background, which is very
complicated or even impossible to remove [13]. Furthermore,
the heavy products of the decay of the excited nucleus are
stopped in the target and cannot be detected. Therefore,
the measurement of γ- and neutron-emission probabilities
requires detecting the emitted γ rays and neutrons. However,
the γ-ray-cascade detection efficiencies in surrogate-reaction
experiments are limited to about 20% [14]. Themeasurement
of the neutron-emission probability is extremely challenging
and to our knowledge has never been accomplished.
Some of the latter limitations can be solved by using the

surrogate-reaction method in inverse kinematics, which
enables the study of short-lived nuclei by using a radioactive
ion beam and the detection of the heavy, beamlike residues
produced after the emission of γ rays and neutrons.
However, the decay probabilities change very rapidly with
excitation energy at the neutron-emission and at the fission
thresholds; see, e.g., Ref. [12]. The excitation-energy
resolution required to scan this rapid evolution is a few
100 keV (FWHM), which is quite difficult to achieve for
heavy nuclei in inverse kinematics, due to so-far unresolved
target issues. Indeed, the required large target density and
thickness result in significant energy loss and straggling
effects that translate into a large uncertainty in the energies of
the projectile and the targetlike residue, and in the emission
angle θ at the interaction point. In addition, the presence of
target windows and impurities induces background.
Here we address these target issues by investigating for

the first time surrogate reactions at a heavy-ion storage
ring [15]. A key component of storage rings is the electron
cooler, which significantly reduces the size, angular diver-
gence and energy spread of the revolving ion beam. If a gas
target is present in the ring, the electron cooler compensates
for the energy loss and for the energy and angular
straggling of the beam taking place during each passage
of the beam through the target. As a result, the ion beam
always reaches the target with the same energy and the
same outstanding quality, making energy loss and strag-
gling effects in the target negligible. Additionally, the
frequent passing of the target zone (about a million times
per second at a few tens of MeV=nucleon) makes possible
the use of pure gas targets with ultralow density
(≈1013 atoms=cm2) and no windows are necessary. The
very low gas target density makes the probability of two
consecutive reactions occurring in the target, a nuclear
reaction followed by an atomic reaction and vice versa,
extremely low (≈10−20). The beamlike residues resulting
from the nuclear reaction will therefore possess the same
charge state as the beam.
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Heavy-ion storage rings have to be operated in ultrahigh
vacuum (UHV) conditions (10−10 to 10−11 mbar), which
pose severe constraints on in-ring detection systems. UHV-
compatible silicon detectors have only started to be
used for a few years in pioneering in-ring nuclear reaction
experiments [16–18] at the Experimental Storage Ring
(ESR) [19] and the CRYRING storage ring [20] of the
GSI=FAIR facility.
We have conducted the first surrogate-reaction experiment

at the ESR with the aim to use the 208Pbðp; p0Þ surrogate
reaction to assess theoretical models and provide predictions
for the neutron-induced radiative capture cross section (n,γ)
of 207Pb at neutron energies above 800 keV, where no
experimental data are available. These data are important
for the design of lead-cooled fast reactors [21]. In our
experiment, 208Pb82þ projectiles at 30.77 MeV=nucleon
were excited by inelastic scattering reactions with a gas-
jet target of hydrogen.We had on average 5 × 107 cooled and
decelerated, bare 208Pb82þ ions per measurement cycle,
revolving at a frequency of 0.695 MHz. The average target
thicknesswas 6 × 1013 atoms=cm2.Wemeasured the inelas-
tically scattered protons with a Si ΔE-E telescope and the
beamlike residues produced after the deexcitation of 208Pb�
via γ-ray and neutron emission with a position-sensitive
Si-strip detector placed behind thedipolemagnet downstream
from the target (denoted beamlike residue detector in Fig. 1).
The dipole separated the unreacted beam, the 208Pb82þ

residues produced after γ-ray emission and the 207Pb82þ
residues produced after neutron emission, see Fig. 1.
To prevent detector components from degrading the

UHV of the ring, the telescope and the beamlike residue
detector were housed in pockets behind 25 μm thick
stainless-steel windows through which the scattered pro-
tons and the heavy beam residues could pass. The telescope
was placed at 60° with respect to the beam axis, at a
distance of 10.13 cm from the target. The ΔE detector of
the telescope consisted of a 530 μm-thick double-sided
silicon-strip detector (DSSD) of 20 × 20 mm2 with 16
vertical and 16 horizontal strips, which enabled the
measurement of the angle θ within the angular range from
54.8 to 64.6°. The angular resolution was estimated to be
0.2° (rms), assuming isotropic emission of the target
residues from the center of the target. The ΔE detector
was followed by a stack of six single area Si detectors for
full energy measurements. Each of the latter E detectors
had an active area of 20 × 20 mm2 and a thickness of
1.51 mm. In inverse kinematics it is possible to have two
kinematic solutions leading to two groups of ejectiles having
different kinetic energies, but the same angle θ [22]. In our
experiment, scattered protons from the first kinematic
solution with kinetic energies above 9.2 MeV passed
through the ΔE detector, while scattered protons from the
second kinematic solutionwith kinetic energies between 2.5
and 9.2MeVwere stopped in theΔE detector, see [22]. The
beamlike residue detector was a DSSD with a thickness of

500 μm, an active area of 122 × 40 mm2, 122 vertical strips,
and 40 horizontal strips. It was positioned 15.0� 0.1 mm
from the beam axis. With this distance we ensured that the
rate of elastic scattered beam ions over the whole detector
was well within the radiation-damage tolerance range of
the detector, which remained operational throughout the
experiment.
Figure 2 shows the position spectrum of beamlike

residues detected in coincidence with scattered protons
detected in the telescope. In panel (a) we see the heavy
residues measured in coincidence with protons from the
first kinematic solution. We can clearly distinguish two
peaks; the left peak contains the 208Pb82þ nuclei formed
after γ emission and the right peak the 207Pb82þ nuclei
produced after neutron emission. In panel (b) are shown the
heavy residues detected in coincidence with protons from
the second kinematic solution for E� ¼ 6.5–9.1 MeV and
θ ¼ 56.1–60.40°. In this case, the beamlike residues have
larger kinetic energies and their trajectories after the dipole
magnet are closer to the beam axis. The 208Pb82þ residues
formed after γ emission cannot be detected, but all the
trajectories of the 207Pb82þ residues formed after neutron
emission impinge on the beamlike detector, leading to the
observed peak in the position spectrum. We emphasize that
in this experiment the efficiency ϵn for the neutron emission
channel is 100% [22]. The largest loss of efficiency comes
from electron capture of the 207Pb82þ residues in the
residual gas between the target and the beamlike detector.
The probability for this event has been calculated to
account only to ≈10−10, so it can be neglected.

FIG. 1. The lower part shows a schematic view of the ESR. The
upper part shows the portion of the ring where our detectors have
been installed. The trajectories of the scattered protons, the beam,
the 208Pb82þ residues produced after γ emission and the 207Pb82þ
residues formed after neutron emission are represented by the
solid pink, black, blue, and green arrows, respectively.
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In this work, we only consider the results obtained with
the second kinematic solution, the results of the first
kinematic solution are discussed in [22]. We obtained
the singles spectrum NsðE�Þ by representing the number
of detected protons as a function of the E� of 208Pb. The
coincidence spectrum Nc;nðE�Þ was inferred by represent-
ing the number of protons detected in coincidence with the
beamlike residues located within the peak of Fig. 2(b). The
bin size of these two histograms was 200 keV. By
computing the ratio of Nc;nðE�Þ over NsðE�Þ and using
ϵn ¼ 1 [see Eq. (1)], we were able to measure for the first
time the neutron-emission probability PnðE�Þ, as illustrated
in Fig. 3. The displayed error bars include the covariance
between Nc;nðE�Þ and NsðE�Þ [22]. Thanks to the 100%
detection efficiency for the heavy residues, it has been
possible to achieve relative uncertainties of less than 6%,
despite the small total number of 1581 single events
measured. The experimental data show an onset of Pn
below the neutron separation energy Sn. As discussed
below, this is due to the excitation energy resolution
ΔE�, which is ≈240 keV (rms). We estimated ΔE� with
a simulation, which was benchmarked with the well-
separated ground-state peak of 208Pb at E� ¼ 0 MeV,
see [22]. In this experiment, ΔE� is dominated by the
uncertainty in the proton scattering angle θ induced by the
target radius of 2.5 mm.

To compare our results with theory, we have calculated
PnðE�Þ with the statistical model using the expression:

PnðE�Þ ¼
X

Jπ
FðE�; JπÞGnðE�; JπÞ; ð2Þ

where FðE�; JπÞ is the probability to form the excited
nucleus in a state of spin J and parity π at an excitation
energy E� by the 208Pbðp; p0Þ reaction, and GnðE�; JπÞ is
the probability that the nucleus decays from that state via
neutron emission. The Jπ distributions given by F were
calculated with the microscopic description developed
in [23,24]. The theoretical formalism and the results
for FðJπÞ at E� ¼ 8 and 9 MeV are presented in the
Supplemental Material [25]. To determine Gn we used the
statistical Hauser-Feshbach model of TALYS 1.96 [39].
Among all the quantities needed to describe the de-
excitation of 208Pb, the γ-ray strength function (GSF)
and the nuclear level density (NLD) are the most uncertain
ones. We considered different models for these two
quantities with adjusted parameters for 208Pb, which we
obtained from literature. For the GSF, we utilized three
models: the model of Kopecky and Uhl [40], the simple
modified Lorentzian model (SMLO) [41] and the results of
Hartree-Fock-Bogolyubov (HFB) and quasiparticle random
phase approximation (QRPA) calculations based on the
Gogny D1M nuclear interaction [42], which we will denote
as D1Mþ QRPA. Regarding the NLD, we employed six
distinct descriptions, three of these were based on the
constant-temperature (CT)model [43]with different adjusted
parameters, they are denoted CT1, CT2, and CT3. One
description was based on the back-shifted Fermi-gas (BSFG)
model [44]. The two others were the microscopic NLDs by
Goriely et al. [45] andHilaire et al. [46]. Further details on the
models and used parameters can be found in [25].
We combined the three GSF descriptions with the six

NLD models leading to 18 different TALYS calculations.
We expect to observe significant differences between the
calculations and our data at Sn due to the excitation energy
resolution ΔE�. To account for ΔE� we convoluted the
calculations with a Gaussian function with a standard
deviation of 240 keV. We have evaluated the deviations
between the calculations and our data by computing the
reduced χ2 before and after the convolution, see Table II
in [25]. The deviations decrease drastically after the
convolution for all the calculations. The calculations that
use the NLD CT3 and the calculation utilising the SMLO
and the BSFG models have a reduced χ2 exceeding 1.63
and can be excluded by our data with a confidence level of
93%. These calculations are also excluded by the data from
the first kinematic solution, see [22]. We obtained the best
agreement (lowest residuals and reduced χ2, see [25]) with
the convoluted calculation using the D1M+QRPA GSF
model and the NLD by Goriely et al. The latter calculation
is compared with our data before and after convolution in

FIG. 2. Position of beamlike residues measured in coincidence
with detected scattered protons from the first (a) and the second
kinematic solution (b), see text for details.
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Fig. 3. As shown by the red dashed-dotted line, the
convoluted result exhibits a significantly improved agree-
ment with the experimental data below Sn. The calculation
obtained with the SMLO and the CT3 models yields the
largest reduced χ2. Between Sn and 8.5 MeV, this calcu-
lation is systematically below our data, the best TALYS
calculation and the blue shaded area, which includes all the
calculations except those that are excluded by our data, see
Fig. 3. The calculations show an increase at E� ≈ 8 and
9 MeV. These increases occur when the E� of the 207Pb
residue formed after neutron emission is high enough to
populate the 1st and 3rd excited states of 207Pb, see the
arrows in Fig. 3. The population of the 3rd excited state is
particularly favoured because its spin J ¼ 13=2 is closer to
the spins populated in the 208Pbðp; p0Þ reaction (average
spin J̄ ≈ 5.4, see [25]).
We have used the GSF and NLD models that are not

excluded by our data to calculate the 207Pbðn; γÞ cross
section above neutron energies of 800 keV, see blue line
and shaded area in Fig. 4. Above 800 keV, several
evaluations (i.e., databases of recommended values for
the cross sections [47]) based on the Hauser-Feshbach
formalism are available to which we can compare our
results. We expect that the calculation obtained with the
SMLO and the CT3 models will result in a larger cross
section, as this calculation leads to lower values of PnðE�Þ

and thus higher values of the γ-emission probability, since
in the covered E� range γ and neutron emission are the only
open decay channels. The green dashed line in Fig. 4 shows
that this is indeed the case, this TALYS calculation is well
above all the other TALYS calculations. This demonstrates
the strong connection between PnðE�Þ and the ðn; γÞ cross
section, and the usefulness of employing the PnðE�Þ from a
surrogate reaction for constraining predictions for radiative
capture cross sections. As shown in Fig. 4, our calculations
encompass all the evaluations except CENDL-3.2 [48],
which shows a very different shape and is above our results.
In conclusion, we have measured for the first time the

neutron emission probability as a function of the excitation
energy, PnðE�Þ, of 208Pb. Our measurement benefited from
the unrivaled advantages of the ESR heavy-ion storage
ring, which allowed us to detect the beamlike residues
formed after neutron emission with an efficiency of 100%.
We employed our results for PnðE�Þ to select various
combinations of models for the γ-ray strength function and
the nuclear level density of 208Pb available in the literature.
The selected models were used to infer the 207Pbðn; γÞ cross
section at neutron energies for which no experimental data
are available. This demonstrates the advantage of using the
PnðE�Þ obtained through surrogate-reaction experiments to
constrain predictions for (n,γ) cross sections. Our results
are in good agreement with the JENDL-5.0, TENDL-2021,
and ENDF/B-VIII.0 evaluations, but disagree with the
CENDL-3.2 evaluation. In the future, we will complete
our setup with fission detectors to measure also the fission
probabilities, increase the solid angle of the telescope and
use a target with a smaller radius, which will allow us to
improve the excitation energy resolution. With these
improvements we will be able to conduct next-generation
experiments with radioactive stored beams, where we will
measure simultaneously and with high precision the prob-
abilities for all the deexcitation channels (fission, γ,
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FIG. 3. Neutron-emission probability as a function of the
excitation energy E� of 208Pb measured for the 208Pbðp; p0Þ
reaction in comparison with TALYS calculations. The arrows
indicate the E� at which the three first excited states of 207Pb
become accessible. The spin and parity of the states are also given.
The neutron separation energy Sn of 208Pb at E� ¼ 7.37 MeV is
indicated by the vertical dotted line, see text for details.
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neutron, and two-neutron emission) of many short-lived
nuclei for which the neutron-induced cross sections are
considered impossible to measure.
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