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Decarbonization
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US transportation emissions
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EV Adoption

7.6% of new car sales in the US 100
were EV at the end of 2023
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Major headwinds for EVs:
(1) Range anxiety
(2) Too expensive

(3) Developing charging
infrastructure

Battery technology is the bottleneck
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How Lithium-ion Batteries Work
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Anode Active Materials
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Cycling Silicon Under Battery Operation
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-PECVD synthesis
enables precise control

over silicon size, surface

chemistry, and
composition

-Surfaces are terminated

with SiH, functional
groups

-Radical chemistry to
functionalize the silicon
surface

Capacity

Plasma Enhanced Chemical Vapor Deposition Si NPs
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Specific energy (Wh kg™)

Calendar Life in Silicon Containing Anodes
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Minteer; Neale; Veith; Johnson; Vaughey; Burrell; Cunningham: Nature Energy 2021
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surface area

Decomposition HF can build up in electrolyte Gas generation swells
products block via hydrolytic cycle cell, blocks pores and
pores, raise O~ displaces electrolyte
impedance [HF]T %

and cause ) OO Smaller Si particles
power fade f g - ’ o — result in large reactive

Chemical reaction
between Si and binder
during calendar aging

Binder

Soluble products
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SEI continually
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mechanically destabilized
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Hydrolyti IG components and
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Passivating SE| on graphite
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Calendar Life Issues in Silicon Containing Anodes

Capacity Fade
from Calendar Ageing
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(Re-)Connecting Li,Si to Model Interfaces

; LiSi SEl Electrolyte
.
B o Silicon electrode:
_l/)_s ___B O (1) Dynamic Si
\ electrode interface
‘B R with lithiation
‘B -7 (2) Poorly-defined
B interface (Li,Si?, SEI?,
g | C1x) :_r: Selrca)‘(;e( !
B o 1 1,0,
Ideal electrode: X (A) (3) Unstable
(1) Static and well-defined electrode (intrinsically reactive)
interface |L(AL| (4) Hysteresis between
(2) No hysteresis between cycling cycles
— No change to electrode surface (5) Extremely

- No change to electrolyte heterogeneous . | .



Electrochemical Impedance Spectroscopy
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SOC — Dependent EIS
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Silicon lithiation states held at a constant potential
Potentiostatic EIS performed at end of V-hold every 4 hours.
Delithiation sweep investigated specifically
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Impedance Evolution on Delithiation

Ew <0.7 vs Li Eyw= 0.8V vs Li Ew=0.9V s Li Ew=21Vvsli
SOC > 20% SOC~ 20% SOC~ 10% SOC< 5%
R; R; R,
_ CPE, - CPE,
G C G

NREL | 17



Capacitive Feature Assignment

Capacitance (pF!cmz}
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EDLC and Charge Transfer Resistance

Double Layer
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Slow Process Capacitance

Capacitance of slow process has sharp increase at EDL drop
Slow capacitance is > 100 greater than EDL capacitance
Slow semicircle is likely SEl capacitance and resistance
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Resistance of the SEI

Volts vs Li
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Resistance values keep climbing despite decreasing differential capacitance
Suggests SEI continues to grow
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SOC-dependent EDLC

~90% > SOC > ~20%

SOC < ~20%
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Calendar Aging in Symmetric Cells

Si@PEO | | Si@PEO

Gen2 electrolyte 2000
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Increasing impedance at low SOCs is consistent with PZC-like regime
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Cycle Lifetime (Composite Half cells)
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SEIl Thickness (A)

SOC-Dependent SEl Electrostatic Picture

Neutron Reflectometry
Measurements of SEI

Scanning Electrochemical Microscopy
Measurements on SE| Passivation
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SOC-Dependent SEl Electrostatic Picture
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Charge Accumulation
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Cycle/Calendar Lifetime vs LFP (n-limited)

—
(o))

—
N

Areal Cap (mAh/ch)
o o
)

LiIDFOB Si@PEO| | LFP
1.2 M salt
LiITES| 3:? EC:EMC
coin cell

non-prelithiated

200 400 600 800 1000
Cycle Number

AASI (Qcm?)

Realtive Capacity

Month # NREL | 29

Month #



Resistances

Volts vs Li Volts vs Li
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Capacitance and Passivation

Volts vs Li Volts vs Li
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Conclusions

1. Lithium silicide interface and SEI can be understood through the classical model of
electrochemical interfaces
* EIS enables measurements of relevant properties at a very non-ideal electrochemical
interface

2. EDLC measurements reveal that Li,Si have very dynamic surface electrostatics:
e At SOC< ~20% the electrode surface resembles a structure analogous to the PZC
 The PZC regime is least passivated--> fasted impedance gain in calendar life cells
 The PZC regime may be appropriate for accelerating calendar life measurements and
assessing the passivation of the SEI with different electrolytes

3. Measurements of different anions:
1. The onset of PZC regime depends on anions
2. Anions play a large role in passivation
3. The degree of passivation (Cg,) strongly correlates with cycle and calendar life e | »



Conclusions

1. Cycle life in majority Si anodes is less relevant than calendar life

2. Lithium silicide interface and SEI can be understood through the classical model of

electrochemical interfaces
e EIS enables measurements of fundamental electrochemical interface properties of a

highly non-ideal electrochemical interface

3. The interface structure and mass transport properties are strongly dependent on the
electrode state of charge

If your battery has silicon in it, don’t store it fully charged or discharged

NREL | 33
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Controlling the Surface Chemistry of Si Electrodes
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EIS of a Redox Active Thin Film (SEI) at a Reflective

Boundary.

(1) Faradaic

Redox Chemistry
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B =

Mass Transport Through the SEI

film electrode
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Cycle Life with Varied Surfaces
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Energy Storage and Delivery Technology
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Thin Film Silicon Electrode

2D Planar electrode
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The Classical Model

Gouy-Chapman-Stern Model

Helmholtz Model Stern layer
' ' ~—*— Diftuse layer

¥

: P i ®
= -@ Vo i i 8
31 @ = g
= - =] o
=1 @ . :
4\ @ g =
g | < &
B ® - =
a1 \® = >
v 4 2 —
g 2 -
g1 S =
+ 8 2
+ @ -
<l

Potential

NREL | 42

Zhang, L. L.; Zhao, X. S. Chem. Soc. Rev. 2009



Areal Capacity (mAhJ’cma)
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Understanding Calendar Life
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Corroborating Observations

Neutron Reflectometry Measurements Scanning Electrochemical Microscopy
of SEl thickness Measurements on SEIl Passivation
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Predictive Parameters for Cycle and Calendar Life
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Calendar aging data in EC:EMC (Tier 2, Li* limited)

LiPF, : LiTFSI : Dispersion
LIDFOB : LiBF, ‘ ASl
; Capacity retention
|
=5
Sta
<% 3t
. T o
0 1 2 3 4 5 1l
Month # ™~ 1t
0
z
% 0.4} i When ranked for ASI gain and capacity retention, a
= oz shows promise as a predictor for calendar-related
0.0

0 1 2 3 4 5 degradation

NREL | 47



Impact in Real System

3 half cells formed between
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Low voltage electrode shows
increasing overpotential with
cycling consistent with
electrolyte reduction
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SEl on Copper
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Energy Storage and Delivery Technology

Capacitors
1012 468 2 468 2 468
10 10 10 10

Energy Density (Wh/kQ)
3 3. 3,

Power Density (W/Kg)

NREL | 50



Electrode | Electrolyte Equilibration
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