

Highly tail-asymmetric lipids improve interdigitation minimizing their changes to fluid membrane properties

T. Ozturk Dalpe, T. Carpenter, H. Ingolfsson, W. He, N. Fischer, A. Rasley, D. Bennett, T. Ferron, C. Bosio, B. Schwarz, T. Weiss

February 2025

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Highly tail-asymmetric lipids improve interdigitation minimizing their changes to fluid membrane properties

Tugba N. Ozturk¹, Thomas John Ferron², Wei He¹, Benjamin Schwarz³, Thomas M Weiss⁴, Nicholas O. Fischer¹, Amy Rasley¹, W. F. Drew Bennett¹, Timothy S. Carpenter¹, Catharine M. Bosio³, Helgi I. Ingólfsson¹

¹*Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550*

²*Material Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550*

³*Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840*

⁴*SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, CA 94025*

Membranes of a highly pathogenic bacterium, *Francisella tularensis*, contain tail-asymmetric phosphatidylethanolamine (XJPE) lipids which were previously shown to inhibit inflammatory responses in host cells. These tails (24:0/10:0) have unusually high length asymmetry, and their impact on membrane properties is unknown. In this study, we use small angle X-ray scattering and molecular dynamics simulations to examine the structures and properties of simple membranes with varying XJPE ratios. With increasing proportions of XJPE lipids, DOPC or POPC membranes get only get slightly thicker, similar to DOPE addition, but do pack tighter and more prone to ordering/forming gel-phase. XJPE achieves this modest effect on bilayer properties by frequently extending the longer 24 carbon tail into the opposing leaflet, with the tail interdigitation distributing the lipid effect between the leaflets. However, when XJPE is incorporated asymmetrically (i.e. only to one leaflet of a membrane), the longer 24 carbon trail is more prone to bending up, occupying their own leaflet, and perturbing membrane properties. XJPE lipids can dynamically adopt two conformations where their long tails are either extended or in a bent-back orientation. The former means increased interdigitation and tail ordering while the latter impacted lipid packing, interleaflet contacts and membrane elasticity. The presented data clearly shows this XJPE biphasic tail configuration in simple membranes but the effect of tail-asymmetric lipids on more complex membrane-associated events should be further investigated to reveal how *Francisella tularensis* uses tail asymmetry to facilitate vesicle fusion and destabilize host cells. This work was funded by Laboratory Directed Research and Development at the Lawrence Livermore National Laboratory (24-ERD-027) and performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-CONF-2001889