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ABSTRACT
In Born–Oppenheimer molecular dynamics (BOMD) simulations based on the density functional theory (DFT), the potential energy and the
interatomic forces are calculated from an electronic ground state density that is determined by an iterative self-consistent field optimization
procedure, which, in practice, never is fully converged. The calculated energies and forces are, therefore, only approximate, which may lead to
an unphysical energy drift and instabilities. Here, we discuss an alternative shadow BOMD approach that is based on backward error analysis.
Instead of calculating approximate solutions for an underlying exact regular Born–Oppenheimer potential, we do the opposite. Instead, we
calculate the exact electron density, energies, and forces, but for an underlying approximate shadow Born–Oppenheimer potential energy
surface. In this way, the calculated forces are conservative with respect to the approximate shadow potential and generate accurate molecular
trajectories with long-term energy stabilities. We show how such shadow Born–Oppenheimer potentials can be constructed at different levels
of accuracy as a function of the integration time step, δt, from the constrained minimization of a sequence of systematically improvable,
but approximate, shadow energy density functionals. For each energy functional, there is a corresponding ground state Born–Oppenheimer
potential. These pairs of shadow energy functionals and potentials are higher-level generalizations of the original “zeroth-level” shadow
energy functionals and potentials used in extended Lagrangian BOMD [Niklasson, Eur. Phys. J. B 94, 164 (2021)]. The proposed shadow
energy functionals and potentials are useful only within this extended dynamical framework, where also the electronic degrees of free-
dom are propagated as dynamical field variables together with the atomic positions and velocities. The theory is quite general and can be
applied to MD simulations using approximate DFT, Hartree–Fock, or semi-empirical methods, as well as to coarse-grained flexible charge
models.
© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0146431

I. INTRODUCTION

The general notion of shadow molecular dynamics provides
a highly powerful concept that helps us understand and design
accurate and computationally efficient simulation schemes.1–7 The
idea behind shadow molecular dynamics is based on backward error
analysis. Instead of calculating approximate forces and energies for
an underlying exact potential energy surface, it is often easier to cal-
culate exact forces and energies, but for an underlying approximate
shadow potential (or shadow Hamiltonian). In this way, important
physical properties of the simulated shadow dynamics such as
time reversibility, the conservation of the total energy, and the
phase-space area can be fulfilled because the forces of the shadow
dynamics can be generated exactly. In practice, shadow dynamics
simulation methods are, therefore, often both more accurate and
computationally more efficient compared with alternative

techniques. In particular, their long-term accuracy and stability are
often superior.

The shadow dynamics terminology was originally introduced
in the analysis and explanation of the accuracy and long-term sta-
bility of symplectic or geometric integration schemes such as the
velocity Verlet algorithm in terms of a shadow Hamiltonian.1–3

Here, we use the notion of a shadow molecular dynamics in the
slightly more general form that is associated with backward error
analysis. Shadow dynamics is then generated, for example, when
rapid changes or discontinuities from cutoffs in the exact inter-
atomic potential are smoothed out with an approximate shadow
potential for which we can calculate the exact forces and use longer
integration time steps.8,9

Shadow molecular dynamics was originally introduced in
the context of classical molecular mechanics. More recently,
the concept of shadow dynamics has been applied also to the
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non-linear self-consistent field (SCF) theory in quantum-
mechanical Born–Oppenheimer molecular dynamics (QMD)
simulations based on extended Lagrangian Born–Oppenheimer
molecular dynamics (XL-BOMD).10–17 The idea of shadow molecu-
lar dynamics has been applied also to the non-linear time-dependent
dynamics of superfluidity18 and to flexible charge equilibration
models.17,19

In this article, we will revisit the construction of the approxi-
mate shadow energy functionals and potentials used in XL-BOMD
simulations and show how their accuracy can be systematically
improved to higher orders as a function of the integration time
step, δt. It is important to note that these shadow energy function-
als and potentials are designed and used only as part of molecular
dynamics simulations within the framework of XL-BOMD, where
also the electronic degrees of freedom are propagated as extended
dynamical variables together with the atomic positions and veloc-
ities. The interatomic forces calculated from the gradients of the
shadow Born–Oppenheimer potential are exact only in this dynam-
ical setting. For static, non-dynamical systems, the corresponding
interatomic forces are only approximate, and, in general, not even
very accurate.

In regular QMD simulations,17,20,21 the Born–Oppenheimer
potential and the interatomic forces are calculated on the fly from
the ground-state electronic structure, which is determined from an
iterative SCF optimization of some constrained non-linear energy
functional, that is given, for example, from Hartree–Fock or density
functional theory (DFT).22–30 In practice, the iterative SCF opti-
mization is never fully converged and always approximate. This
may create small errors in the ground state electron density, but
these small errors can break time reversibility and lead to non-
conservative forces. Accumulated over time, the small errors from
the approximate SCF optimization will, therefore, become signifi-
cant. Often, the errors appear as an unphysical systematic drift in the
total energy, where the incompletely converged electronic structure
behaves as an artificial heat source or sink,31–35 which invalidates the
QMD simulations. In the more recent formulations of XL-BOMD,
the shadow Born–Oppenheimer potential is designed to avoid the
computational overhead and convergence errors in the iterative SCF
optimization.

In XL-BOMD, the iterative SCF optimization procedure is
avoided by including the electronic degrees of freedom as extended
dynamical variables, in the spirit of Car–Parrinello molecular
dynamics,17,36 in addition to the atomic positions and velocities.
However, in contrast to Car–Parrinello molecular dynamics, con-
strained optimization is still required to calculate the exact electronic
ground state, but the optimization is performed for an approxi-
mate shadow energy functional. This optimization can be performed
exactly in a single step, and no iterative process is needed. The
ground state energy then defines the shadow Born–Oppenheimer
potential and the corresponding conservative forces. The ability
of XL-BOMD to avoid an iterative optimization and still gen-
erate exact conservative forces is thus of great practical inter-
est, both by reducing the computational cost and by improving
the accuracy and long-term stability of the molecular dynamics
simulations.

The shadow potential approximates the exact fully converged
regular Born–Oppenheimer potential. In the original shadow poten-
tial formulation of XL-BOMD, the error in the forces and the

potential energies scale with the size of the integration time step,
δt, to the second, O(δt2

), and fourth order, O(δt4
), respectively.

However, there seems to be no way to improve the order of the
scaling. The only way to boost accuracy is to reduce the size of the
integration time step. Here, we will show how higher levels of accu-
racy in the forces and shadow Born–Oppenheimer potentials can
be achieved from the constrained minimization of a sequence of
systematically improvable, but approximate, shadow energy func-
tionals. For each energy functional, there is a corresponding ground
state Born–Oppenheimer potential. The accuracies of these pairs
of shadow functionals and potentials are determined by the size
of the integration time step, δt. The increased level of accuracy
is thus meaningful only in the context of molecular dynamics
simulations.

A higher-order accuracy in the shadow Born–Oppenheimer
potential will often improve the long-term stability of a QMD simu-
lation. This is of particular interest in QMD simulations of chemical
systems that may have unsteady charge solutions or chemical reac-
tions, for example, where the electronic energy gap between the
highest occupied molecular orbital (HOMO) and the lowest unoc-
cupied molecular orbital (LUMO) is opening and closing along the
molecular trajectories.

The theory will be explained in terms of general
Hohenberg–Kohn DFT25–30 and is applicable to a broad range
of methods, including Hartree–Fock and Kohn–Sham DFT,22–30

approximate DFT and semi-empirical methods,37–47 and various
coarse-grained polarizable charge equilibration models.19,48–56

The article is outlined as follows: First, we review the
construction of the “zeroth-level” shadow energy functional
and Born–Oppenheimer potential used in the original shadow
potential formulation of XL-BOMD. We then describe how an
improved “first-level” pair of shadow energy functional and
Born–Oppenheimer potential can be constructed. We then derive
the equations of motion in an adiabatic limit, where we assume
that the extended electronic motion is rapid compared with
the slower-moving nuclei. This is consistent with the underlying
Born–Oppenheimer approximation. Thereafter, we discuss general-
izations to higher mth-level pairs of shadow energy functionals and
potentials.

The integration of the equations of motion for the elec-
tronic degrees of freedom is then explained, where we use a low-
rank preconditioned Krylov subspace approximation to approx-
imate the kernel that appears in the equations of motion for
the electronic degrees of freedom. There is no additional cost
involved for the kernel approximation in the enhanced first-level
shadow Born–Oppenheimer potential. The only additional com-
putational cost is a single construction, orthonormalization, and
diagonalization of the Hamiltonian.

To better understand the shadow functionals and potentials,
we consider the relationship to the Harris-Foulkes functional57,58 in
the static non-dynamical case for Kohn–Sham DFT. We also apply
our theory for the first-level pairs of shadow energy functionals
and potentials to a simple flexible charge equilibration model that
corresponds to an orbital-free coarse-grained DFT. Thereafter, to
summarize the results, we present a pseudocode for XL-BOMD sim-
ulations using a first-level shadow energy functional and potential.
We demonstrate the improved scaling and ability to treat unstable
chemical systems using the first-level shadow energy functional and
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Born–Oppenheimer potential based on the self-consistent charge
density functional tight-binding (SCC-DFTB) theory.37–39,58–64 At
the end, we give a brief summary and our conclusions.

II. GENERALIZED SHADOW FUNCTIONALS
AND POTENTIALS

To present the pairs of energy functionals and
Born–Oppenheimer potentials, we will use the Hohenberg–Kohn
density functional theory.25 The corresponding Kohn–Sham
expressions are generated by replacing the universal energy func-
tional with its orbital-dependent Kohn–Sham energy functional.26

Generalization to the Hartree–Fock theory and semi-empirical
methods, as well as to coarse-grained orbital-free flexible charge
models, should be straightforward.17

A. Born–Oppenheimer potential
In Hohenberg–Kohn DFT,25,28–30 the relaxed ground state elec-

tron density, ρmin(r), is given from a constrained minimization of an
energy density functional, E[R, ρ], over all physically relevant elec-
tron densities, ρ,65 that integrates to the total number of electrons,
Ne, i.e.,

ρmin(r) = arg min
ρ
{E[R, ρ]∣∫ ρ(r)dr = Ne }. (1)

The DFT energy functional,

E[ρ] ≡ E[R, ρ] = F[ρ] + ∫ Vext(R, r)ρ(r)dr, (2)

includes a system-independent, non-linear, universal electron func-
tional, F[ρ], and an energy term with an external potential,
Vext(R,r), which we here assume is from ions at the atomic posi-
tions, R = {RI}. The universal energy functional, F[ρ], includes
all the electron–electron interactions and the kinetic energy term.
To keep it general, we may also assume ensemble generalizations
where F[ρ] accounts for thermal effects, including the entropy
contribution at finite electronic temperatures.17,24,27,28,30,66,67 In the
corresponding Kohn–Sham DFT, the thermal effects introduce frac-
tional occupation numbers of the Kohn–Sham orbitals,27,28 which
is important to be able to describe, for example, metallic systems
at finite temperatures and to stabilize calculations of systems with
a small or vanishing electronic energy gap.

In the Born–Oppenheimer approximation,20,68–70 the
Born–Oppenheimer potential energy surface, U(R), is determined
for the fully relaxed electronic ground state, i.e.,

U(R) = E[ρmin] + Vnn(R), (3)

which includes the additional ion–ion repulsion energy term,
Vnn(R). The motion of the atoms can then be generated by
integrating Newton’s equation of motion,

MIR̈I = −∇IU(R), (4)

where {MI} are the atomic masses, one for each atom I, and the dots
denote the time derivatives.

In general, the calculation of the ground state density, ρmin(r),
requires some form of iterative optimization procedure or SCF

approach because of the non-linearity of the universal energy func-
tional, F[ρ]. For example, in Kohn–Sham DFT, the SCF opti-
mization requires repeated diagonalizations of the effective single-
particle Kohn–Sham Hamiltonians. This can cause a significant
computational overhead, and in practice, the solution is never fully
converged and only approximate. Force terms that, in general, are
very difficult, if not impossible to calculate in practice, like

∫ (δE[ρ]/δρ(r))(∂ρ(r)/∂RI)∣ρ≈ρmin
dr, (5)

are, therefore, not vanishing exactly because (δE[ρ]/δρ(r)) is van-
ishing only if ρ(r) = ρmin(r).71 Insufficiently converged solutions for
the electronic ground state density and where the non-vanishing
force term in Eq. (5) is ignored, therefore, lead to non-conservative
forces that may invalidate a molecular dynamics simulation.31–35

Recent formulations of XL-BOMD were developed to overcome
these shortcomings.17

B. Zeroth-level shadow functional
and Born–Oppenheimer potential

In the more recent formulations of XL-BOMD,17 the energy
functional, E[ρ] in Eq. (2), is approximated by a linearized shadow
energy functional,

E (0)[ρ, n(0)] = E[n(0)] + ∫
δE[ρ]
δρ(r)

∣

n(0)
(ρ(r) − n(0)(r))dr, (6)

which is given by a linearization of E[ρ] around some approximate
zeroth-level ground state density, n(0)

(r) ≈ ρmin(r).72 More gener-
ally, we can create a zeroth-level shadow energy functional17,19 by
some approximation, where

E (0)[ρ, n(0)] = E[n(0)] +O(∣ρ − n(0)∣2). (7)

This generalization is of particular interest in formulations of
orbital-free flexible-charge equilibration models. It allows more free-
dom in the construction of the shadow energy functional, e.g.,
where parts of E[ρ] are expanded to second order in ρ to guar-
antee a unique ground state solution.17,19 The corresponding n(0)-
dependent ground state electron density, ρmin[n

(0)
], is then given by

the constrained minimization as in Eq. (1), where

ρmin[n(0)](r) = arg min
ρ
{E (0)[ρ, n(0)]∣∫ ρ(r)dr = Ne }. (8)

With the minimization, we here mean the lowest stationary solu-
tion over all physically relevant electron densities with Ne number of
electrons. The relaxed ground state density then defines the approx-
imate, n(0)-dependent, shadow Born–Oppenheimer potential,

U (0)(R, n(0)) = E (0)[ρmin[n(0)], n(0)] + Vnn(R). (9)

The advantage of this zeroth-level shadow energy functional,
E (0)[ρ, n(0)] in Eq. (6), is that the ground state density,
ρmin[n

(0)
](r), can be calculated without requiring any iterative opti-

mization procedure to find a SCF solution—at least if we have found
some appropriate shadow energy functional, E (0)[ρ, n(0)], consis-
tent with Eq. (7). Instead, the exact ground state electron density can
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be calculated directly in a single step because all the non-linearities
in E[ρ]with respect to ρ that would require an iterative solution have
been removed in E (0)[ρ, n(0)]. In Kohn–Sham density functional
theory, the exact minimization is reached in a single construc-
tion and diagonalization of the Kohn–Sham Hamiltonian, and in
the corresponding coarse-grained charge equilibration models,17,19

the relaxed ground state is given from the solution of a quasi-
diagonal system of linear equations, which has a simple direct
analytical solution. In this way, any possible convergence problems
and associated inconsistencies between the calculated ground state
density, ρmin[n

(0)
], and the shadow Born–Oppenheimer potential,

U (0)(R, n(0)), are avoided.
Because of the linearization in the energy functional, the error

in the shadow Born–Oppenheimer potential is of second order in
the residual function, f [n(0)

](r) = ρmin[n
(0)
](r) − n(0)

(r), i.e.,

∣U (0) −U∣∝ ∣ρmin[n(0)] − n(0)∣
2
. (10)

The approximate density, n(0), therefore needs to be close to the
relaxed ground state density, ρmin[n

(0)
] or ρmin, to ensure that the

error in the approximate shadow potential is small.73 Below, we will
show how this is achieved in QMD simulations by propagating the
approximate ground state density, n(0), as a dynamical field variable
within an extended Lagrangian formulation, where n(0)

≡ n(0)
(r, t)

is propagated by a harmonic oscillator that is centered around the
optimized ground state density, ρmin[n

(0)
](r), along the molecular

trajectories. However, before we present the extended Lagrangian
molecular dynamics scheme, we will show how the zeroth-level
shadow energy functional and Born–Oppenheimer potential can be
improved in accuracy.

C. First-level shadow functional
and Born–Oppenheimer potential

The accuracy of the approximate zeroth-level shadow energy
functional, E (0)[ρ, n(0)] in Eq. (6) or Eq. (7), can be improved.
However, a straightforward expansion of E[ρ] to higher orders in ρ
would not help because this would require some iterative solution to
the constrained minimization problem of a non-linear energy func-
tional. Instead, we have to improve the accuracy of the approximate
zeroth-level energy functional without losing the linearity in ρ. We
can achieve this by improving the estimate of n(0) to be even closer to
the exact ground state density, ρmin, in Eq. (1). This can be accom-
plished with an updated and more accurate density, n(1)

(r), which
is given by a single Newton optimization step (for multiple steps see
Subsection III C),

n(1)(r) ≡ n(1)[n(0)](r) = n(0)(r)

− ∫ K(0)(r, r′)(ρmin[n(0)](r′) − n(0)(r′))dr′, (11)

where the kernel K(0)
(r, r′) is the inverse Jacobian of the residual

function, f [n(0)
](r) = ρmin[n

(0)
](r) − n(0)

(r). This means that

∫ K(0)(r, r′)
δ(ρmin[n(0)](r′) − n(0)(r′))

δn(0)(r′′)
dr′ = δ(r − r’’). (12)

The Newton step in Eq. (11) (under reasonable conditions) is
quadratically convergent such that

∣ρmin − n(1)∣∝ ∣ρmin − n(0)∣2 ∝ ∣ρmin[n(0)] − n(0)∣2. (13)

We here assume that the functional is sufficiently well-behaved and
that n(0) is close enough to the exact ground state density, ρmin, to
achieve the quadratic convergence.

The shadow energy functional can now be improved in accu-
racy by using the updated density, n(1), instead of n(0) in the lin-
earization of the energy functional. This updated and improved
approximate first-level shadow energy functional is then given by

E (1)[ρ, n(1)] = E[n(1)] + ∫
δE [ρ]]
δρ(r)

∣

n(1)
(ρ(r) − n(1)(r))dr, (14)

or more generally as an approximation where

E[ρ] = E (1)[ρ, n(1)] +O(∣ρ − n(1)∣2). (15)

The updated n(1)-dependent ground state density is then given from
the constrained minimization,

ρmin[n(1)](r) = arg min
ρ
{E (1)[ρ, n(1)]∣∫ ρ(r) = Ne }, (16)

with respect to variationally stationary solutions. This ground state
density defines our first-level shadow Born–Oppenheimer potential,

U (1)(R, n(0)) ≡ U (1)(R, n(1)[n(0)])

= E (1)[ρmin[n(1)], n(1)] + Vnn(R). (17)

It is important to have the first-level shadow potential,
U (1)(R, n(0)), expressed as a function of n(0) and not of n(1).
We can do so because n(1) is determined from n(0) in Eq. (11), where
n(1)
≡ n(1)

[n(0)
]. We will take advantage of this relation in Sec. III,

where n(0) is propagated as a dynamical field variable, n(0)
(r, t).

The constrained minimization in Eq. (16) can be achieved,
in general, in a single step without requiring any iterative opti-
mization procedure, thanks to the linear dependency of ρ in the
shadow energy functional, E (1)[ρ, n(1)]. No iterative self-consistent
optimization procedure is needed.

The error in the first-level shadow potential scales as

∣U (1) −U∣∝ ∣ρmin[n(1)] − n(1)∣2 ∝ ∣ρmin[n(0)] − n(0)∣4, (18)

thanks to the quadratic convergence of the Newton update of n(1)

in Eq. (11), where the size of the residual function, f [n(0)
](r)

= ρmin[n
(0)
](r) − n(0)

(r), decays quadratically in a single Newton
step.

The Newton step in Eq. (11) is similar to an SCF itera-
tion step. However, in Kohn–Sham DFT, the Newton update does
not require any additional Hamiltonian diagonalization. In QMD
simulations, the Newton step can be performed using a precondi-
tioned Krylov subspace expansion,17,74–76 where each Krylov sub-
space vector can be determined from response calculations using the
quantum perturbation theory. The preconditioned Krylov subspace
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expansion used to approximate the kernel, K(0), acting on the
residual function17,74–77 is described in more detail in Sec. III E.

In practice, the preconditioned Krylov subspace expansion of
the kernel, K(0), is truncated and only approximate. The density
update in Eq. (11) is then given by a quasi-Newton step, which, in
general, has a slower, non-quadratic convergence.

D. Pairs of shadow functionals and potentials
A key concept in our presentation is the pairs of energy func-

tionals and Born–Oppenheimer potentials. The potential is always
given from a constrained minimization over the electron density of
an energy functional, where the initial pair of electronic energy func-
tional and Born–Oppenheimer potential, corresponding to regular
DFT, is given by

{E[ρ], U(R)}. (19)

This pair is then replaced, first by the n(0)-dependent zeroth-level
shadow energy functional and potential,

{E (0)[ρ, n(0)], U (0)(R, n(0))}, (20)

and then by the n(0)-dependent first-level shadow energy functional
and potential,

{E (1)[ρ, n(0)], U (1)(R, n(0))}. (21)

The regular functional-potential pair in Eq. (19) is, in practice, diffi-
cult to represent exactly because the calculated Born–Oppenheimer
potential, U(R), at least, in practice, is never given by the exact
ground state of the energy functional, E[ρ]. An accurate match
between E[ρ] and U(R) can only be achieved by an expensive iter-
ative optimization procedure because of the non-linearity of E[ρ].
This is in contrast to the zeroth-level shadow functional-potential
pair in Eq. (20), which easily are matched at only a modest cost
because no iterative optimization is required. What we have pre-
sented so far is how we can construct an updated first-level pair of
shadow energy functionals and potentials in Eq. (21) that also can be
matched exactly. This higher-level generalization has an improved
level of accuracy.

III. EXTENDED LAGRANGIAN BORN–OPPENHEIMER
MOLECULAR DYNAMICS

In a QMD simulation, the initial approximate ground state den-
sity, n(0)

(r), around which the linearization is performed for the
construction of the shadow energy functional will get further and
further away from the corresponding exact ground state density,
ρmin(r), as the atoms are moving away from the initial configuration.
The accuracy of the shadow energy functional and the correspond-
ing shadow Born–Oppenheimer potential will then get successively
worse. The density, n(0)

(r), therefore, needs to be updated. One
way is to update the density as a function of the atomic posi-
tions, for example, where n(0)(r) ≡ n(0)(R, r) = ∑In

atom
I (r − RI),

is the superposition of separate neutral atomic electron densities,
{natom

I (r − RI)}, centered around the atomic positions, R = {RI}.
However, this would lead to difficulties calculating forces, as in
Eq. (5), including all the density-dependent energy terms—one for

each atom. If n(0)
(r) would be the variational ground state, these

terms would all vanish, but this is only true for the optimized den-
sities, ρmin[n

(0)
](r) or ρmin[n

(1)
](r), with respect to the shadow

potentials, U (0)(R, n(0)) or U (1)(R, n(0)). Even in this case, par-
tial derivatives, ∂n(0)

/∂RI , would need to be calculated. A solution
to these problems is offered by XL-BOMD, where n(0) is propagated
as a dynamical field variable, n(0)

(r, t).17

A. Extended Lagrangian
In XL-BOMD, we include the approximate ground state den-

sity, n(0)
(r), and its time derivative as additional dynamical field

variables, n(0)
(r, t) and ṅ (0)(r, t), in an extend Lagrangian formal-

ism, beside the nuclear positions and their velocities, R(t) and
Ṙ(t). The dynamics of n(0)

(r, t) is generated by an extended har-
monic oscillator that is centered around the optimized ground state
of the shadow potential, ρmin[n

(0)
], along the molecular trajecto-

ries. In this way, n(0)
(r, t) closely follows the ground state such

that the error in the shadow potential does not increase along the
trajectory.

In the Euler–Lagrange equations of motion, the partial deriva-
tives only appear with respect to each single dynamical variable, with
all the other dynamical variables being constant. The calculations of
n(0)-dependent force terms, e.g.,

∫
δU (m)

δn(0)(r)
∂n(0)(r)
∂RI

dr, (m = 0 or 1), (22)

can, therefore, be avoided. Additional force terms, such as

∫ (
δE (m)[ρ, n(m)]

δρ(r)
)(

∂ρ(r)
∂RI

)∣
ρ=ρmin[n(m)

]

dr, (23)

can also be ignored because ρmin[n
(m)
] is determined from the

condition that

δE (m)[ρ, n(m)]
δρ

∣

ρ=ρmin[n(m)
]

= 0, (m = 0 or 1). (24)

This not only reduces the computational costs but also makes it pos-
sible to calculate the “exact” conservative forces that generate stable
long-term molecular trajectories.

We can now define the first-level extended Lagrangian, L (1),
in XL-BOMD, using the first-level shadow Born–Oppenheimer
potential, where

L (1)(R, Ṙ, n(0), ṅ (0))

=
1
2∑I

MI ∣ṘI ∣
2
− U (1)(R, n(0))

+
1
2

μ∫ ∣ṅ
(0)
(r)∣2dr −

1
2

μω2
∬ (ρmin[n(0)](r) − n(0)(r))

× T(0)(r, r′)(ρmin[n(0)](r′) − n(0)(r′))drdr′. (25)

Here, n(0)
(r, t) is treated as a dynamical field variable with its time

derivative, ṅ (0)(r, t), and some chosen mass parameter, μ. This is
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in addition to the regular dynamical variables of the atomic motion,
R and Ṙ. The atomic masses are given by {MI}. The frequency of
the extended harmonic oscillator is set by ω, and the harmonic well
is centered around ρmin[n

(0)
](r). T(0)

(r, r′) is a symmetric positive
definite metric tensor given by the square of a kernel, K(0)

(r, r′),
where

T(0)(r, r′) = ∫ (K
(0)
(r, r′′))

†
K(0)(r′′, r′)dr′′. (26)

We define the kernel, K(0)
(r, r′), as the inverse Jacobian of the

residual function, f [n(0)
](r) = ρmin[n

(0)
](r) − n(0)

(r). This means
that the kernel, K(0)

(r, r′), is the same as in Eqs. (11) and (12).
In this way, the dynamical density variable, n(0)

(r, t), evolves as
if it would oscillate around the much closer approximation to the
exact ground state, i.e., n(1)

(r) from the Newton update, com-
pared with the more approximate, ρmin[n

(0)
](r). This definition

of the kernel simplifies the equations of motion that we will
derive below at the same time as it also improves the accu-
racy of the shadow Born–Oppenheimer potential by evolving
n(0)
(r, t) around a closer approximation to the exact ground state,

ρmin(r).
The only difference to the original formulation of XL-BOMD is

that the Lagrangian, L (1)(R, Ṙ, n(0), ṅ (0)), in Eq. (25) uses the first-
level shadow Born–Oppenheimer potential, U (1)(R, n(0)), instead
of the zeroth level, U (0)(R, n(0)).

B. Equations of motion
The Euler–Lagrange equations for L (1)(R, Ṙ, n(0), ṅ (0)),

d
dt

⎛
⎜
⎝

∂L (1) (R, Ṙ, n(0), ṅ (0)))

∂ṘI

⎞
⎟
⎠
=
∂L (1) (R, Ṙ, n(0), ṅ (0)))

∂RI
, (27)

and

d
dt

⎛
⎜
⎝

δL (1) (R, Ṙ, n(0), ṅ (0)))

δṅ (0)(r)

⎞
⎟
⎠
=

δL (1) (R, Ṙ, n(0), ṅ (0)))

δn(0)(r)
, (28)

give us the equations of motion,

MIR̈I = −
∂U (1)(R, n(0))

∂RI
∣

n(0) ,n(1)

− ∫
δU (1)(R, n(0))

δn(1)(r)
∂n(1)(r)
∂RI

∣

n(0)
dr

−
1
2

μω2 ∂

∂RI
∬ (ρmin[n(0)](r) − n(0)(r))T(0)(r, r′)

× (ρmin[n(0)](r′) − n(0)(r′))∣
n(0)

drdr′, (29)

and

μn̈ (0)(r) = −
δU (1)(R, n(0))

δn(0)(r)

−
1
2

μω2 δ
δn(0)(r)∬

(ρmin[n(0)](r′) − n(0)(r′))

× T(0)(r′, r′′)(ρmin[n(0)](r′′) − n(0)(r′′))dr′dr′′.
(30)

These equations are far from trivial to use in a QMD simulation.
However, the equations of motion are simplified if we impose an adi-
abatic limit, in the same way as for the original Born–Oppehenimer
approximation, where we assume that the electronic degrees of free-
dom are fast compared with the slower nuclear motion. To derive
the equations of motion in this adiabatic limit, we first assert the
following frequency dependencies in the residual functions,

∣ρmin[n(0)] − n(0)∣∝ ω−2, (31)

and

∣ρmin[n(1)] − n(1)∣∝ ω−4, (32)

which are assumed to be valid in the limit of ω→∞. These adia-
batic relations are difficult to prove a priori, but they can be shown
to hold a posteriori by integrating the equations of motions that have
been derived under the assumptions of Eqs. (31) and (32). This will
demonstrate below in Fig. 1.

Using the asserted adiabatic scaling relations in Eqs. (31) and
(32), we find (under reasonable conditions78) from the definition of
n(1)
[n(0)
](r) in Eq. (11) that

δn(1)[n(0)](r)
δn(0)(r′′)

=
δn(0)(r)

δn(0)(r′′)
− ∫ K(0)(r, r′)

δ(ρmin[n(0)](r′) − n(0)(r′))

δn(0)(r′′)
dr′

− ∫
δK(0)(r, r′)

δn(r′′)
(ρmin[n(0)](r′) − n(0)(r′))dr′

= δ(r − r’’) − δ(r − r’’) − ∫
δK(0)(r, r′)

δn(r′′)
(ρmin[n(0)](r′) − n(0)(r′))dr′

∝ ∣ρmin[n(0)](r′) − n(0)(r′)∣∝ ω−2. (33)
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FIG. 1. Scaling of the residual error terms as a function of time step, δt, or
harmonic oscillator frequency, ω, for a system of amorphous carbon with 55
atoms using periodic boundary conditions. The simulations are performed with
a constant dimensionless constant, κ = δt2ω2, which means that δt ∝ ω−1. XL-
BOMD based on the enhanced first-level shadow Born–Oppenheimer potential,
U (1)(R, n(0)), was used following Algorithm 1. The root-mean square errors
(RMSE) are given by the root-mean-square of the residuals, qmin[n(0)] − n(0) and
qmin[n(1)] − n(1), and are averaged over snapshots of 100 integration time steps.
The dashed lines indicate the exact δt2 ∼ ω−2 and δt4 ∼ ω−4 scalings.

Using the same assertions, we also find that

∣
δU (1)

δn(1)
∣∝ ∣ρmin[n(1)] − n(1)∣∝ ω−4. (34)

This gives us

∣
δU (1)

δn(0)
∣ = ∣

δU (1)

δn(1)
δn(1)

δn(0)
∣, (35)

∝ ∣ρmin[n(1)] − n(1)∣ × ∣ρmin[n(0)] − n(0)∣, (36)

∝ ω−4
× ω−2. (37)

The scaling relation in Eq. (31) also means that the last gradient term
in Eq. (29) becomes proportional to μ. The asserted scaling relations
above inserted in the equations of motion in Eqs. (29) and (30) then
give us,

MIR̈I = −
∂U (1)(R, n(0))

∂RI
∣

n(0)
+O(ω−4

) +O(μ), (38)

and

n̈ (0)(r) = O(μ−1ω−6
) +O(ω−2

)

− ω2
∫ K(0)(r, r′)(ρmin[n(0)](r′) − n(0)(r′))dr′, (39)

where we have assumed that δT(0)
/δn(0) is bounded and ω-

independent as ω→∞. We can then derive the equations of motion
in the adiabatic limit, where ω→∞ combined with the mass-zero
limit μ→ 0, which here is chosen such that μω4

→ constant. This is
a classical analog to the Born–Oppenheimer approximation, where
we simply stick with the original Born–Oppenheimer assumption
that the electronic degrees of freedom are evolving on a much faster

time scale compared with a slower nuclear motion. In this adiabatic
limit, we get the final equations of motion for XL-BOMD with the
first-level updated shadow Born–Oppenheimer potential,

MIR̈I = −
∂

∂RI
U (1)(R, n(0))∣

n(0)
, (40)

n̈ (0)(r) = −ω2
∫ K(0)(r, r′)(ρmin[n(0)](r′) − n(0)(r′))dr′. (41)

Because n(0)
≡ n(0)

(r, t) is a dynamical field variable in XL-BOMD,
the partial derivatives in Eq. (40) with respect to the nuclear coor-
dinates are evaluated under a constant electron density, n(0). Thus,
even if n(0) is not the variationally optimized ground state density,
we can still calculate the exact forces in the adiabatic equations of
motion for XL-BOMD. However, this does not work for static cal-
culations. It only works in the context of XL-BOMD, where the
electronic degrees of freedom are propagated dynamically. The first-
level updated shadow potential is thus mainly useful only in this
dynamical setting.

The equations of motion, Eqs. (40) and (41), are almost iden-
tical to the original equations of motion for XL-BOMD using
the zeroth-level Born–Oppenheimer potential.16,17,74 The only dif-
ference is that we now have the first-level Born–Oppenheimer
potential, U (1)(R, n(0)), instead of the original zeroth-level
U (0)(R, n(0)). The error terms neglected in the adiabatic limit,
where μ∝ ω−4, indicates that the error in the interatomic force term
should scale as ω−4. This scaling will also be demonstrated below in
Fig. 2.

It is important to note that even if we only would use
some approximation of the kernel, K(r, r′), the same equations
of motion, in Eqs. (40) and (41), can be derived in an adiabatic

FIG. 2. Scaling of the fractional error in the interatomic forces for water and
amorphous carbon as a function of the integration time step δt or harmonic oscil-
lator frequency, ω. XL-BOMD based on the enhanced first-level shadow potential,
U (1)(R, n(0)), was used. The simulations are performed with a constant dimen-
sionless constant, κ = δt2ω2, which means that δt ∝ ω−1. The fractional error
was estimated from an on-the-fly comparison with the “exact” fully converged
Born–Oppenheimer forces, where the error was averaged over all the atoms and
force components over a snapshot of 100 integration time steps. The dashed lines
indicate the exact ∼ δt4 or ∼ ω−4 scalings.
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limit. The only difference is that the adiabatic limit has to be
modified such that μωm

→ constant for some value m ∈ 1, 4, and
with a modified assertion, where ∣ρmin[n

(1)
] − n(1)

∣∝ ω−m for some
value of m ∈ 2, 4. The scaling of the errors in the forces and
the potential energy will then be different and less favorable. Of
critical importance is only that we calculate the forces from the
shadow potential, U (1), defined by the optimized ground state of
a shadow energy functional that has been linearized around some
updated n(0)-dependent density, n(1)

(r) ≡ n(1)
[n(0)
](r), and where

∣δU (1)/δn(1)∣∝ ∣ρmin[n(1)] − n(1)∣. Replacing the Newton update
of the electron density in Eq. (11) with an approximate quasi-
Newton scheme or any other SCF-like iteration update should,
therefore, also work under the same conditions. This observa-
tion may also help explain why some earlier versions of XL-
BOMD11,34,64,79–81 often work quite well, but where a few SCF cycles
often were required in each time step prior to the force evaluations,
whereas the extended electronic degrees of freedom were propa-
gated dynamically. Our analysis here shows us why and when we
can expect these initial versions of XL-BOMD to work or fail. This
insight appears analogous to how, for example, solving a system
of non-linear equations with some simple ad hoc mixed itera-
tions (which often works) can be replaced by a more transparent
and efficient conjugate gradient or Newton-based method. Once
we understand the theoretically more rigorous alternative, we also
understand why and when the ad hoc method works and how it can
be improved.

The equations of motion in Eqs. (40) and (41), in combina-
tion with the definition of the first-level shadow energy functional,
Eq. (14), and the Born–Oppenheimer potential, Eq. (17), are some
of the key results of this article.

C. Higher-level generalizations
Higher mth-level generalizations of the pairs of shadow energy

functionals and potentials can also be designed, where the approxi-
mate higher-level density approximations to the exact ground state
are updated with repeated Newton steps,

n(m)(r) ≡ n(m)[n(0)](r)

≡ n(m)[n(m−1)
[. . . [n(0)]]](r) = n(m−1)

(r)

− ∫ K(m−1)
(r, r′)(ρmin[n(m−1)

](r′) − n(m−1)
(r′))dr′.

(42)

The corresponding linearized mth-level shadow energy density
functionals are then given by

E (m)[ρ, n(m)] = E[n(m)] + ∫
δE[ρ]
δρ(r)

∣

n(m)
(ρ(r) − n(m)(r))dr.

(43)
The constrained electronic ground state optimization then gives us
the ground state density,

ρmin[n(m)](r) = arg min ρ{E (m)[ρ, n(m)]∣∫ ρ(r)dr = Ne }, (44)

which defines the mth-level shadow Born–Oppenheimer potentials,

U (m)(R, n(0)) = E (m)[ρmin[n(m)], n(m)] + Vnn(R). (45)

The adiabatic equations of motion from an mth-level extended
Lagrangian, L (m), follows in the same way as above, where

MIR̈I = −
∂

∂RI
U (m)(R, n(0))∣

n(0)
, (46)

n̈ (0)(r) = −ω2
∫ K(0)(r, r′)(ρmin[n(0)](r′) − n(0)(r′))dr′. (47)

As for the first-level approximation, we have used the nested depen-
dencies of n(m) on n(0) and let the shadow potential be a functional of
n(0). Although the above higher-order generalization is straightfor-
ward, we have found it of little value, in practice, because the accu-
racy is, in general, already very high at the zeroth-level and virtually
exact at the first-level. For example, we tried to show numerically
that the error in the shadow potential energy surface, which scales
as ω−4 for U (0)(R, n(0)),16 scales as ω−8 for U (1)(R, n(1)). How-
ever, in practical simulations, this scaling was not possible to observe
because the error in the first-level shadow potential for any nor-
mal integration time steps was already at machine precision and no
relevant scaling could be demonstrated. Instead, it has to be demon-
strated indirectly from the scaling of ∣ρmin[n

(1)
] − n(1)

∣ from which
we get the scaling of ∣U (1))

−U∣∝ ∣ρmin[n(1)] − n(1)∣2. In the fol-
lowing, we will, therefore, ignore any higher-level generalizations
beyond the first-level.

D. Integrating the electronic equation of motion
To integrate the equations of motion for the nuclear degrees

of freedom in Eq. (40), we can use a leapfrog velocity Verlet
scheme, whereas the integration of the harmonic oscillator equa-
tion of motion in Eq. (41) for the extended electronic degrees of
freedom requires some care. In principle, the same Verlet integra-
tion scheme could be used also for electronic propagation. However,
typically, we need to include some weak form of dissipation that
keeps n(0)

(r) synchronized with the trajectories of the atomic posi-
tions and the exact Born–Oppenheimer ground state.17,79,82–85 This
modified Verlet integration scheme has the following form,

n(0)j+1 = 2n(0)j − n(0)j−1 + δt2n̈(0)j + α
lmax

∑
l=0

cln
(0)
j−l , (48)

where we use a convenient vector notation, with n(0)j ≡ n(0)

(t0 + jδt) ∈ RN , j = 0, 1, 2, . . .. The first three terms on the right-
hand side of Eq. (48) are the regular Verlet terms, whereas the
last term is an additional weak dissipative ad hoc damping force.
An optimized set of coefficients of α, {cl}, and the dimensionless
constant κ = δt2ω2, for various orders of lmax can be found in Ref.
82. As an alternative to such modified Verlet integration schemes,
we may connect the electronic degrees of freedom to a thermostat,
i.e., a stochastic Langevin-like dynamics or a chained Nose–Hoover
thermostat, which also keeps the electronic degrees of freedom syn-
chronized with the ground state solution determined by the nuclear
coordinates.86,87

In the initial time step, we can set all densities {nj} equal to the
optimized regular Born–Oppenheimer ground state density, ρmin.

It is important to note that we always use a constant for the
product δt2ω2

= κ in our simulations. This means that δt ∝ ω−1,
as long as we use the same Verlet integration scheme with a con-
stant size of the integration time step, δt. This controls the way we
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can understand the scaling and the order of the accuracy, for exam-
ple, of the forces (see Fig. 2), as a function of the chosen size of the
integration time step, δt, or the inverse frequency, ω−1.

E. Approximating the kernel with preconditioned
Krylov subspace

In addition to the modified Verlet integration, we also need to
approximate the kernel, K(r, r′), both in the integration of the elec-
tronic degrees of freedom in Eq. (41) and for the Newton update of
the density, n(0) to n(1) in Eq. (11). The kernel is the same, and it is
acting on the same residual, apart from a trivial constant factor ω2.
The approximation of the kernel acting on the residual, therefore,
only needs to be performed once every integration time step.

In the more convenient matrix–vector notation, Eq. (41) or
Eq. (47) is given by

n̈ (0) = −ω2K(ρ(0)min[n
(0)
] − n(0)), (49)

where K ∈ RN×N , K = J−1, ρ(0)min[n
(0)
] ∈ RN , and n(0)

∈ RN . We can
rewrite this equation of motion in an equivalent preconditioned
form,

n̈ (0) = −ω2
(K0J)−1K0(ρ(0)min[n

(0)
] − n(0)), (50)

where we have introduced a preconditioner, K0 ≈ J−1. J is the
Jacobian of the residual function,

f(n(0)) = ρ(0)min[n
(0)
] − n(0). (51)

If we use the notation,

fvk(n
(0)
) ≡ K0

∂f(n(0) + λvk)

∂λ
∣

λ=0
= K0Jvk, (52)

it is possible to show that the preconditioned Jacobian, K0J, can be
approximated by a low-rank (rank-m) approximation,

K0J ≈
m

∑
kl

fvk Lklv
T
l , (53)

for some set of vectors {vk}, and with L = O−1, where Oi j = vT
i v j and

m < N.74 The directional derivatives of f(n) in the direction of vk (or
Gateaux derivatives) in Eq. (52) can be calculated using quantum
perturbation theory.74,88,89

The low-rank inverse of the preconditioned Jacobian, K0J, is
then given by a pseudoinverse,

(K0J)−1
≈

m

∑
kl

vkMklf
T
vl , (54)

with M = O−1, where Oi j = fT
vi fv j . By choosing the vectors, {vk},

from an orthogonalized preconditioned Krylov subspace,74

{vk} ∈ span�{K0f(n(0)), (K0J)1K0f(n(0)), (55)

(K0J)2K0f(n(0)), (K0J)3K0f(n(0)), . . .}, (56)

we can rapidly reach a well-converged approximation of the kernel,
K, acting on the residual function. The advantage with the pre-
conditioner, K0, is that it typically reduces the number of Krylov
subspace vectors (or low-rank updates) necessary to reach con-
vergence. However, in principle, the preconditioner is not needed,
and the low-rank Krylov subspace approximation works well also
without preconditioning.76

If we let Δn(0) denote the result of the kernel acting on the
residual, i.e.,

Δn(0) = (K0J)−1K0(ρ(0)min[n
(0)
] − n(0)), (57)

≈ (∑
kl

vkMklf
T
vl)K0f(n(0)), (58)

we find that the electronic equation of motion in Eq. (41) and the
Newton step in Eq. (11) are given by

n̈ (0) = −ω2Δn(0), (59)

n(1) = n(0) − Δn(0). (60)

This clearly shows how the approximation of Δn(0) only needs to be
performed once every time step for the first-level generalized shadow
XL-BOMD in Eqs. (40) and (41). This simplification is another of
our key results.

The cost of calculating a preconditioner, K0, can be expen-
sive, but in QMD simulations, the preconditioner can be reused,
often over thousands of integration time steps (or the whole sim-
ulation) before an updated preconditioner is needed. In practice,
the overhead is, therefore, quite small, and it is also easy to paral-
lelize the calculation of the Jacobian. An update of the Jacobian can
be made whenever the required rank of the preconditioned Krylov
subspace approximation has to be higher than some max rank given
some accuracy threshold.74 In simulations of regular stable molec-
ular systems, a scaled delta function typically works perfectly well
as a preconditioner. The main cost of the preconditioned subspace
expansion required to approximate Δn(0) in Eq. (58) is, therefore, the
construction of the residual response vectors, {fvk}, from the direc-
tional perturbations in {vk}. In Kohn–Sham DFT, these response
vectors can be calculated from quantum perturbation theory.88,89 If
we assume that we have already performed a diagonalization of the
unperturbed Kohn–Sham Hamiltonian, H[n(0)

], to find ρmin[n
(0)
] in

Eq. (8), these response vectors are fairly easy to calculate as no addi-
tional diagonalizations are needed.76,77 Nevertheless, the calculation
of the residual response vectors, {fvk}, is the main bottleneck of the
Krylov subspace expansion. In Kohn–Sham DFT, using an atomic-
orbital basis, the cost is typically dominated by the transformations
back and forth between the non-orthogonal atomic-orbital basis and
the molecular-orbital eigenbasis, in which the response summations
are performed.74,75 In a recent fairly optimized implementation of
XL-BOMD, the increased cost of each extra rank-1 update of the
kernel approximation for a carbon system with 840 atoms was about
25% of the cost of a full integration time step.90

F. Connection to the Harris-Foulkes functional
The zeroth and first-level pairs of shadow energy function-

als and Born–Oppenheimer potentials presented in this article, e.g.,
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as in Eqs. (6)–(9), are quite general and easy to apply in different
applications, e.g., to orbital-based Kohn–Sham DFT, density matrix
methods in Hartree–Fock theory, orbital-free polarizable charge
equilibration models, or in a slightly different form even to time-
dependent models for superfluidity.17,18 These linearized shadow
energy functionals and their constrained optimization may, of
course, appear somewhat trivial. It is only in combination with XL-
BOMD that the shadow energy functionals and Born–Oppenheimer
potentials become useful and consequential. The proposed zeroth
or first-level shadow energy functionals and potentials are only
meaningful within the dynamical simulation framework of XL-
BOMD, where the electronic degrees of freedom appear as dynam-
ical field variables in addition to the nuclear positions and veloci-
ties. Only then can we calculate the exact forces from the shadow
Born–Oppenheimer potential. For a static, non-dynamical problem,
the corresponding forces are only approximate and would, in gen-
eral, require a well-converged iterative SCF optimization procedure
to achieve any reasonable accuracy.

For the static, non-dynamical problem, and for the par-
ticular case of Kohn–Sham DFT, the optimized ground-state
shadow Born–Oppenheimer potential, although conceptually dif-
ferent, is interchangeable with the Harris-Foulkes energy density
functional.57,58,91 The Harris-Foulkes (HF) functional, EHF[ρ0], is
an approximate energy expression for the electronic ground-state
energy in Kohn–Sham DFT that depends on some input density,
ρ0(r), where

EHF[ρ0] =∑
i

fiεi −
1
2∬

ρ0(r)ρ0(r′)
∣r − r′∣

drdr′ + Exc[ρ0]

− ∫ Vxc[ρ0](r)ρ0(r)dr. (61)

Here, {εi} are the eigenvalues of the Kohn–Sham Hamiltonian,
HKS[ρ0], calculated for the input density, ρ0(r), { fi} are the occu-
pation numbers, and Exc[ρ0] is the exchange-correlation energy
functional with the corresponding exchange-correlation potential,
Vxc[ρ0](r) = δExc[ρ]/δρ(r)∣ρ0

.
Apart from the nuclear–nuclear repulsion term (and possibly

an additional electronic entropy contribution), EHF[ρ0] has the
same form as the zeroth-level shadow potential, U (0)(R, n(0)), with
ρ0 = n(0). The difference is that U (0)(R, n(0)), as it appears
in XL-BOMD, represents an exact ground-state shadow
Born–Oppenheimer potential, which is determined from a
variationally optimized shadow energy functional, E (0)[ρ, n(0)],
with some external and electrostatic potentials that are given by
the nuclear positions, R(t), and a separate dynamical variable
density, n(0)

(r, t). Because n(0)
(r, t) is a dynamical field variable of

the extended Lagrangian in Eq. (25), forces in the Euler–Lagrange’s
equations of motion can easily be calculated from the partial
derivatives of U (m)(R, n(0)) with respect to a constant density,
n(0)
(r, t). This is in contrast to the Harris-Foulkes functional,

which is an approximate energy density functional expression for
the (static) Kohn–Sham ground state energy, where the density
ρ0(r) represents, either overlapping R-dependent atomic charge
densities or some iteratively and partially SCF updated (and thus,
R-dependent) input density. The Harris-Foulkes energy functional
is, therefore, best used for estimating the electronic ground state

energy for approximate densities. Accurate calculations of the
interatomic forces would still require a regular iterative SCF
optimization or the additional calculation of the gradients of the
electron density with respect to the atomic positions.

In XL-BOMD, the pairs of shadow energy functionals and
potential energy surfaces, therefore, play a different role and
allow for computationally simple and accurate calculations of con-
servative interatomic forces in molecular dynamics simulations,
without relying on the Hellmann–Feynman theorem.20,92 How-
ever, the linearized shadow energy functionals and optimized
Born–Oppenheimer potentials presented and derived here, as in
Eqs. (6)–(9), provide an alternative and probably more transpar-
ent and straightforward approach to derive and understand the
Harris-Foulkes functional in Kohn–Sham DFT. The procedure in
Eqs. (6)–(9) is also easy to generalize and apply to a broad vari-
ety of other energy expressions besides the Kohn–Sham energy
functional.17 As an example, in the section below, we will use the
approach in Eqs. (6)–(9) to the design a shadow energy func-
tional and potential for a coarse-grained flexible charge equilibration
model.

G. Coarse-grained flexible charge model
Flexible charge models can be derived from an atomic coarse-

graining of DFT.17,19,48–56 They often serve as simplified or concep-
tual versions of DFT and can also be used to illustrate our shadow
energy functionals in Born–Oppenheimer molecular dynamics.

In the simplest form of flexible charge models the electronic
energy functional in DFT is approximated by the energy function,

E(R, q) =∑
I

χIqI +
1
2∑I

UIq2
I +

1
2

I≠J

∑
IJ

qIγIJqJ , (62)

where q = {qI} is the coarse-grained charge density, represented by
net partial charges (or electron occupations) of each atom I, χI are
the estimated atomic electronegativities, UI the chemical hardness
or Hubbard-U parameters, and γIJ describe the Coulomb interac-
tions between penetrating spherical atom-centered charge densities
centered at atom I and J. At large interatomic distances, these inter-
actions decay as γIJ → ∣RI − RJ ∣

−1, and at short-range distances, the
onsite limit, γIJ → UI , is reached as ∣RI − RJ ∣→ 0.

The electronic ground state is given from the constrained
minimization, where

qmin = min
q
{E(R, q)∣∑

I
qI = 0}. (63)

This minimization requires the solution of a full system of linear
equations, which is the main computational bottleneck. If an itera-
tive solver is used the optimized solutions need to be well converged
to provide accurate conservative forces in a molecular dynamics
simulation. The optimized ground state charges then give us the
Born–Oppenheimer potential,

U(R) = E(R, qmin) + V(R). (64)

The molecular trajectories can then be generated from the integra-
tion of Newton’s equations of motion,

MIR̈I = −∇IU(R). (65)
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Following the approach in Eqs. (6)–(9), a zeroth-level shadow
energy function, E (0)(R, q, n(0)) ≈ E(R, q), can be constructed
from a partial linearization of E(R, q) around some approximate
ground state solution, n(0)

≈ qmin, where

E (0)(R, q, n(0)) =∑
I

χiqi +
1
2∑I

UIq2
I

+
1
2∑I≠J
(2qI − n(0)I )γIJn(0)J . (66)

The constrained minimization (the lowest stationary solution) of
this shadow energy function gives us the n(0)-dependent ground
state density,

qmin[n
(0)
] = arg min

q
{E (0)(R, q, n(0))∣∑

I
qI = 0}, (67)

and the corresponding zeroth-level shadow Born–Oppenheimer
potential,

U (0)(R, n(0)) = E (0)(R, qmin[n
(0)
], n(0)) + V(R). (68)

The shadow energy function, E (0)(R, q, n(0)), is constructed such
that qmin[n

(0)
] is determined by a quasi-diagonal system of linear

equations that has a trivial analytical solution.17,19

To introduce the first-level update, we can improve the ground-
state estimate of n(0) with a Newton step,

n(1) ≡ n(1)[n(0)] = n(0) − Δn(0), (69)

where

Δn(0) = (K0J)−1K0(ρ(0)min[n
(0)
] − n(0)), (70)

which can be approximated, for example, by the preconditioned
low-rank Newton step as in Eq. (58). Notice that this updated
approximate charge vector is n(0)-dependent, i.e.,

n(1) ≡ n(1)[n(0)] = n(0) − Δn(0). (71)

The updated first-level energy function is now given by

E (1)(R, q, n(1)) =∑
I

χiqi +
1
2∑I

UIq2
I

+
1
2∑I≠J
(2qI − n(1)I )γIJn(1)J . (72)

The optimized ground state density is then given from the con-
strained minimization, where

qmin[n
(1)
] = arg min

q
{E (1)(R, q, n(1))∣∑

I
qI = 0}. (73)

The shadow energy function E (1)(R, q, n(1)) is constructed
in the same way as E (0)(R, q, n(0)) such that qmin[n

(1)
] also is

determined by a quasi-diagonal system of linear equations that has

a trivial analytical solution.17,19 This gives us the corresponding
first-level shadow Born–Oppenheimer potential,

U (1)(R, n(0)) = E (1)(R, qmin[n
(1)
], n(1)) + V(R), (74)

where n(1)
≡ n(1)

[n(0)
]. The shadow Born–Oppenheimer potential

can then be used in an extended Lagrangian formulation,17,19 which
in an adiabatic limit gives us the equations of motion,

MIR̈I = −∇I U (1)(R, n(0))∣
n(0)

, (75)

n̈ (0) = −ω2Δn(0). (76)

The nuclear coordinates and velocities can then be integrated using a
standard velocity Verlet integration scheme, and for the evolution of
the atomic partial charges, n(t), we can use the modified Verlet inte-
gration scheme including some additional weak dissipative damping
forces as in Eq. (48).

This example with a coarse-grained flexible charge equilibra-
tion model demonstrates the general applicability of our shadow
molecular dynamics approach and how it can be used to construct
pairs of shadow energy functionals and potentials for XL-BOMD
simulations at different levels of accuracy.

IV. PSEUDOCODE
The easiest way to summarize the generalized first-level update

of the shadow energy functional and Born–Oppenheimer potential
in XL-BOMD is to describe the method in a step-by-step procedure
using pseudocode. Algorithm 1 gives a schematic picture of what an
XL-BOMD simulation using the first-level shadow potential, U (1),
would look like for an orbital-dependent Kohn–Sham like electronic
structure theory. It is expressed in a matrix-vector notation that is
well suited, for example, for SCC-DFTB simulations. All zeroth-
level superscripts, (0), as in n(0), have been dropped to simplify the
notation. Here, S is a basis-set overlap matrix and H is the effective
single-particle (Kohn–Sham) Hamiltonian. Of critical importance
is the construction of Δn ≡ Δn(0) with a low-rank preconditioned
Krylov subspace approximation using quantum response calcula-
tions. In contrast to the most recent XL-BOMD schemes, we now
need two diagonalizations per time step, instead of only one. Algo-
rithm 1 provides a compact summary of the most important results
of this article.

V. EXAMPLES
We will demonstrate the accuracy and performance of the

shadow energy functionals and Born-Oppenheimer potentials in
XL-BOMD simulations using the SCC-DFTB theory.37–39,58–64 SCC-
DFTB theory can be seen as a framework for different levels of
approximations of the density functional theory. Here, we will
use the scheme given by a second-order expansion in the charge
density fluctuations around a reference density of overlapping neu-
tral atomic charge distributions, where the atomic net Mulliken
partial charges are used to describe the long-range electrostatic
interactions. In this way, the continuous charge density, ρ(r), of
regular DFT becomes vectorized with one net partial charge per
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ALGORITHM 1. Pseudocode for the XL-BOMD scheme using the first-level updated
shadow Born–Oppenheimer potential, U (1)(R, n(0)). The positions and velocities
of the atomic positions are integrated using the leapfrog velocity Verlet scheme.
Matrix-vector notation is used and the zeroth-level (0)-superscripts, i.e., as in n(0)

or Δn(0), have been dropped for brevity. One rank-m approximation of Δn and two
Hamiltonian diagonalizations are required in each time step. The additional step com-
pared with the zeroth-level potential that dominates the computational “extra cost” is
indicated by (extra cost) at the end of the line.

Atomic masses and positions, M = {MI}, R = {RI}

Get ground state, qmin, with regular SCF
qmin ⇒ “exact” U(R) and forces, F = {FI}

Initialize charges, nj = qmin, j = 1, 2, . . . , k
Initialize velocities, V = {VI}

Estimate preconditioner, K0 = J−1

Initial Δn = (K0J)−1K0(qmin[n] − n) = 0
t = t0
while t < tmax do

VI = VI + (δt/2)FI/MI

n0 = 2n1 − n2 − δt2ω2Δn + α∑k
l=0 cln1−l

nk = nk−1, . . . , n2 = n1, n1 = n0, n = n0
RI = RI + δtVI

H[n] = H[R, n], S = S[R], Z = S−1/2

qmin[n]⇐ from diagonalized ZTH[n]Z
Δn = (K0J)−1K0(qmin[n] − n) with rank −m approx.
n(1)
= n − Δn, approximate Newton step

qmin[n
(1)
]⇐ from diagonalized ZTH[n(1)

]Z (extra cost)
qmin[n

(1)
]⇒ shadow U (1)(R, n) and forces, F

VI = VI + (δt/2)FI/MI
t = t + δt

end while

atom, q = {qI}. The fluctuating partial charges are optimized self-
consistently to account for interatomic charge transfer and the
response to the long-range electrostatic interactions. In a general
SCC-DFTB scheme, this requires a repeated set of constructions
of an approximate effective single-particle Kohn–Sham Hamil-
tonian, diagonalizations, charge calculations from the eigenfunc-
tions, and Coulomb potential summations, until a self-consistent
charge convergence is reached. SCC-DFTB theory therefore fol-
lows the same iterative SCF procedure as a regular first-principles
Kohn–Sham DFT calculation. Here, we will also use a thermal
DFTB theory, where we assume fractional occupation numbers of
the molecular orbitals determined by the Fermi function at some
given electronic temperature, Te, including an electronic entropy
term.17,24,27,28,30,66,67 The fractional occupation numbers are impor-
tant to better stabilize the electronic structure calculations when the
electronic HOMO-LUMO energy gap is small or vanishing. This
also affects how we perform the response calculations of {fvi} in the
Krylov subspace approximation in Eq. (54) of the preconditioned
kernel.16,17,76,77,88,89

For our implementation and XL-BOMD simulations, we use
a developer’s version of the LATTE software package12,93,94 that
closely follows Algorithm 1. As a preconditioner, we use an exact
calculation of the kernel in the first time step, and we use a sufficient
number of low-rank updates to achieve an approximate quadratic

convergence in the Newton updates. The maximum number, m, of
Krylov subspace vectors, i.e., in the rank-m approximation never
exceeds 6.

First, we will look at the asserted scaling expressed in Eqs. (31)
and (32) that were assumed in the derivation of the equations of
motion, in Eqs. (40) and (41). Thereafter, we will demonstrate the
advantage of the first-level update of the shadow energy functional
and Born–Oppenheimer potential, U (1), compared with the orig-
inal zeroth-level approximation for XL-BOMD simulations of an
unstable, charge-sensitive, chemical system.

A. Scaling
Figure 1 shows the approximate scaling of the root mean square

errors (RMSE) given by the root mean square of the residuals,
qmin[n

(0)
] − n(0) and qmin[n

(1)
] − n(1) for simulations of amorphous

carbon. The results of the simulations confirm the assumed scal-
ing orders, where ∣qmin[n

(0)
] − n(0)

∣∝ ω−2 and ∣qmin[n
(1)
] − n(1)

∣

∝ ω−4. These scalings were asserted a priori in the derivation of the
equations of motion in an adiabatic limit as ω→∞. The scaling of
the RMSE extracted from the XL-BOMD simulations shown in Fig. 1
confirms these assumptions. Notice that the ω−1

∝ δt because our
integration scheme, Eq. (48), has been chosen such that δt2ω2 is a
dimensionless constant, κ = δt2ω2.

The error in the zeroth-level shadow Born–Oppenheimer
potential scales as ∣U (0) −U∣∝ ∣qmin[n

(0)
] − n(0)∣2. This means

that the error in the sampling of the zeroth-level shadow
Born–Oppenheimer potential, U (0), scales as δt4 with the inte-
gration time step, which has been confirmed previously, e.g.,
Ref. 16. The new first-level updated shadow Born–Oppenheimer
potential, U (1), has the same form for the error, where
∣U (1) −U∣∝ ∣qmin[n

(1)
] − n(1)∣2. This means, from the scaling

demonstrated in Fig. 1, that the error in the sampling of the
shadow Born–Oppenheimer potential U (1) scales at δt8. It is hard
to demonstrate this scaling of the error in U (1) directly because the
error converges too quickly and saturates at a level set by the avail-
able numerical precision. Here, we, therefore, only show this δt8

scaling indirectly, from the δt4 or ω−4 scaling of ∣qmin[n
(1)
] − n(1)

∣

in Fig. 1.
From the derivation of the equations of motion with the first-

level shadow potential in Eqs. (40) and (41), we made the estimate
that the equations of motion for the atomic positions should have an
error that scales as ∝ ω−4. In Fig. 2, we show the results of simula-
tions of an amorphous carbon and a water system, where we find that
the fractional error in the evaluated forces for the first-level U (1)
shadow potential scale at ∝ δt4. This confirms the previously esti-
mated scaling. This is in contrast to the original zeroth-level shadow
Hamiltonian formulation of XL-BOMD using U (0) with an error in
the forces that are only of second order,∝ δt2.16

The dramatic improvement in the scaling of the error as a
function of the integration time step may seem impressive. Nev-
ertheless, often, the improved behavior only has a minor effect on
the accuracy and stability of XL-BOMD simulations. It is only for
highly unstable systems, where the improved scaling and accuracy
from the first-level update of the shadow energy functional and
Born–Oppenheimer potential play a role. For such problems, we
find that stable molecular trajectories often can be achieved with a
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slightly longer integration time step than what otherwise would be
possible with the original zeroth-level shadow energy functional and
Born–Oppenheimer potential.

Another important observation is that the higher degree of
accuracy in the force evaluations may be useful if higher-order
symplectic integration schemes are used. In previous studies, using
earlier versions of XL-BOMD, we found that we needed a fairly
tight SCF convergence prior to the force evaluations for the higher-
order symplectic integration schemes to take full advantage of their
improved accuracy.84,85 The first-level shadow energy functional
and Born–Oppenheimer potential should, therefore, be well-suited
in combination with various 4th-order symplectic integrations
schemes.84

B. Unstable mixture of nitromethane
To demonstrate the advantage of the first-level shadow energy

functional and Born–Oppenheimer potential compared with the
original zeroth-level approach, we will look at a chemically unsta-
ble system, with a small or vanishing HOMO-LUMO energy gap.
Such systems are often difficult to study, in particular, with regular
direct quantum-mechanical Born–Oppenheimer molecular dynam-
ics methods. As an example, we have chosen an artificial mixture
of liquid nitromethane, (CH3NO2)7, where a handful of randomly
chosen atoms have switched places. This artificial testbed system is
highly unstable and exothermic reactions occur within a few hun-
dred femtoseconds. This is illustrated in Fig. 3. The sudden shifts in
the temperatures are aligned with some of the sudden changes in the
electronic HOMO-LUMO gap accompanying the exothermic reac-
tions. We find a significantly improved stability in the simulation

FIG. 3. XL-BOMD simulations based on SCC-DFTB theory of an artificial highly
reactive randomized mixture of liquid nitromethane (49 atoms with periodic bound-
ary conditions). The upper panel (a) shows the statistical temperature, the middle
panel (b) shows the fluctuations in the total energy per atom, and the lower panel
(c) shows the HOMO-LUMO electronic energy gap. An integration time step of
δt = 0.2 fs was used in combination with a fractional occupation number cor-
responding to an electronic temperature, Te = 1, 500 K. The first-level updated
shadow potential, U (1), (blue lines) shows more stable dynamics without the
more pronounced fluctuations in the total energy fluctuations of the zeroth-level
shadow potential, U (0), (red lines).

with the first-level updated shadow potential, U (1), (blue solid lines)
compared with the original zeroth-level shadow potential, U (0),
(red lines) as indicated by the fluctuations in the total energy shown
in the mid panel (b). Only by reducing the integration time step, δt,
or possibly by increasing the electronic temperature, it is possible
to stabilize the XL-BOMD simulation using the original zeroth-level
shadow potential.

C. Amorphous carbon
To demonstrate the advantage of the first-level shadow energy

functional and Born–Oppenheimer potential compared with the
original zeroth-level approach, we will also look at amorphous car-
bon simulations. Such systems can be difficult to study with the
regular direct quantum-mechanical Born–Oppenheimer molecular
dynamics methods. The amorphous carbon system is unstable, and
multiple exothermic reactions occur within the first 8 ps. This is
illustrated in Fig. 4. The sudden shifts in the temperatures are aligned
with some of the sudden changes in the electronic HOMO-LUMO
gap accompanying the exothermic reactions. We find a significantly
improved stability in the simulation with the first-level updated
shadow potential, U (1), (blue solid lines) compared with the orig-
inal zeroth-level shadow potential, U (0), (red lines) as indicated
by the fluctuations in the total energy shown in the mid panel
(b). Only by reducing the integration time step, δt is it possible
to stabilize the XL-BOMD simulation using the original zeroth-
level shadow potential. A simple cost comparison over 1000 time
steps in our current, not fully optimized, implementation showed
that the wall-clock time was about 15% higher using the first-level
shadow Born–Oppenheimer potential compared with the original
zeroth-level approach.

FIG. 4. XL-BOMD simulations based on SCC-DFTB theory of amorphous carbon
(C)55. The upper panel (a) shows the statistical temperature, the middle panel (b)
shows the fluctuations in the total energy per atom, and the lower panel (c) shows
the HOMO-LUMO electronic energy gap. An integration time step of δt = 1.25 fs
was used in combination with a fractional occupation number corresponding to
an electronic temperature, Te = 300 K. The first-level updated shadow potential,
U (1), (blue lines) shows a more stable dynamics without the more pronounced
fluctuations in the total energy fluctuations of the zeroth-level shadow potential,
U (0), (red lines).
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VI. SUMMARY AND DISCUSSION
In this article, we have introduced a generalization of the

shadow energy functionals and Born–Oppenheimer potentials used
in XL-BOMD. The original zeroth-level shadow energy functional
generates a Born–Oppenheimer potential that has an error in the
fourth-order, O(δt4

), of the integration time step, δt, and with an
error in the interatomic forces that is of the second order, O(δt2

).
With the first-level update, the error in the potential energy can
be reduced to scale as O(δt8

), where the error in the calculated
interatomic forces scales as O(δt4

). The main additional cost of
using the first-level instead of the zeroth-level shadow potential is
the cost of an extra Hamiltonian diagonalization. We showed how
this improved level of accuracy helps stabilize the integration of the
molecular trajectories, which can be of particular importance for
unstable, charge-sensitive, reactive systems with a small or vanishing
electronic HOMO-LUMO energy gap. The improved scaling in the
error of the potential and forces may also be of interest in the appli-
cation of higher-order symplectic integration schemes.11,84,85 These
higher-order schemes are of no use unless they can be matched by
force evaluations with a comparable or higher level of accuracy.

The ability to systematically improve the accuracy of the
Born–Oppenheimer potential has many similarities with earlier
versions of XL-BOMD,11,34,79 where often a few SCF cycles were
needed prior to each force evaluation. It also has similarities with
extrapolation methods, where the initial guess to the SCF optimiza-
tion is given from an extrapolation of the ground state solutions
from previous time steps.32–35 The extrapolation can be seen as a
dynamics-like propagation. With the analysis presented here, we
now have a more transparent understanding of when and why such
schemes could work. The key idea is the construction of pairs of
shadow energy functionals and potentials, where the shadow poten-
tial is given from an exact, yet computationally cheap, ground-state
optimization of a linearized shadow energy functional. In combi-
nation with XL-BOMD, where the electronic degrees of freedom
are propagated dynamically, the shadow Born–Oppenheimer poten-
tials can then be used to calculate conservative interatomic forces
that generate accurate molecular trajectories with long-term energy
stability.

The generalized shadow energy functionals and
Born–Oppenheimer potentials were demonstrated using
Kohn–Sham-based SCC-DFTB theory. However, the underly-
ing theory was derived in a general form that also applies to other
electronic structure theories, including Hartee–Fock and orbital-
free DFT. As an example, we also discussed an extension to flexible
charge equilibration models, which can be derived as coarse-grained
versions of Hohenberg–Kohn DFT. The higher-level generalization
of the shadow energy functionals and Born–Oppenheimer poten-
tials presented here are therefore applicable to a broad variety of
electronic structure methods and flexible charge models within the
framework of XL-BOMD.
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